pcb layout for - sharif university of technology …ee.sharif.edu/~kaboli/pcb layout for switching...

47
1

Upload: trandat

Post on 16-Mar-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

1

Page 2: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

2

" PCB Layout for Switching Regulators "

Page 3: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

3

Introduction• Linear series pass regulator

GAIN

VOUTILVIN

REFRL

• Series pass device drops the necessary voltage to maintain VOUT at it’s programmed value

• Power Loss = (VIN – VOUT) * IL– e.g. 12V in, 3.3V/5A out, Power Loss = 43.5W

Page 4: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

4

Introduction• Switching regulator

• Power ≠ (VIN – VOUT) * IL– When switch is closed V = 0, I = IL– When switch open V = VIN, I = 0– Theoretically zero power loss with ideal switch– e.g. η = 90%, Power loss = 1.83W versus 43.5W

PWM GAIN

REF

FILTERVIN VOUT

IL

Page 5: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

5

Introduction

• But we now have high slewing currents and voltages

• Switching regulator

PWM GAIN

REF

FILTERVIN VOUT

IL

Page 6: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

6

DC Resistance• Copper is not a perfect conductor

– Efficiency– Regulation– Thermals

Material μΩ-cm μΩ-inSilver 1.5 0.59

Copper 1.70 0.67

Silver (Plated) 1.8 0.71

Gold 2.2 0.87

Copper (Plated) 6.0 2.36

Palladium 11 4.3

Tin (Plated) 11 4.33

Tin -Lead 15 5.91

Lead 22.0 8.66A

Curre

nt F

low

l

AlR ρ

=

yresistivit=ρ

Page 7: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

7

DC Resistance• Copper resistivity = 0.67μΩ in. at 25°C.

– At 279°C it doubles• Count squares to estimate trace resistance

t

Current Flowl

lt

R

tR

ρ

ρ

=

=)()(

l

l

R of = R of

• 1.0mΩ(½ oz Cu)• 0.2mΩ(2oz Cu )

=

Page 8: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

8

Count Squares

• Estimate resistance of input trace

• PSU Spec:– 3.3V to 1.8V/20A– η = 87%– IIN = 12.54A

Cu WeightOz.

Thicknessmm (mils)

mΩ/Square25oC

mΩ/Square100oC

1/2 0.02 (0.7) 1.0 1.3

1 0.04 (1.4) 0.5 0.65

2 0.07 (2.8) 0.2 0.26

Page 9: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

9

Count Squares

• 6.4 squares

• Using ½ oz Cu– R= 6.4mΩ at 25°C– PDISS = 0.98W = 18% of losses

• Using 2 oz Cu– R = 1.28mΩ at 25°C– PDISS = 0.2W = 3.7% of losses

2.8 squares 3.6 squares

Page 10: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

10

Vias Have Resistance Too• 1A to 3A per via

– 20mil via with 1 mil plating

AlR ρ

=

Ω=−•××

=−

mR 4.2)001.002.0001.0(

063.01036.22

6

π

)( 2tdtlR−•

ρ

0.5 mm(20 mils)

d

0.025 mm(1.0 mil) t

1.6 mm(63 mils)

CurrentFlow

l

A

Page 11: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

11

Vias Have Resistance Too

171 at 2.4mΩ/via⇒R = 14μΩ

• Second Cu layer => total trace R = 0.64mΩ

• PDISS = 0.1W

Page 12: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

12

AC Parasitics. Inductance

• Self inductance of PCB trace– Changes in trace width has a small impact on

self inductance.

nHwt

nL

nHwt

nL

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟

⎠⎞

⎜⎝⎛

+=

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟

⎠⎞

⎜⎝⎛

+=

5.05

5.02

ll

ll

Wmm (in)

tmm (in)

Inductance nH/cm (nH/in)

0.25 (0.01) 0.07 (0.0028) 9.7 (24.4)2.5 (0.1) 0.07 (0.0028) 5.6 (13.9)12.5 (0.5) 0.07 (0.0028) 2.4 (6)

• A 10x increase in width only halves the inductance

for inches

for cm

wt

Curre

nt Flo

wl

Page 13: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

13

AC Parasitics. Inductance• Traces over ground planes reduces self

inductance

nH/cm 2whlL =

nH/in 5whlL =

w

h

CurrentFlow

hmm (in)

wmm (in)

Inductance nH/cm (nH/in)

InductanceNo ground plane

nH/cm (nH/in)

1.6 (0.063) 2.5 (0.1) 1.3 (3.2)

2.0 (5.0)

5.6 (13.9)

2.5 (0.1) 2.5 (0.1) 5.6 (13.9)

• A ground plane can reduce inductance by a factor of 4

Page 14: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

14

X

Yy

x

T

Time (s)2.00u 3.00u 4.00u 5.00u

Vol

tage

(V)

-2.28

0.00

2.28

Current Loops and Inductance• Keep loop area with high di/dt’s small

X

Y

T

Time (s)2.00u 3.00u 4.00u 5.00u

Vol

tage

(V)

-2.59

0.00

2.59

Loop area A = X * YBAD

Loop area A = (X*Y) - (x*y)GOOD

Page 15: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

15

AC Parasitics. Capacitance• Two Cu plates with PCB material dielectric

– Two 10 mil traces on a multi layer PCB, 10 mil between layers

tAC OR ××

=εε

( ) ( )3

2312

1025.0100.25109.14

−−

×××

=C

pFC 01.0=

Note: 10 mil = 0.25 mm.

A = 0.25 mm x 0.25 mm

Permittivity of FR4 ≈ 4.7εo = 8.84 x 10 -12

( )t1041.9 12 AC

−×=

Page 16: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

16

AC Parasitics. Capacitance• Five 1.3 x 0.7 mm in summing junction can increase

parasitic capacitance to 1pF.⇒1V/nsec = 1mA through 1pF.

Critical components

CPARASITIC

1

2

3

4

7

7

7

7

12

11

10

9

13

14

16

15

5

6

7

8

ILIM/SYNC

VDD

OSNS

FB

COMP

SS/SD

RT

SGND

BOOT1

HDRV

SW

BOOT2

PVDD

LDRV

PGND

PWRGD

TPS40020

PowerPAD

VIN

VOUT12nsec

12V

1mA

Page 17: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

17

Single Point Grounding

• Simple wiring• Common impedance

causes different potentials

• High impedance at high frequency (>10 kHz)

• Complicated wiring• Low differential potentials

at low frequencies• High impedance at high

frequency (>10 kHz)

1 2 3 1 2 3

Series Parallel

Page 18: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

18

Multi Point Grounding

• Ground plane provides low impedance between circuits to minimize potential differences

• Also, reduces inductance of circuit traces• Goal is to contain high frequency currents in individual

circuits and keep out of ground plane

1 2 3

Ground Plane

Page 19: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

19

PSU Layout Guide1. Place power components only

– with regard to thermal, mech., elect. and safety reqs.

2. Place input filter– symmetrical layout, immediately adjacent to input

and away from FET, trafo, inductor, etc.3. Place FET drivers

– star point at FET source pin4. Place control and associated parts

– star point at IC GND pin– star point at IC GND pin– sense points = output terminals

Page 20: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

20

Q1 L

C2

A

C1 Q2

B

C

D

E

Place Power Components

F

DC

AC

AC

DC

• Typical circulating current when Q1 is ON

Page 21: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

21

Place Power Components

Q1 L

C2C1 Q2

A

B

C

D

EF

AC

DC

• Typical circulating current when Q2 is ON

Page 22: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

22

Place Power Components

Q1 L

COUTCIN Q2

A

B

C

D

EF

AC

DCDC

AC

• Circulating currents combine in some traces

High di/dt in these current paths

Page 23: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

23

Place Power Components• Draw schematic to reflect good layout

Page 24: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

24

Place Power Components

DC

DC

Q1 ON Current flow• High side FET ON

– Use short and direct paths

– Minimum loop area– Separate dc & ac paths– Separate input &

output paths

Page 25: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

25

Place Power Components

DC

• Low side FET ON– Use short and direct

paths– Minimum loop area– Separate dc & ac paths– Separate input &

output paths

Q2 ON Current flow

Page 26: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

26

Place Filter Components

• Filter components placed between input and power train.

• Place close to connector

Input Filter

Output Filter

Keep AC current in small loop

Page 27: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

27

Scope Probes• Measuring noise

– Use a small ground connector

Page 28: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

28

Place Filter Components

• Input location A or B?– Input ripple at

C10 versus C12

Input BInput A

Page 29: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

29

Place Filter Components

• Input A– 40mVpp ripple– 16mVp spike

• Input B– 70mVpp ripple– 110mVp spike

Input BInput A

50mV/div20mV/div

Page 30: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

30

Place Filter Components

• Output location A or B?– Input ripple at

C10 versus C12

Output A

Output B

Page 31: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

31

Place Filter Components

• Output A– 12mVpp ripple– 7mVp spike

• Output B– 20mVpp ripple– 17mVp spike

Output A

Output B

Page 32: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

32

Place FET Drivers

• FET gate charging and discharging.– di/dt greater than 100A/μsec (1.5A/15nsec)– dv/dt greater than 200V/μsec (3V/15nsec)

Q1 L

COUTCINQ2

C1

C3

Page 33: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

33

Place FET Drivers

• Place with:– Short and direct paths– Minimum loop area– Cross other tracks at

90° reduces capacitive coupling

• Trace from IC to Q1 gate is 0.852”, width is 0.03” on 2oz copper:– LPARA = 6.23nH– VIND = 0.623V

Poor Driver Layout

Page 34: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

34

Place FET Drivers

• Place with:– Short and direct paths– Minimum loop area– Cross other tracks at

90° reduces capacitive coupling

• Trace from IC to Q1 gate is 0.852”, width is 0.03” on 2oz copper:– LPARA = 6.23nH– VIND = 0.623V

Better Driver Layout

Page 35: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

35

Place Control and Associated Parts

• Connect resistors close to FB pin

• Remote sense at load, voltage divider at IC

Page 36: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

36

Layout A

Page 37: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

37

Layout A

• Input Ripple– 40mVpp ripple– 34mVp spike

• Output Ripple– 12mVpp ripple– 20mVp spike

Page 38: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

38

Layout B

Page 39: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

39

Layout B

• Input Ripple– 40mVpp ripple– 16mVp spike

• Output Ripple– 12mVpp ripple– 7mVp spike

Page 40: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

40

Layout A

• Input Ripple– 40mVpp ripple– 34mVp spike

• Output Ripple– 12mVpp ripple– 20mVp spike

Page 41: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

41

PSU Layout Guide

• Join components:– Use short and direct paths (minimize inductance)– Minimum loop area

• single sided PCB1. Go and return paths immediately adjacent

• double sided PCB:1. Ground planes top & bottom, no breaks, no floating areas2. One ground plane, no breaks, no floating areas3. Go and return paths over each other4. Go and return paths immediately adjacent, track direction: E-W on

one side, N-S on other– Separate dc & ac paths– Separate input & output paths– Four terminal connections (Kelvin connections)– Star common connections (no daisy chains)

Page 42: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

42

Additional Resources

www.ti.com

www.avnet.com

Page 43: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

43

Appendix

• Discussion of layout rules and differences in lab.

Page 44: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

44

Place Control and Associated Parts

• Many control IC’s recognize noisy/quiet circuit areas and pin out accordingly

• Some even provide a separate pin for power and analog ground

• Good practice plans layout around pin out, uses a ground plane and keeps high current out of it

Sig

nal c

ircui

ts

Pow

er circuits

Page 45: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

45

Layout A

• 4 layers• Input GND connected directly to output

GND• High side FET driver return• F/B node

Page 46: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

46

Layout B

• 2 layer board• Improved high side gate return• Improved input GND and output GND

decoupling• Smaller F/B trace

Page 47: PCB Layout for - Sharif University of Technology …ee.sharif.edu/~kaboli/PCB Layout for Switching Regulators...voltage divider at IC 36 Layout A 37 Layout A • Input Ripple – 40mVpp

47

PSU Layout Guide

• Join components:– Use short and direct paths (minimize inductance)– Minimum loop area

• single sided PCB1. Go and return paths immediately adjacent

• double sided PCB:1. Ground planes top & bottom, no breaks, no floating areas2. One ground plane, no breaks, no floating areas3. Go and return paths over each other4. Go and return paths immediately adjacent, track direction: E-W on

one side, N-S on other– Separate dc & ac paths– Separate input & output paths– Four terminal connections (Kelvin connections)– Star common connections (no daisy chains)