performance analysis of a turbo-type energy ... - core

270
PERFORMANCE ANALYSIS OF A TURBO-TYPE ENERGY ABSORBER FOR AN AIRCRAFT CARRIER ARRESTING GEAR Leo Stanley Rolek

Upload: others

Post on 07-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Performance analysis of a turbo-type energy ... - CORE

PERFORMANCE ANALYSIS OF A TURBO-TYPE

ENERGY ABSORBER FOR AN AIRCRAFT

CARRIER ARRESTING GEAR

Leo Stanley Rolek

Page 2: Performance analysis of a turbo-type energy ... - CORE
Page 3: Performance analysis of a turbo-type energy ... - CORE

United StatesNaval Postgraduate School

"H "S« I 'HL_J kZ? -1 I.

PERFORMANCE ANALYSIS 01 1 A TURBO--TYPE ENERGY

ABSORBER FOR AN AIRCRAFT CARRIER ARRESTING GEAR

^y

Leo Stanley Rolek, Jr t

/ /y<r' 7\5fJune 1971

II

App/ioued &0A public. <%zle.aA2.; diAtnlbntlcn un&uruXzd.

Page 4: Performance analysis of a turbo-type energy ... - CORE

ADUATE SCHOOLMOJT:

, CALI£... 93240

Page 5: Performance analysis of a turbo-type energy ... - CORE

Performance Analysis of a Turbo-Type Energy

Absorber for an Aircraft Carrier Arresting Gear

by

Leo Stanley Rolek, Jr.

Ensign, United 'States NavyB.S.A.E., United States Naval Academy, 1970

Submitted in partial fulfillment of therequirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOLJune 1971

Page 6: Performance analysis of a turbo-type energy ... - CORE

ft

c.t

Page 7: Performance analysis of a turbo-type energy ... - CORE

SCHOOL"

93940

ABSTRACT

The increasing weight and speed of carrier based aircraft are

taxing the limit of conventional piston type energy absorbers which

are used for arresting gear. Turbo-type absorbers have been proposed

as an alternative. This study investigates a turbo-type energy

absorber for an aircraft arresting gear under development by the

Naval Air Engineering Center, A mathematical analysis, computer

simulation and performance prediction are given for each mode of

operation. It was initially expected that the absorber could operate

in just two modes, forward and reverse, but the analysis shows that

four distinct modes are possible, since not only shaft rotation but

the path of fluid flow can be reversed. Theoretical performance

predictions are also compared with test data from an existing smaller

scale version of the absorber. The agreement is excellent. An

approximation of scaling effects on power absorption is also

presented. It is concluded that the turbo-type absorber is basically

adequate to meet the demands of carrier operation for the forseeable

future

.

Page 8: Performance analysis of a turbo-type energy ... - CORE
Page 9: Performance analysis of a turbo-type energy ... - CORE

TABLE OF CONTENTS

I. INTRODUCTION 12

II. DESIGN VALUES AND CONSIDERATIONS 15

III. ANALYSIS OF THE PROBLEM 21

A. MODES OF OPERATION 21

B. DIMENSIONAL ANALYSIS 29

C. ENERGY BALANCE AT EQUILIBRIUM 31

D. MODEL TESTING 34

E. ASSUMPTIONS AND LIMITATIONS OF THE ANALYSIS 35

IV. RESULTS AND DISCUSSION . 38

V. CONCLUSIONS AND RECOMMENDATIONS 47

APPENDIX A Detailed Analysis of the Energy Absorber v.'ith theFluid Circulating in the Normal Direction, Mode 1

and 2 48

APPENDIX B Detailed Analysis of the Energy Absorber with theFluid Circulating in the Reverse Direction,Modes 1 and 2 82

APPENDIX C Program NORMAL 88

APPENDIX D Program REVERSE 110

LIST OF REFERENCES 129

INITIAL DISTRIBUTION LIST 1 30

FORM LD 1473 131

Page 10: Performance analysis of a turbo-type energy ... - CORE
Page 11: Performance analysis of a turbo-type energy ... - CORE

LIST OF TABLES

Table Page

I Parameters of the Absorber -------------- 18

II Modes of Operation ------------------ 21

III Detailed List of Results for All Modes of theAbsorber -__--------__----__-_ 42

IV Flow Chart for Computer Programs NORMAL andREVERSE 90

Page 12: Performance analysis of a turbo-type energy ... - CORE
Page 13: Performance analysis of a turbo-type energy ... - CORE

- LIST OF FIGURES

Figure Page

1, Overall Schematic, Programmed Drum Arresting Gear - - --j/

2, Schematic of Energy Absorber _____________^g

3, Diagram of Absorber Bladings ---------.__-_-jY

4» Velocity Diagrams for Mode 1 - - _______23

5» Velocity Diagrams for Mode 2 _____________24

6. Velocity Diagrams for Mode 3 -------------25

7# Velocity Diagrams for Mode 4 ------------- 26

8, Total Enthalpy-Entropy Diagram for Modes 1 and 2 _ _ -27

9. Total Enthalpy-Entropy Diagram for Modes 3 and 4 -28

10, Energy Balance for Equilibrium for Normal Flow - - - - 30

11, Energy Balance for Equilibrium for Reverse Flow - _ _ -z-z

12, Power Coefficient versus Rotational Speed _______ ^9

13» Power versus Shaft Speed __--__-_--_---_^q

14. Maximum Power Coefficient versus Maximum ReynoldsNumber _______________________ a^

15. Estimate of Loss Coefficient ? ------------ yc

16. Estimated Channel Wall Friction Factor \~ ------- nn

Page 14: Performance analysis of a turbo-type energy ... - CORE
Page 15: Performance analysis of a turbo-type energy ... - CORE

TABLE OP SYMBOLS

Symbol FORTRAN

Latin

a

b B

Cf

CF

ci

CL

cP

CP

C CU

Definition Units

u

D.h

h - •

H H

H^ -

*RIR

S IS

^ KB

L~„ LL

u

m

M,

LU

SP

"E

Opening at blade exit

Blade height

Local skin friction coefficient

Pressure loss coefficient forlower passage

Specific heat of fluid

Pressure loss coefficient forupper passage

Hydraulic diameter

Static enthalpy

Total head

Total enthalpy

Rotor incidence angle

Stator incidence angle

Blockage factor

Length of meridional contour oflower passage

Length of meridional contour ofupper passage

Mass flow rate

Frictional moment

Static pressure

Equivalent relative total enthalpy

ft

ft

BTU/lb/°R

ft

ft-lb/slug

ft-lb/slug

ft-lb/slug

degree

degree

ft

ft

slugs/sec

lb-ft

lb/ft

ft /sec

Page 16: Performance analysis of a turbo-type energy ... - CORE
Page 17: Performance analysis of a turbo-type energy ... - CORE

Symbol FORTRAN Definition Units

Q Power lb-ft/sec

Q> POWRKP Reference power lb-ft/sec

2Total pressure lb/ft

Radius ft

Radius of curvature of innercontour of passage in

Effective Reynolds number - - - -

Reynolds number lower passage - - - -

Reynolds number rotor - - - -

Reynolds number stator -. — --.

Reynolds number upper passage - - - -

Blade spacing ft

Radius of curvature of outercontour of passage in

Torque exerted on fluid by rotor lb-ft

Reference torque lb-ft

Torque exerted on fluid by stator lb-ft

Internal energy ft-lb/slug

Peripheral velocity of blade ft/sec

Absolute velocity ft/sec

Useful absolute velocity ft/sec

Meridional component ofabsolute velocity ft/sec

Peripheral component of

absolute velocity ft/sec

Relative velocity ft/sec

y _ _ _ _ Useful relative velocity ft/sec

PT

TP

R R

r.1

RI

^e.

*H1REL

*m RER

\z RES

^u REU

As .

ro

.

TR

TORQUE

TRref

TORREF

TS

u

U •

V V

V _ _ _ ,

\ VM

Vu

.vu

V ' w

t

Page 18: Performance analysis of a turbo-type energy ... - CORE
Page 19: Performance analysis of a turbo-type energy ... - CORE

Symbol FORTRAN Definition Units

W.1

wu

2B

\

wu

\ YR

Ys

YS

Greek

a ALPHA

a3B

A3B

*kAAR

As

ARS

4BA4B

3 BETA

Pl-D B1B

B2B

DEL

ZETAL

ZETAU

ETAMU"

ETAML

Relative velocity lost due toincidence

Peripheral component ofrelative velocity

Rotor blade loss factor

Stator blade loss factor

Absolute flow angle

Tangent to stator blade meancamber line at station 3

Aspect ratio of rotor

Aspect ratio of stator

Tangent to stator blade meancamber xine a^ Suasion ^

Relative flow angle

Tangent to rotor blade meancamber line at station 1

Tangent to rotor blade meancamber line at station 2

Change

Channel bending loss coefficientfor lower passage

Channel bending loss ' coefficientfor upper passage

Friction efficiency for upperpassage

Friction efficiency for lowerpassage

Rotor efficiency

ft/sec

ft/sec

degree

degree

degree

degree

degree

degree

Page 20: Performance analysis of a turbo-type energy ... - CORE
Page 21: Performance analysis of a turbo-type energy ... - CORE

Symbol FORTRAN Definition Units

li

u

h — — — .

Vl& PIPOWR

\ PITORQ

nCO

PIOM-

P RHO

T_ TAURR

CO

CO

ref

LMBD Wall friction factor in straightducts

LAMDAL Friction coefficient for lowerpassage

LAMDAU Friction coefficient for upperpassage

NTT Kinematic viscosity

Dimensionless head

Reference power

Dimensionless Torque

Reference rotational speed

Fluid density

Dimensionless torque coefficient

- - - - Wall shear stress

PHI Flow coefficient used in ProgramNORMAL

PHI Convenient flow coefficient used. . in program REVERSE

PSI Velocity coefficient

OM Rotational speed

OMREF Reference rotational speed

ft /sec

lb-ft/sec

slugs/ft'

J.D/1X

rad/sec

rad/sec

Page 22: Performance analysis of a turbo-type energy ... - CORE
Page 23: Performance analysis of a turbo-type energy ... - CORE

Subscripts

R Rotor

S Stator

I Lower passage

u Upper passage

o Outer passage

i Inner passage

TH Theoretical

MAX Maximum value

ref Reference value

1 Rotor inlet

2 Rotor discharge

3 Stator inlet

4 Stator discharge

Supersscript

t

Useful component

10

Page 24: Performance analysis of a turbo-type energy ... - CORE
Page 25: Performance analysis of a turbo-type energy ... - CORE

ACKNOWLEDGEMENTS

The author gratefully acknowledges the assistance provided in this

investigation by the following persons:

Professor T. H. Gawain of the Naval Postgraduate School, the

thesis advisor, whose understanding and patience made the learning

process most gratifying. His insight and guidance insured the worth of

this thesis.

Professor Michael H. Vavra of the Naval Postgraduate School who

developed the original analysis of the absorber. Without his help and

inspiration this thesis would not have been possible.

Mr. Wayne Gallant and the staff of Section SI of the Naval Air

Engineering Center in Philadelphia, Pennsylvania. These men kindly

provided the background material, supporting information on the M-21

absorber, test data, and the original computer simulation of the

analysis. Their full cooperation was most beneficial.

11

Page 26: Performance analysis of a turbo-type energy ... - CORE
Page 27: Performance analysis of a turbo-type energy ... - CORE

I. INTRODUCTION

Over the years, the speed, size, and weight of carrier based air-

craft have steadily increased, thus demanding an ever larger energy

absorption capacity from the shipboard arresting gear. Up to now,

design improvements to meet these increasing demands have been limited

to mere enlargement of the basic linear hydraulic energy absorber,

which has been of the piston type. Modern aircraft, however, have

loaded this system to its upper limit, and make any further development

along these lines impractical due to weight and space limitations. The

need exists for a new concept which will minimize space and weight

demands while providing the necessary increase in energy absorption

capacity.

The solution proposed involves the use of a turbo-type rotary

hydraulic energy absorber. In essence the fluid is put into motion by

a suitably designed rotor and is retarded by a stator and by the

resistance of the flow passage. The power input to the rotor is

absorbed by the hydraulic resistance of the system, and is eventually

dissipated as heat.

The energy absorber is directly coupled to a cable storage drum.

The drum profile is programmed to match drum rotational velocity to that

required for optimum retarder performance. A device of this type was

introduced in 1968, and is known as the M-21 energy absorber. The

initial design gives satisfactory performance, but is of rather limited

capacity, thirty million ft. lbs. Therefore, a program has been under-

taken to redesign the absorber to increase the capacity to fifty-five

million ft. lbs.

12

Page 28: Performance analysis of a turbo-type energy ... - CORE
Page 29: Performance analysis of a turbo-type energy ... - CORE

A development program was initiated by the Naval Air Engineering

Center (NAEC) (Ref. 1). A full scale test of the programmed drum

coupled with the M-21 absorber was conducted to determine the

feasibility of the overall concept and to obtain performance data

needed in the redesign program. A schematic diagram of the proposed

system is shown in Figure 1

.

A theoretical approximation of the flow conditions in a machine

of this type was derived by Professor Michael H. Vavra (Ref, 2), To

facilitate investigation of the effects of various design parameters

NAEC formulated a computer program. From the computer analysis, a

workable combination of design parameters was chosen such that torque

and energy requirements were satisfied at the design point, the con-

dition at which the absorber is expected to perform most often.

Professor Vavra has also been commissioned to develop ana test a

flow model of the new design. This model will be useful for refining

losses, checking for flow separation, and obtaining information that

is not available from the mean streamline analysis.

In this paper, a theoretical simulation and performance analysis

of the energy absorber in all modes of operation is presented in terms

of dimensionless parameters that facilitate comparisons of various

designs and interpretation of model tests. The retraction problem

is also studied, and preliminary estimates of the power needed to

retract the programmed drum are given,

A throttling system is incorporated into the design to aid in

arresting aircraft of various sizes. The discussion and analysis

presented here are concerned with the condition of open throttle only.

13

Page 30: Performance analysis of a turbo-type energy ... - CORE
Page 31: Performance analysis of a turbo-type energy ... - CORE

<LlI

CD

coUJq:a:

<

3oroQ

<orooen

a.

LlI

q:

(3

C3as

14 _

Page 32: Performance analysis of a turbo-type energy ... - CORE
Page 33: Performance analysis of a turbo-type energy ... - CORE

II. DESIGN VALUES AND CONSIDERATIONS

The main features of the energy absorber design that is analyzed

here are summarized in Figures 2 and 5» and Table I,

The customary approach in the design of turbomachinery is first to

optimize conditions with respect to a single specified design point.

The resulting performance over a broad range of off-design conditions

is then investigated to determine overall acceptability. The condition

at which the absorber is expected to operate most often is naturally

chosen as the design point. Specifically, a design torque of

340»000 ft. lbs. is required at a rotational speed of 76 rad./sec.

The maximum rotational speed the cable will impart to the drum, and

consequently to the rotor, is about 8? rad./sec. This limit is fixed

by the allowable landing speed of the aircraft, and by drum design.

The mechanical power imparted to the rotor is continuously

converted to thermal energy of the fluid. The temperature rise of the

fluid is significant and imposes a constraint on the design. The

temperature limit is the maximum allowable temperature the fluid may

attain without causing cavitation. Obviously, heat must be removed to

maintain equilibrium conditions. For this reason, provisions are made

to bleed off a portion of the circulating fluid continuously and to

replace it by fresh cool fluid. During a rapid series of arrests, the

cooling problem is especially critical.

The fluid used in the absorber is an ethyl glycol mixture. This

fluid is acceptable because it remains usable over a wide range of

temperatures.

15

Page 34: Performance analysis of a turbo-type energy ... - CORE
Page 35: Performance analysis of a turbo-type energy ... - CORE

UPPER PASSAGE

ROTOR

LOWERPASSAGE

*±\ _£

R4 R-

SCHEMATIC DIAGRAM OF ENERGY ABSORBER

FIGURE 2

16

Page 36: Performance analysis of a turbo-type energy ... - CORE
Page 37: Performance analysis of a turbo-type energy ... - CORE

Se^r ion A -A of ^i»urp 2 Through Rotor

Section B-B of Fieure 2 Throueh Stator

Figure 3 DIAGRAM OF ADSORBER BLADING

17

Page 38: Performance analysis of a turbo-type energy ... - CORE
Page 39: Performance analysis of a turbo-type energy ... - CORE

Table I PARAMETERS OP THE A3SOKBER

R = 13,61 inches1

R = 16,25 inches

R, = 16.07 inches3

R = 14.93 inches

b^ = 2,02 inchesn.

b = 2.02 inches

r = 4« 18 incheso

r. = 2.02 inches1

(L . + L )~ =U0

- 10.26 inches

(L, . + L, )

= 10.26 inches

Number of blades for rotor and stator: 72

eiB=57°

P2B

= 53°

«3B=

57°

«4B=53°

^2 " - 87

^3= - 9°

*B4 " - 87

"VlAX = 83 rad./sec.

Fluid properties:

p = 2.095 slugs/ft.2

cf

= .016

v = 3,76 x 10"5 ft,2/sec c = .7

18

Page 40: Performance analysis of a turbo-type energy ... - CORE
Page 41: Performance analysis of a turbo-type energy ... - CORE

A detailed discussion of the effects of various parameters and loss

coefficients is undertaken in the analysis section. A few words,

however, are in order here. The radius of curvature r. of the inner1

contour of both the upper and lower passage must not be smaller than

the blade height. This insures that the flow does not separate, and

it also increases absorption capacity. Estimates of losses in this

machine are obtained through various empirical turbomachinery cor-

relations as is shown in the analysis. Enthalpy losses in the passages

are significant. Much of this loss is due to the bending of the

passage with friction responsible for the remainder. However, a

change in the coefficient of friction c„ which expresses the direct

wall friction losses in the passages has little influence on overall

performance. A value of c„ = 0.016 was chosen since it gives best

agreement with M-21 test data.

The blade shapes first optimized by Professor Vavra from a

performance standpoint were found by NAEC to be unacceptable on a

stress basis. Blade thickness, spacing and angles were accordingly

revised by NAEC, and a blade of sufficient strength was found; its

characteristics are listed in Table 1,

The reliability of this analysis can only be judged experimentally

by correlation with test data. The theory correlates very well with

actual test results on the M-21 design. Prom this it appears that the

theoretical analysis is reasonable and that the new design should be

workable, if not optimum.

Naval carrier operations often require a series of rapid and

repeated arrests. The drum must be retracted thus reversing the

19

Page 42: Performance analysis of a turbo-type energy ... - CORE
Page 43: Performance analysis of a turbo-type energy ... - CORE

rotational direction of the rotor. This process is investigated to

obtain preliminary estimates of the power required to retract the

absorber.

20

Page 44: Performance analysis of a turbo-type energy ... - CORE
Page 45: Performance analysis of a turbo-type energy ... - CORE

III. ANALYSIS OF THE PROBLEM

A. MODES OF OPERATION

The energy absorber is capable of operation in four modes. These

modes are summarized in Table II.

Table II MODES OF OPERATION

Flow Direction Shaft Rotation

Normal Reverse

Normal Mode 1 Mode 2

Reverse Mode 3 Mode 4

Mode 1 corresponds to design point conditions. In this mode, the

fluid passes successively through stations 1, 2, 3, 4 ^^ back to 1,

in that order. Note that the flow leaving the rotor at station 2 is

moving radially outward. See Figures 2 and 3« Fo^ fluid circulation

in this sense, conditions at stations 2 and 4 are particularly sig-

nificant. At the rotor exit, station 2, the direction of the flow

with respect to the rotor, is assumed to remain constant at all flow

rates. At stator exit, station 4» the direction of the flow with

respect to the stator is likewise assumed to remain constant. While

this assumption of fixed relative and absolute flow directions is not

exact, it represents an excellent approximation when the blades are

closely spaced as in the present design.

In Mode 2, the sense of the fluid circulation is exactly as

described above. However, the direction of shaft rotation is reversed.

21

Page 46: Performance analysis of a turbo-type energy ... - CORE
Page 47: Performance analysis of a turbo-type energy ... - CORE

Naturally, stations 2 and 4 are still governing in the sense that flow

directions at these stations are known.

In Mode 3» the shaft rotation is the same as for Mode 1, but the

direction of fluid circulation is reversed. Consequently, the fluid

passes successively through stations 2, 1, 4» 3 and back to 1, in

that order. Note that the rotor exit is now at station 1 , and the

direction of flow at this station is radially inward. In this case,

stations 1 and 3» are controlling. The relative flow direction at

rotor exit, station 1, and the absolute flow direction at stator exit,

station 3> are now assumed to remain fixed.

In Mode 4» the sense of fluid circulation is the same as in

Mode 3> but the direction of shaft rotation is reversed. Of course,

stations 1 and 3 still govern flow direction as in the previous case.

The same net of equations describe Modes 'I and 2, but a separate

set of equations is needed to describe the reverse flow Modes, 3 and 4<

Note that only two sets of equations are needed for the four Modes,

and each set is governed by the flow direction relative to the blade

exits. Two separate computer programs are needed since one program

will be used to solve each set of equations. Program Normal finds the

solution for Modes 1 and 2, and program Reverse finds the solution for

Modes 3 and 4» Both programs will be discussed in the appendix. All

quantities and results discussed throughout the paper are obtained

from these programs.

The velocity diagrams for each mode are presented in Figures 4> 5»

6, and 7* All angles and velocities are drawn to scale.

The thermodynamic processes in the absorber are shown on the

enthalpy-entropy diagrams, Figures 8 and J. The process for normal

22

Page 48: Performance analysis of a turbo-type energy ... - CORE
Page 49: Performance analysis of a turbo-type energy ... - CORE

^u2 H J— Vf, fc U2—*

Scale: 0.5 inch = 100 ft/sec

-V,'U3

H

Figure 4 Velocity Diagrams for Mode 1 Operation at2

CU

I4AX 2 , . „.6^e

- - 4.8 x 10

23

Page 50: Performance analysis of a turbo-type energy ... - CORE
Page 51: Performance analysis of a turbo-type energy ... - CORE

'UJLWu^

-wUt—4*-vu , —

I

Scale: 0.5 inch- 25ft/sec

*-vUl|—

1

Figure 5 Velocity Diagrams for Mode 2 Operation at

'

p 2

^e v= 4 '8x 10

24

Page 52: Performance analysis of a turbo-type energy ... - CORE
Page 53: Performance analysis of a turbo-type energy ... - CORE

Scale: 0.5 inch- 100 ft/sec

uv-

Figure 6 Velocity Diagrams for Mode 3 Operation at

25

Page 54: Performance analysis of a turbo-type energy ... - CORE
Page 55: Performance analysis of a turbo-type energy ... - CORE

-4%d

Scale: 0.5 inchr 25 ft/sec

Figure 7 Velocity Diagrams for Mode 4 Operation at

2

"W 2 , _ ._6

^e = —7 = 4.8x10

26

Page 56: Performance analysis of a turbo-type energy ... - CORE
Page 57: Performance analysis of a turbo-type energy ... - CORE

</>

>-Q_

oen}—

Ixl

J-H AdnVHlN3.1V101

27

Page 58: Performance analysis of a turbo-type energy ... - CORE
Page 59: Performance analysis of a turbo-type energy ... - CORE

(/>

>-CL

Otrh-

<VJ

X1 H AdlVHJLNB TVJLOI

3 o

28

Page 60: Performance analysis of a turbo-type energy ... - CORE
Page 61: Performance analysis of a turbo-type energy ... - CORE

circulation, Modes 1 or 2, is shown in Figure 8, while that for

reverse circulation, Modes 3 or 4, is shown in Figure 9« The

direction of shaft rotation affects the exact quantitative enthalpy

values. The graphs, however, are merely qualitative.

A "total head" H (per unit mass) is used which differs from the

standard total enthalpy H~. This is discussed in greater depth in the

analysis section, but a few words are needed at this point to clarify

the discussion.

The fluid is considered incompressible which allows the thermal

and mechanical effects to be uncoupled. A "total head" is

conveniently defined as

P 2

p p 2

Henceforth H is referred to simply as head. The head and total

enthalpy are linked by the simple relation

H = Hip - u

where u represents internal energy per unit mass.

B. DIMENSIONAL ANALYSIS

Results are presented in terms, of appropriate dimensionless

quantities. The use of non-dimensional terms simplifies the cor-

relation of data, the comparison of various designs, and the inter-

pretation of model tests.

The three quantities chosen as consistent dimensional reference

parameters are the radius of the rotor outlet R? , the fluid density P,

and the shaft rotational speed u) or m , whichever is appropriate.

29

Page 62: Performance analysis of a turbo-type energy ... - CORE
Page 63: Performance analysis of a turbo-type energy ... - CORE

Using these parameters, one defines the effective Reynolds number

for this design to be

h '

wR2

2

ve

where v is the kinematic viscosity. And the dimensionless total head is

"h=

2^ 2<u R

2

In the discussion of results, it is convenient to define the flow

coefficient $ in the following specific way, namely,

V,IV

1

COR,

where the algebraic signs of uj and $ are always positive for normal

shaft rotation and negative for reversed shaft rotation. This sign

convention for shaft rotation is maintained regardless of the direction

of the fluid circulation, hence the use of the absolute magnitude |VM9 |

in the definition.

In the actual computer programs NORMAL and REVERSE, however, some-

what different sign conventions are more convenient. All equations are

written in such a way that the three quantities V _ ojR and § are always

positive. For this reason the four modes are computed as separate cases.

For comparison of various modes and designs the dimensionless torque,

power and rotational speed coefficients are respectively

2T> 5

" MAXR2 P

30

Page 64: Performance analysis of a turbo-type energy ... - CORE
Page 65: Performance analysis of a turbo-type energy ... - CORE

<?

BM R2 P

n =M

MAX

The detailed analysis considered later also usee various

dimensionless quantities for convenience in the derivations. The

parameters used to facilitate the non-dimensionalization in that case

are not necessarily the same as introduced in the present section, and

the separate cases should not he confused.

C. ENERGY BALANCE. AT EQUILIBRIUM

In general the rotor adds energy to the fluid. In traveling

through the passages and returning to its initial state the fluid

dissipates this mechanical energy through various losses. Under

equilibrium these losses exactly cancel the original energy input.

It turns out that the energy input of the rotor can be expressed

in terms of the flow coefficient $ in the form

A HIN

= A + B $

where A and B are true constants. The losses can be expressed as

^LOSS " A ' + B ' - +C ' ^

where A , B , and C may be considered constant to a first approximation.

Actually these quantities are weak functions of §, a fact which must

be considered in the exact solution. The energy relations which fix

the equilibrium state are shown in Figures 10 and 11. Figure 10

represents the two modes which correspond to normal flow direction.

51

Page 66: Performance analysis of a turbo-type energy ... - CORE
Page 67: Performance analysis of a turbo-type energy ... - CORE

ftj

ra

o•H-P•H

OO<D

Si-p

uO C\J

•H

•H—

I

•H

no

<D

O

o

CO

CM

ua

EH

— O

-Pc3

Pio•H

tj

aofH

•HO

o

o

32

Page 68: Performance analysis of a turbo-type energy ... - CORE
Page 69: Performance analysis of a turbo-type energy ... - CORE

ro

o

o

II S39NVHD A9U3N3

o•H-p•H

sooa>

pH

I

•H

•H

•H

uo

0)

o

pq

sa)

EH

O

00

CMcv«

te3

pni

o•HP

oU•HO<D

uCD

!>

<D

P=J

«HO

Page 70: Performance analysis of a turbo-type energy ... - CORE
Page 71: Performance analysis of a turbo-type energy ... - CORE

Figure 11 shows the two modes for reverse flow. These results are

drawn to scale, except that the parabolic lines are only approximate.

The final equilibrium points, where the losses balance the energy

input, however, and the relative distribution of losses at these

points are in correct scale.

Initially, it was thought that only two of the above four modes

would prove to be physically possible, one corresponding to normal

shaft rotation, the other corresponding to retraction. Surprisingly

enough, the present analysis has demonstrated that operation in all

four of the modes is theoretically possible. This point is clearly

indicated in Figures 10 and 11.

D. MODEL TESTING

Professor Vavra ha.s proposed that a model testing program be under-

taken. The model will not be a true dynamic model, but will be a purely

static device that uses air as the working fluid. Construction of the

model will constrain the air flow to the normal direction only. However,

the scale model should be useful in checking for flow separation

through the passages and refining the loss coefficients for the

analysis of the absorber. The effects of the tangential component of

velocity will also be investigated.

The discussion of the above static model is not within the scope

of this thesis. However, a hypothetical model is considered which is

a true dynamic model of the actual full scale device. The size of the

hypothetical model is taken as identical to that of the static model.

The model is scaled to O.569 of the size of the actual absorber. In

both cases the fluid is air. When expressed in dimensionless terms,

34

Page 72: Performance analysis of a turbo-type energy ... - CORE
Page 73: Performance analysis of a turbo-type energy ... - CORE

the performance of the hypothetical model is "basically the same as that

of the full scale machine, except for Reynolds number effects. The

full scale machine operates at a maximum Reynolds number, as defined

above, of 4»88 x 10 while the maximum Reynolds number of the model is

53.70 x 10 . The results for this model are presented along with the

results for the real absorber.

E. ASSUMPTIONS AND LIMITATIONS OP THE ANALYSIS

A one-dimensional mean streamline analysis is obviously only a

crude approximation of the actual performance of any turbomachine

,

but is a starting point necessary in most development programs. The

validity of the assumptions used are very important to the reliability

of the analysis. The primary assumptions used in this report are

summarized below.

The fluid is treated as incompressible. This assumption is

excellent as long as the provisions to maintian the fluid at a

temperature lower than the cavitation temperature are adequate. This

conveniently uncouples mechanical and thermal effects and allows a

form of "total head" H to be defined which is independent of

internal energy.

If the velocity distribution across every section were turly

uniform, the meridional component V at. the mean streamline could be

computed simply from a continuity relation of the form

v =-2-

where Q is the volumetric flow rate and A^ is the meridional cross-

section area. The actual velocity distribution, however, is non-

35

Page 74: Performance analysis of a turbo-type energy ... - CORE
Page 75: Performance analysis of a turbo-type energy ... - CORE

uniform because of the effect of streamline curvature, "boundary layers

and so on. To allow for these effects, approximately, the actual

meridional velocity V^ is assumed to be governed by a relation of the

form

where, the so-called blockage factor K~ is treated as a constant. The

blockage factors were extrapolated from M-21 test data. Their reliability

in the reverse flow modes is doubtful, however, since all test data

were obtained only from Mode 1 operation. An extension of these data

to all modes would be very useful.

The present analysis treats operation of the absorber as a steady

state phenomenon. Strictly speaking, the operation is actually

unsteady. However, the arrest and retraction processes require a

sufficient number of drum revolutions that the steady state assumption

provides a fair approximation.

A major assumption is that the relative flow direction at the rotor

outlet and the absolute flow direction at the stator outlet are

constant, For the case of normal flow this is an excellent ap-

proximation. However, the validity is reduced for the reverse flow

modes. In Modes 3 sxid 4> the flow encounters a sharp leading edge,

and exits past a blunt trailing edge. The implication is that the

flow is not as well guided as in the normal flow case. Thus the

actual turning angle of the flow is undoubtedly less than predicted

by the theoretical analysis. The power absorbed in both reverse flow

modes would consequently be less than predicted.

36

Page 76: Performance analysis of a turbo-type energy ... - CORE
Page 77: Performance analysis of a turbo-type energy ... - CORE

Losses, in general, are approximated by various empirical cor-

relations and are reasonable as shown by test results. They are

discussed in depth in the detailed analysis section.

Incidence losses, however, pose a problem. The incidence loss

approximations introduced in the analysis section are reasonable as

long as the incidence angles remain small. This is obviously not

the case for the retraction modes as shown in Figures 5 Stiid. 7» The

approximations break down physically at these severe incidence angles.

It was thought earlier that two of the four theoretical modes

might show themselves to be physically impossible. For example, a

large incidence loss might conceivably preclude the attainment of the

necessary energy balance. This has not proved to be the case, however.

It appears from the present analysis that operation in all four modes

remains possible physically. It is true, of course, that the predicted

performance for the two retraction modes, Modes 2 and 4> will be

inaccurate because of these large incidence effects, but this in itself

does not eliminate the existance of these modes.

At extreme angles of incidence, a distinct possibility of stalling

exists. In normal operation, this limits the attainable power absorption.

In a retraction mode, however, stalling would not be totally undesirable.

If the rotor stalls, the energy absorbed by the device is greatly

reduced, and the power necessary to retract the rotor is minimal.

All of the foregoing assumtions are thought to be reasonable.

Refinements of various points would be useful, especially for large

incidence angles and blunt trailing edges.

37

Page 78: Performance analysis of a turbo-type energy ... - CORE
Page 79: Performance analysis of a turbo-type energy ... - CORE

IV."

RESULTS AND DISCUSSION

The discussion of the problem up to this point has already included

a number of significant results reached in the analysis as shown in

Figures 4 through 1 1

.

Additional detailed results for all modes of the absorber are

presented in Figures 12, 13, 14, and in Table III. The results for

Mode 1 of the dynamic model are also included.

The main results of this investigation are summarized concisely in

Figure 12. This is a logarithmic plot of the dimensionless power II

as a function of the dimensionless shaft speed uu/od . Performance' MAX

of the proposed absorber, of the hypothetical model, and of the

existing M-21 machine are compared on this graph. Note that the

theoretically predicted performance of the M-21 . version as shown by

the continuous line is in excellent agreement with the actual measured

performance as shown by the data points.

The actual horsepower is plotted as a function of absolute shaft

speed for all four modes of the proposed absorber in Figure 13^ The

power absorbed during .arrest and the power expended during retraction

are presented for a range of possible operating speeds.

The maximum dimensionless power is also shown as a function of

Reynolds number R^ in Figure 14» This graph, although based on only

e

three computed points, does correctly portray, approximately, how

scaling affects power absorption. It would be a simple matter to

calculate additional points on this curve from program NORMAL.

38

Page 80: Performance analysis of a turbo-type energy ... - CORE
Page 81: Performance analysis of a turbo-type energy ... - CORE

10.

1.0

t=J

UJ

<J 0.1U.U.UJoooruj

oQ-

0.0

.001

— Proposed Absorber

-- Model—-M-2I

M"2I Test D

Mode

*MX

Figure 12 Non-dimensional Povrer vs. Non-dimensionalRotational Speed

39

Page 82: Performance analysis of a turbo-type energy ... - CORE
Page 83: Performance analysis of a turbo-type energy ... - CORE

ROTATIONAL SPEED (R.P.M.)

Figure 13 Absolute Power vs. Shaft Speed for the FourOperating Modes of the Proposed Energy Absorbe:

40

Page 84: Performance analysis of a turbo-type energy ... - CORE
Page 85: Performance analysis of a turbo-type energy ... - CORE

c

UJ

oU_U-UJ

ouenUJ

oQ.

6-

x< 4

Q.

2.-

Mini

G Computed Poinls

J I I I I I

4 5 6 78 10 5 6 7 8

REYNOLDS NUMBERw„„ R^

Figure 14 Maximum Power Coefficient vs. Maximum ReynoldsNumber for the 3 Designs Considered

41

Page 86: Performance analysis of a turbo-type energy ... - CORE
Page 87: Performance analysis of a turbo-type energy ... - CORE

ECO

£*o

0)

x.4-1

'OcCO

(0

o•ao6u3O •

«4-i XCO

0) ex. 34-> II

V- 3oVH VW

ou0) <u

,o (0

r-< CO

o uCO

rQ oCO rC

4J

w. v-l

u oCD VHca a>

V-i

'O CO

Uco en

o i-i

c- rHo 3u CO

P- CD

Mo.G rHAJ rH<

D-l

OW rH4-1

r-1 CD

3 T3co £o sp

V-i

TJ oQj «+-<

rHT-l rHCO (1)

4-* •oCD o« 6

mvO1^-

1^VOO

CO •

JO OC rHrH rH 3 inW 1 rH en< 4-> W m

CO

rCCT. rHX I< 4-1

2

(0

rQ3 rH CJt

ffi 1 3< 4J rH«4-l CO

r£- wP. r-1 3X 1 rH<3 4-1 (0

>-i

&

p.a

CD

uo(0

>-.AJ*!*

CD 4J

D I

U .QO rHH ^

»Hmen

cu

is

ccinvcrHrH

Oen

CN

enrHCnrHm

ininoosr

oen

oo

00

o

COCO

00o.

srcvOCM

SOCMoS3"

oovO

CM

in

enCMCM

vOO

X

oo00

envOo

oCMvOCMCN

CNI

CMCO

00mmo

OA

omO

o

rH

CN

Om

vOo

oo00

eneno

CNinen

om

CN

m

m00rH

enen

ONrHCM

cn

vOo

oo00

en

menm

morH

CMvO

mvO

mOac*

mo

o

en

co

H C•h a;4J 'Oco on Sai

p«o

CN CD CJ

o o

42

Page 88: Performance analysis of a turbo-type energy ... - CORE
Page 89: Performance analysis of a turbo-type energy ... - CORE

co

oc•

o

in moc

m00

CM00

u

CMr-l

C

inCO

CMt—

I

O

inin

in

C

oCO

CTinCO

coCO

00CO

CO

10

00oCM

oCM

CMCMCM

COin

Crf

>-<

to

a>

Offl V,

5 W<] cu

XI-c >-•

<u3c

-r-« <^v.u co

c 0)o CD

t_> >->

« c;

H en <u

<] X)M wHOJ ^S«—

i

to

JD CD

CO Q>

H W Vj

X)

CMCM

CO

CM

co

MDCM

COI

co

CM

CM

CO

COCM

CO

MD

CCM

CO

MDI

r-

o

COCM

vCCM

to

QJ

CJ

<D

XI

CO

coi

CMCM

COCO

000C

I

c•H

*

inCM co

oc

.«tF

mo

COvOo

coCOO

CMinco

0©C•|H

U a)

cc Xu cc> 2:ao .

43

Page 90: Performance analysis of a turbo-type energy ... - CORE
Page 91: Performance analysis of a turbo-type energy ... - CORE

a:XI*-

inO

in

CM

O

Xin

•>

o o

X Xin ^D

i—

<

00

o1—

<

inCi—

i

o.—1

inOi—

t

Oi—

<

X X X X Xin

CM•

en•

en r-.

*

t—

<

CM i—

i

«-< r^-

-c0/

c

i->

coo

HHH

o cinC

v3"

O Ot—

1

t—

<

#—

i

i—

<

f—i

X X X X Xen o CM en r-»

• • • • •

en m Cl d t—l

K

O

X

a

oI-H

X

3Ot—

i

t-H

X XCM CNI

• •

r^ en

2:cc

vD

CO

ocvD0C

cc

oc oc

cT*u QJ

K •cV.

<D 2:

o

CJ CJ

o o

44

Page 92: Performance analysis of a turbo-type energy ... - CORE
Page 93: Performance analysis of a turbo-type energy ... - CORE

As mentioned earlier, the actual existence of four stable modes is

a surprising result. The original expectation, based largely on

intuition rather than analysis, was that only one mode would be possible

for each direction of shaft rotation. But the absorber is an unusual

machine which tends to confound intuitions based on experience with more

conventional devices. Consider for example the fact that losses are

necessary for the machine to absorb the mechanical energy input. The

smaller the loss coefficients, the higher the final equilibrium flow

rate will be, and the greater the energy absorption. Thus we are led

to the seeming paradox that the lower the loss coefficients the higher

the energy lost!

The power curves of Figures 12 and 13 are interesting and

significant in that all curves have nearly constant and nearly equal

slopes. The power can be expressed in the form

v= nfox k

<S)

^MAX

where the slope of the curve is roughly T)~3 for all cases.

The horsepower curves of Figure 13 indicate that Mode 1, the

design point mode, absorbs the greatest amount of energy. Mode 3>

however, is a very close second. Refinement of the analysis should

lower the predicted absorption of'Mode 3 somewhat. Nevertheless, the

favorable comparison of this mode to the design mode is interesting.

Figure 13 also shows that the power needed to retract the rotor is

reasonably small for Modes 2 and 4» especially in comparison to the

power absorbed during arrest.

The question of which mode the absorber will actually operate in

under various conditions of use is interesting, but by no means

45

Page 94: Performance analysis of a turbo-type energy ... - CORE
Page 95: Performance analysis of a turbo-type energy ... - CORE

completely clear at this time. It is thought possibly that if the

absorber be started from rest with shaft rotation in the normal

direction, Mode 1 should occur. If retraction follows immediately,

the retraction mode will probably be Mode 2. This is based on the

fact that during arrest the flow will build up a large momentum which

will tend to persist in the same sense during the subsequent retraction.

If retraction be started after the fluid motion ceased, however, the

resulting mode of operation remains uncertain.

Some method of sensing and/or controlling flow direction would be

useful to insure that Mode ? was occurring on all arrests. Mode 3

operation might not have enough absorption capacity to handle large

aircraft

.

The general question of which mode occurs is an area for further

study. Testing of the actual absorber with the idea of definitely

determining the operating modes under various conditions would be

extremely useful.

46

Page 96: Performance analysis of a turbo-type energy ... - CORE
Page 97: Performance analysis of a turbo-type energy ... - CORE

V. CONCLUSIONS AND RECOMMENDATIONS

The development of the problem and the exact solution of the

two sets of equations describing normal and reverse flow conditions

clearly show that four stable operating modes exist. The analysis

adequately predicts the absorption capacity of the proposed device

for Mode 1. However, the analysis is not as accurate for the

reverse flow or retraction modes.

It is recommended that the retraction problem be further studied

to refine loss coefficients and to more accurately predict the power

necessary to retract the absorber. It is also recommended that

further study be made into the question of predicting which mode

occurs under various operating conditions . This study would

encompass the unsteady phase of the problem. Actual testing of the

absorber should also be conducted with the intention of determining

which mode will occur. A method of flow control or sensing would

also be useful to guarantee proper performance in that Mode 3

absorption capacity may be insufficient in certain cases.

This turbo-type of energy absorber appears to be completely

adequate to meet the demand of carrier operations now and in the

forseeable future. The potential for future development and

enlargement is ample.

47

Page 98: Performance analysis of a turbo-type energy ... - CORE
Page 99: Performance analysis of a turbo-type energy ... - CORE

APPENDIX A

DETAILED ANALYSIS OF THE ENERGY ABSORBER WITH THE

FLUID CIRCULATING IN THE NORMAL DIRECTION,

MODES 1 AND 2.

A one dimensional mean streamline analysis after Vavra (Ref . 2)

will be developed with the following assumptions:

3p = constant

a = constant

Uniform flow at stations 1 to 4 except for blockage factors.

Blockage factors are independent of the flow.

The fluid is incompressible.

Steady state conditions exist.

1.0 Torque and Velocity Relations

The torque T„ exerted on the fluid by the rotor is positiveR

when acting in the direction of rotation.

TR = " [R2Vu2

" R1 V 0)

where m is the mass flow rate.

m = p A Vm

- p(2" h, y vMi

K^(2)

f^ 2" E2 V V

M2 %The quantity 2tt R b is the flow area, V .. and V

?- are the meridional

velocities at the mean streamline, and K_. and K_ are blockage factors

which are assumed to be independent of the flow.

48

Page 100: Performance analysis of a turbo-type energy ... - CORE
Page 101: Performance analysis of a turbo-type energy ... - CORE

By introducing a flow coefficient

V VI = J£ = -M (3)U

2ujR

2V>

all necessary velocity and thrust equations can be written in terms of

known geometric parameters and the flow coefficient. An iteration

technique is later employed in program NORMAL to calculate §. The

following velocity relations are developed now in order to simplify

the energy relationships which follow.

The sign convention used is that all peripheral velocity com-

ponents are positive when in the direction of rotation. From Figures

4 or 5 simple geometric relations are obtained which become, using

eq. J.

W2

= VM2/

C0S 32

= ^2 $/C0S 32 M

Wu2

= VM2

Tan 32

= (UR2

§ Tan P2 ^)

V l9= V, + tuR = u;R [1 + $ Tan B_] (6)

Also

u2 ~ u2 2 2L ^2

Vu2

= VM2

Tan Q2

= ^2 $ Tan a2 (7)

An expression for or in terms of the known relative exit angle can be

obtained by equating the previous two equations, or

Tan a = Tan p + 1/$ (8)

similarly at the rotor inlet

Wu1 - V

H1Tm P

1(9)

Vu1

=VM1

Tm B1+<"E

1(10)

Page 102: Performance analysis of a turbo-type energy ... - CORE
Page 103: Performance analysis of a turbo-type energy ... - CORE

The mass flow equation and the definition of the flow

coefficient yield

VM1 *2 R

1KB1

U1;

and

R K~Vu1 • «2 ij K^ Tan P

1+

""l < 12 >

The mass flow equations must be extended to include flow

through the stator.

£ = 2n E2

bR p V

M2K^ = 2n H, b

sp V^ K^

(13)2ti R

4bS p V

M4 VFrom the above relations, the meridional velocity equations are developed.

VM1

R2 h>2

(14)M2 "1

JL Kg

5a !?. 5* *aVM2

=R3 ^3 b

s

'

(15)

^^2^2^VM2~ R

4 V bs

'

( 16 >

1 ,1 Frictional Losses in Upper Passage

Let M„ be the frictional moment from forces along the wallsfu

of the upper passage from station 2 to 3» acting on the flow opposite

to the direction of rotation,

m R.. V , « m R- V - M

.

(17)5 u3 2 u2 fu

50

Page 104: Performance analysis of a turbo-type energy ... - CORE
Page 105: Performance analysis of a turbo-type energy ... - CORE

Setting Mfu = ^ mR

2Vu2 ( 18 )

eq. 17 becomes

Vu3 " \u i V

u2 (20)

From the mass flow equation

R?

K_?

b

v = $ cuR — — — (21)VM5R2R

5K^ b

sW

1,2 Frictional Losses in Lower Passage

With M„» being the frictional moment caused by forces along

the lower passage walls from station 4 to 1 acting on the flow opposite

to the direction of "rotation, the equations for the lower passage

are developed in a manner similar to the previous development.

% - h™ R4Vu4

(22)

(23)

•• (24)

(25)

From Figure 4 it can be seen that

V . = Vw , Tan a. (26)u4 M4 4

% = 1 - hR4

Vu1

=\jL

Vu4 R^

V = $ cu R —«4 2E

4 V bs

Using the previous three equations gives

1 34 s

E? L 9

b

Y „ = T1, 3 a) R -£ -££ -£ Tan 0/ (27)

51

Page 106: Performance analysis of a turbo-type energy ... - CORE
Page 107: Performance analysis of a turbo-type energy ... - CORE

From Figures 4 or 5» one can relate the absolute inlet angle

to absolute velocity components as

V ,

Tan or = -=i (28)M1

Using the relations developed for the inlet velocity eqs, 11 and 27,

the absolute inlet angle is

Tan ai

= \i Tssj Tm °4 (29)

Similarly the relative inlet angle is

Vu1 - » R

1Tan 3, =

1 V' VM1

coR1

= Tan a - ==

1 VM1

Substituting for V . yields

\ ^1 K1\ 2 ^1

The relative and absolute velocities can now be obtained from

their respective components by employing the following general equations:

V2=YM2+Vu2

(31)

W2

= VM2+ W

u2 "

(32)

W = VM/cos S (33)

52

Page 108: Performance analysis of a turbo-type energy ... - CORE
Page 109: Performance analysis of a turbo-type energy ... - CORE

1.3 Torque Relations

The torque as defined in eq, 1 can now be expressed in

terms of known geometric parameters and the flow coefficient. Using

eqs. 37 i 6, and 12 in eq. 1 yields

V bs

—"4JJ (54)

The non-dimensional torque coefficient iv, is now introduced asR

t

TR

TR "2n(R

2 )5 \ P K^2 '

bs

V* + * l

Tan B2- V ^ r Tan V (35)

The torque T which the stator exerts on the fluid is positive

when acting in the direction opposite to rotation

T = m (R, V , - R/V J (36)s

v3 u3 4 u4' w '

Substituting the values for the whirl components gives

». - 2TtR25(j{) p

"2

SaLV *(1+Manp2 ) " *

2

(if) K^Tan °4

Again introducing a non-dimensional torque coefficient

T

T =

5 /V2TT R/ Irr- ) p CO K_

2 VR2/ T32

(37)

b T

2 i

'

m „ R ^2- \u *

+ * LAiuTan p

2 - r k^ T- «4J

53

Page 110: Performance analysis of a turbo-type energy ... - CORE
Page 111: Performance analysis of a turbo-type energy ... - CORE

The general torque equation is

R fu fZ s

The torque exerted on the rotor by the fluid minus frictional moment

losses is equal to torque exerted on the fluid by the stator.

The dimensionless torque coefficient introduced earlier is

again given as

nT

=~~~T 5 ( 58 )

^ MAX V2.0 Energy Relations

The torque and velocity equations developed in the preceeding

section remain in terms of the unknown flow coefficient §. In this

section an algebraic energy equation will be formulated and solved

to yield §,

For the sake of this development, a total head term H will be

defined which differs from the standard definition of total enthalpy

H~ which is

Hj - h + \ (39)

or

H^u*-*-£ + 4 - « + ^ (40)

where h is the static enthalpy

p is the static pressure

u is the internal energy

and P is the total pressure.

54

Page 112: Performance analysis of a turbo-type energy ... - CORE
Page 113: Performance analysis of a turbo-type energy ... - CORE

Since the fluid is treated as incompressible, one can uncouple

the thermal effects from the mechanical effects, and define a 'total

head 1 H which does not include thermal effects. This new term is

denoted by

P 2

Obviously the enthalpies are related by

ftp - u) = H (42)

This new definition of total head H is useful in that constant H and

constant P lines are coincident. Throughout the remainder of the

analysis, useful total head H will be referred to as simply head. Note

that this total head has the units of enthalpy (per unit mass).

The process undergone in the absorber is now represented in

Figure 8, Obviously the process does not return to the original total

enthalpy EL , although it does return to the original total pressure

and head.

From Figure 8 the energy rise across the rotor is shown to be

equal to the energy losses across the stator and through the passages,

or

AEL. - m^ - AHX

- AHS

= (43)

Therefore

,

(H2

- RL) - (H2

- H3) - (H

5- H

4) - (H

4- H,) = (44)

where all the above terms are written as positive quantities.

55

Page 114: Performance analysis of a turbo-type energy ... - CORE
Page 115: Performance analysis of a turbo-type energy ... - CORE

The four terms of eq. kh will "be derived in terms of the flow

coefficient and the known geometric parameters as in Section 1.0. Eq.

kk is then straightforwardly solved to yield i. Program NORMAL is

employed to accomplish this task. Since various loss parameters

depend on $, an iteration technique must be used.

2.1 Conditions in Rotor

The incidence angle of the rotor blading i is defined asK

or merely the angle between the tangent to the mean camber line at the

leading edge and the relative inlet velocity. The incidence angle i

is seen to become more negative in the direction corresponding to a

greater lift coefficient for the blade.

The relative velocity ¥ can be resolved into two com"ponents

respectively tangential and normal to the mean camber line . The energy

t

associated with the tangential component W is assumed to be largely

recoverable. The energy associated with the normal component is

assumed to be totally lost.

The useful relative velocity at the rotor inlet is then

¥.' « W_ cos i_ . (1*6)

-L J. K

and the velocity component lost due to incidence is similarly

¥li

= Wl

Sin h (V7)

The basic energy equation of turbo-machinery is

"ffi- "ll - U

2 V " Ul V < U8)

56

Page 116: Performance analysis of a turbo-type energy ... - CORE
Page 117: Performance analysis of a turbo-type energy ... - CORE

which upon expansion becomes

2 2 2 2 2 2V-HJp -W_ V_ +u

n-w/

*T2 " % - P " o ^Using static enthalpies, regrouping, and cancelling terms in eq. ^-8

gives

2 2 2 2w - u w - u2 2 1 1

h2

-2-^-S- - hx

+ -i_A. (50 )

Substituting for the static enthalpy and rearranging yields

2 2 2 2p w

2 p w u2

-Uj.

T ~ = 7 + "2 2(U

2 - V (51)

Upon resolving W /2 into its components and regrouping further, one

obtains

/P2 + V\ A ,

Wl'

2

,

U2

2- UA /

WlAV7 ~2~v

=vy

+ -r- +—2—;-

lu2 - u

i - —) (52)

This leads naturally to the definition of the "equivalent relative

total pressure" as

and

'2 2 P

(5>0

and to the definition of the rotor blading losses as

APfYi \

Wl il /^El " P

E2\ ,__^— = [(u2

- u2

) --g-J

={ )

(55)

57

Page 118: Performance analysis of a turbo-type energy ... - CORE
Page 119: Performance analysis of a turbo-type energy ... - CORE

It also proves useful to express this loss in terms of a dimensionless

coefficient defined as

fef^)2 2

(56)

Recalling that

H = H - uT

(1+2)

and using the basic energy equation, eq. h8, one obtains the energy

rise across the rotor in the form

W W(H

2- Hl ) = U

2 Vu2 - UxV^ - {sin

!l

iR 4. + Y

R -§-} (57)

This equation can be conveniently non-dimensionalized by

2dividing by U . The velocity expressions developed in Section 1.0 can

not be utilized to simplify eq. 57? and the dimensionless energy rise

across the rotor (II A H) can be written as

(nAU )AH yR ' 2^ 2co Rg

H2

- E±

(sin iR ) , R

n x2

(£)Rg

4-\

§{Tan P

2 ' ^ bf \i. ™ .0 ""A} (58)

- 5

^in2i

feftfaf X2

bR

' 2

R

2cos2p,

-}

58

Page 120: Performance analysis of a turbo-type energy ... - CORE
Page 121: Performance analysis of a turbo-type energy ... - CORE

where the dimensionless head coefficient is defined as

nAH " "Ifa (59)

The loss coefficient Y of eqs. 56 and 58 is a function of theR

deflection A{3, where

and the aspect ration /L., defined by

This will be farther discussed in Section 3.0.

2.2 Performance of Rotor Blading

The rotor is designed for the maximum useful enthalpy rise

across the blades. If this were a frictionless process, the useful

energy rise would naturally be greater than in an actual process

involving friction. Therefore, the rotor efficiency is defined as

H " H.

\ = iT V (6l)B H

2 ^ Hx

where the total heads H , H , and H m, are shown on the H-s diagram,

Figure 8. Of course the pressure rise through the rotor is related

very simply to the corresponding energy rise according to the

relation

H = ^ (62)P

59

Page 122: Performance analysis of a turbo-type energy ... - CORE
Page 123: Performance analysis of a turbo-type energy ... - CORE

The numerator of eq. 6l is obtained from either eqs . 57 or

58. The denominator of eq. 6l is similarly obtained, but for the

theoretical case both the incidence and blading losses are non-existent,

It follows from eq. 58 that

H2Th " *!!(II AF y _ f 2Th 1\

u) R2

= i + nT- p2 - \z ^ ^ Tan «J

(63)

is the theoretical dimensionless energy rise across the rotor. The

efficiency can obviously be written as

\ - wm^Jl i6h >

O.

jj = m A H (65)

It is convenient to introduce a dimensionless power coefficient as

2.pUJMAX

R2

Recalling that

np - -f—

-

5(66)

VM2w R

2(3)

and

" = 2n P \ \ VM2 h2 &

"A H = -1P2 (59)a,R

2

60

Page 124: Performance analysis of a turbo-type energy ... - CORE
Page 125: Performance analysis of a turbo-type energy ... - CORE

the dimensionless power and head coefficients can now be related as

The power is related to the torque by the simple expression

2.3 Energy Losses in the Upper Passage

The energy loss in the upper passage, assumed as only a total

pressure loss due to friction between the rotor and stator, is expressed

as

A Hu \ - H

3"

Vj

f - ¥ (69)

or

,p„ vA /P. v,2

In a frictionless process

p v,2

H2

= (H3

)T H= ^3H -f •

. (71)

and from eq. 17 with the frictional moment M equal to zeror\ III

(V ) = v — = -^ (72)^ Vu3 ;TH V R 2 u^

J' Mu

Resolving V_ /2 into its components, one can write eq. 71 as

\ = (h3

)th- 5S + Zfl +

I^3L (73)^ 3 TH p 2

.2 ^

61

Page 126: Performance analysis of a turbo-type energy ... - CORE
Page 127: Performance analysis of a turbo-type energy ... - CORE

Similarly for an actual process

2 2Po VM_ V _

the energy loss can now be written using the two previous equations as

2P3TH " P

3,

( 1t } \

'2 "3" ^L^2 +(

x.l)^ (?5)

A convenient dimensionless pressure loss coefficient can now

be denoted as

• cn -^f^l . (76)

(-£)

r

where C will be shown to depend primarily on the radius ratio — ofu r.

the upper passage in Figure 2. This is similar to energy loss

coefficients developed for bends in smooth pipes.

Eq. 75 is non-dimensionalized, and using eq. 76 one obtains

2 2

(^K-f ^H-f-- 1)^- (77)

* E2 1 Ma »

R2

Using previously developed expressions for V one obtains an equation

similar in form to eq. 58 or

(RAH) a I 3v yu 2 2

cu R2

*

' ft 3 %¥ •^## - *>

62

Page 128: Performance analysis of a turbo-type energy ... - CORE
Page 129: Performance analysis of a turbo-type energy ... - CORE

2.4 Performance of Stator Blading

From Figure 4 "the stator incidence angle i iss

is

=°3 " °3

B (79)

i

and the useful inlet velocity V, is

V ' = V, cos i (80)3 3s v '

The total head ahead of stator blades is given by

p* v2

PH =-i + -2_ = -l2

(81 )3 p 2 p

v y

while the useful head is

p (v ') 2 p'H3 =f + -I~ = ^i (82 >

The above three equations combine to yield

(v3')

2- (v/

H3

= H3

+2

V 2* 2 2

= H5" 2 ^ sin V

(83)

Similar to rotor blading losses, stator blading losses will be defined

as

T jAlI^ji^i (84)S

| \2

(V4

2/2)

or

v.2

„ V,2 V 2

H, = H' - Y -f- - H, (sin2i ) -3-_ Y -4- (85)

A

4 " iX3 s 2 3 v "V ^ " x

s 2

63

Page 130: Performance analysis of a turbo-type energy ... - CORE
Page 131: Performance analysis of a turbo-type energy ... - CORE

Subtracting EL from both sides yields

V2

V2

H4

" H1

= H3

" H1

" (sin V "J- " Ys "I" (86 )

The same non-dimensionalizing technique used in Sections 2.1, and 2.3

is again employed and the energy loss in the lower passage is now

available in the general form as

,i2 - 2

'4 "1 ~3EL - EL H, - H

1

T]^u

R2

. y - 1" lo ;(sini

s)co R

2ou R

2

+ $ [(sin2is) 2 Tan PjJ + *

2 {(sinV) [(^ ^ 5|)2

+ Tan2

PJ

Y R b KL O (87)

«, 2 L.R, b K_. cos a, J J )V 4 s ^ 4 .J

The above equation is actually

H4

- H1

H;- H

1H3

- H4

2D 2 2D 2 2^ 2co R co R co R

?•

This can be further reduced to give

H4

- H1

H2- H1

H2" H3

H3" H4

2^2 2 D 2 2^2 2'2co R

2co R

2co R

2co R

2

which gives the energy losses in the lower passage in terms of the

energy changes throughout the remainder of the system. The next

step is to find the energy loss in the lower passage and solve eq.

44.

(88)

64

Page 132: Performance analysis of a turbo-type energy ... - CORE
Page 133: Performance analysis of a turbo-type energy ... - CORE

Again the loss coefficient Y is a function of deflection ands

the aspect ration, where

A3s

= a3

" °4 (Q^

and

3 4

2.5 Losses in Lower Passage

The development of the energy loss in the lower passage

closely follows the technique of Section 2.3.

The energy loss in the lower passage is

2 2

for a frictionless process

R.

(V ) = y _1 (q 2 )1 u1% u4 R1

V7 '

or relating theoretical to actual velocities yields

2

H4

= (Hl)Th = —7^ +— + 2liT-; (94)

while

h. - Zi + !m! + Ld! (95)1

p 2+

2

65

Page 134: Performance analysis of a turbo-type energy ... - CORE
Page 135: Performance analysis of a turbo-type energy ... - CORE

the pressure loss coefficient is

p= c

i ^r^ (96 )

The expressions for H. and H . are now substituted into eq. 1

,

along with eq. 6 to yield

V2

R 2

This is easily put into the dimensionless form used previously or

<"*>* - t ^)2

[°i(^)

2

+(1 - V 2

)(!r zg T- a4 )

2

] <98 >

Eq, 97 can now be substituted into eq, 88 and § can be solved

for straightforwardly. Iteration is necessary, however, since all loss

coefficients depend on $,

3,0 Loss Coefficient in Rotor

Vavra (3) gives a relation for the losses in axial turbine

bladings as

, . o.99 - ^f A P - 4f^&(99)

where AB is the flow deflection angle in degrees. The quantity Y is

the velocity coefficient defined as the ratio of the actual and

theoretical discharge velocities, which for the rotor is

W

* w2Th

and

ABR

. 32

- P1

(101)

66

Page 136: Performance analysis of a turbo-type energy ... - CORE
Page 137: Performance analysis of a turbo-type energy ... - CORE

The theoretical case occurs for Y_ equal zero which inK

accordance to eq. 56 gives P = P . Substituting eq. 100 into

eq» 53 yields

E1

P

E2Th

P+

2Y2

(102)

The actual rotor blading losses using eq, 102 can now be written as

W, W,

YR

=

W//2

- 1

Y'

(103)

In accordance with Horlock (Ref. 4) the loss coefficients depend

on Reynolds numbers R^ and aspect ratio A of eq. 60, Hence let YR

of eq, 103 now denoted as YR be the loss coefficient across the rotor

5blading for A_ = 3 and R_._, = 10". The latter term is deiined asu R iMR

^R =DhR

V2

(104)

where D, is the hydraulic diameter of the discharge area of the flowhR

channel between adjacent blades. IfyC/a is the rotor blade snacings atn.

the radius R_, and a„ is the opening at the discharge as shown in

Figure 3» oxi approximation of the discharge opening is given by

a^-^cos 32

(105)

then

D.4 (flow area) ^R

hR wetted perimeter "'2 (a_ + b

)

(106)

67

Page 138: Performance analysis of a turbo-type energy ... - CORE
Page 139: Performance analysis of a turbo-type energy ... - CORE

Substituting for a_, and rearranging yields

2bT

D.R

hR1 +

R(107)

^ cos 32

The blade spacing AL can be found with respect to the radial

extension Rp

- R. by using the blade loading criterion of Zweifel (Ref. 5)»

For axial bladings this approximation is

MR 0-425R2 ~ R

1 (Tan 32

- Tan 3^) cos2p2

Substituting this equation into the expression for the hydraulic

diameter yields

4)

(108)

DhRR2

:

(bR/R

2)(Tan3

2- TanB^cos^ (109)

1 +

0,425(1-^/1^)

Placing the above equation into the expression for the Reynolds number

and recalling that

(4)W2

ojR $

cos B

one obtains

hst

2(^) . . R2

2

(bR/R

2)(Tan3

2- TanB^) cos P

2_,

(110)

cos32+

0.425 (1 - r./r2

68

Page 140: Performance analysis of a turbo-type energy ... - CORE
Page 141: Performance analysis of a turbo-type energy ... - CORE

The loss coefficient is dependent on the aspect ratio and

Reynolds number through the following relations after Horlock (Ref, 4).

< - 4? <.»75 *2E) - 1 (112)

and

where the coefficient YR

holds for the actual aspect ration only at a

Reynolds number equal to 10 , By combining the above equations the

generalized loss coefficient is simply

YR -

ly2 I'

975 TAR

;1J VR^y v-h)

These relations allow the actual loss coefficient of the energy absorber

to be determined under varied conditions.

Obviously the Reynolds number is not totally specified by

geometric parameters, but depends on the flow coefficient §. In

t

iterating for §, the process must be assumed to begin at Y„ , or aR

5Reynolds number of 10 , and subsequently correct the loss coefficient

as improved values of § and K are calculated. This procedure must

also be employed for the velocity coefficient Y which is dependent on

§ through a dependence on the actual inlet angle (3... The iteration

must be continued until convergence is achieved for all values

dependent on $.

69

Page 142: Performance analysis of a turbo-type energy ... - CORE
Page 143: Performance analysis of a turbo-type energy ... - CORE

3»1 Loss Coefficient in Stator

This section follows closely the development in Section 3»0,

Eq. 99 is again used with

^=7^ (115)s v

4Th

and

A3s

= a3

~ aA

(116)

For a frictionless process in the stator, the total pressure

(P . ) at stator exit would equal total useful inlet pressure P ..,

or

^PT4^ThFT

;*4 'V Th ,.. n ,

p=

p=

p+

2 tmj

Substituting eq, 115 into eq, 117 yields

P p Y 2s

For an actual flow

n4

=^3 + !i! (119 )

which yields through eq. 84

s

This was as expected from Section 5*0* The loss coefficient can now be

written after eqs. 112, 115, and 11 4 as

70

Page 144: Performance analysis of a turbo-type energy ... - CORE
Page 145: Performance analysis of a turbo-type energy ... - CORE

and finally

^(•^ + 1fMGg)'25

.

(i 23 )

where the aspect ratio is defined by eq. 90 as

b

A =S

s IL. - R.3 4

The Reynolds number for the stator is

K v.

where for a —^ coscv,, the hydraulic diameter iss s 4

T\

2bs

Dhs

1s' s

+cos a.

4

The blade spacing according to Zweifel (Ref. 5) is

-^s 0,425

(125)

3"

4 (| Tan a - Tan a |)cos ot ^ '

and from eqs. 25 and 26

The Reynolds number can now be expressed using the above four equations

as

71

Page 146: Performance analysis of a turbo-type energy ... - CORE
Page 147: Performance analysis of a turbo-type energy ... - CORE

b\\ 5329 tu R,

^s =

2 Kcos a + — (| Tan a - Tan a/ | ) cos a

0.425 (r3/r

2) (1-

3 -J

(128)

A series of iterations is again needed to insure proper

convergence of all parameters.

4.0 Pressure Loss Coefficients in Upper and Lower Passages

In accordance with eq. 76 the pressure losses in the upper

passage are expressed "by

(P5)Th - P3

n %= Cu 2

and similarly for the lower passage by eq. 96 as

(129)

(piV- pi

V.

= cMl

I 2(130)

With Apb being the pressure drop in the bend, the loss

coefficients of these bends defined as

V£"2 (131)

are shown in Figure 15 as functions of the Reynolds number R^, where

similar to eqs. 104 and 124

V. D,

\ =~ n(132)

Vavra (Ref. 2) has developed the set of curves shown in Figure 15.

These curves are based on the data of Sprenger (Ref. 6). Interpolation

72

Page 148: Performance analysis of a turbo-type energy ... - CORE
Page 149: Performance analysis of a turbo-type energy ... - CORE

was to obtain values for ratios of r./b different than those found

in Sprenger,

The hydraulic diameter D is again

\ = 4flow area

(135)wetted perimeter

For a ring channel with flow area of 2tt R b the wetted perimeter is

2(2ttR), or

\4(2tt R)b », . N=2(2n R)

= 2b( 1 34)

Hence at the rotor inlet there is

\ = 2b* (135)h R

and at the stator inlet

Uh= 2b

s(136)

These above two values are introduced into eq_. 132, with V

equal to the corresponding value of V , that is, VM1 before the rotor

and V before the stator. The result is

VM1

2\

The Reynolds number is then used to obtain the loss coefficients § of

Figure 15*

The loss coefficients ^ of Figure 15 have been obtained from the

measured pressure drops by subratcting the pressure drops tha"c would

73

Page 150: Performance analysis of a turbo-type energy ... - CORE
Page 151: Performance analysis of a turbo-type energy ... - CORE

occur in a straight duct at the corresponding Reynolds number and

surface roughness.

There are several conclusions which can be drawn from Figure 15

and from additional data in Sprenger (Ref, 6), In general, the loss

coefficients for bends made up of two concentric radii increase with

decreasing i/b ratios. The curves £ versus R^ that exhibit a

minimum indicate the flow separations occur at the inner radius, and

should be avoided. Finally, Sprenger (Ref. 6) shows that two bends

with ri/b =0,5 arranged in series to form a 180° bend have a loss

coefficient of 1.665; at R^ = 10 where § is the loss coefficient

of one of the 90 bends. This data will be a first approximation in

choosing the loss coefficient for the 180 bends in the energy

absorber.

^ 1 Estimate of the Pressure Loss Coefficients in the Ub^er

and Lower Passage

The losses in the upper and lower passages will be assumed

due to two components, passage bending and friction. The losses due

to duct bending were discussed in the previous section. An arbitrary

assumption is to take these loss coefficients equal to 2,0 and 2.5

for the upper and lower passage respectively. The values of £ are

given in Figure 15 for various value of i/b. It is recommended that

ri/b be chosen between 0,5 and 1,0, Any bend with a value of ri/b

larger than 1,0 will be assumed to have the same losses as a bend with

i/b equal 1,0.

To the above losses must be added the frictional losses in a

straight duct of hydraulic diameter D, and average length L, where

L. + L

L--^-^ (139)

74

Page 152: Performance analysis of a turbo-type energy ... - CORE
Page 153: Performance analysis of a turbo-type energy ... - CORE

CM

CD

-P

Q)

•HO•HfH<HCD

oora

CQ

OH^

<HO

CD

-P

B•H-PW

LO!

(7>

6CO

6 25 JLN3l3!dd300 SSO'l 9NI0N38oo

75

Page 154: Performance analysis of a turbo-type energy ... - CORE
Page 155: Performance analysis of a turbo-type energy ... - CORE

and L. is the distance along the inner contour and L that along the1 o

outer contour in the meridional plane from the trailing edges of one

blade row to the leading edges of the other row. (See Figure 2)

In accordance with eqs . 132 and 136 this general frictional

pressure loss is

Apf

' = Xf±

f VM2

(1U0)

The friction factor X_ is a function of both Reynolds number

and surface roughness . The value of X is obtained from the curve of

Figure l6, also from Vavra (Ref. 2), for a relative surface roughness

of

£ - -\ UM)h 10

where K is the peak-to-valley roughness of the surface. Hence, for

this case

K = -^ = 200 b u - in. (lU2)r

10

If it is assumed that the rms roughness be one-half K , the surfacer

finish must be better than 100 b micro-inches

.

The applicability of this' data to the three dimensional flow

channels of the energy absorbed is obviously questionable. The losses

defined below must , at best, be considered as first estimates only.

The loss coefficient C of eq . 12Q will be taken as

Lcu

= 2>0*

+2TT V (lI+3)

R

76

Page 156: Performance analysis of a turbo-type energy ... - CORE
Page 157: Performance analysis of a turbo-type energy ... - CORE

1

/

/

\

I

.

1

J

/

/

/

Q/ «M

/ -

5 ob

r j

lOVd NOI lOIdd

CO

CO

to

ro

zcj a:

orLUCO

7L

CO

o _j~" o

>-CO LU

ro

C\J

%

«H

P=i

oJ

\>

r<

UO

o

Pio•H-P

•H

Fr

Hn3

o

0)

-P

6•rH

-Pra

^o

•H

OJ

77

Page 158: Performance analysis of a turbo-type energy ... - CORE
Page 159: Performance analysis of a turbo-type energy ... - CORE

and C. of eq. 130 is

s

where 5 is obtained from Figure 15 and \ from Figure l6 for

-2b

STM3 U „ *2 *B2

bR\

2bs

^u= —— = r E2i^ 5^ y— (l!* 5)

and

In eq. U the length L is given by

(L ). + (L )

T u 1 uoLu - 2

where (L ). and (L ) are the lengths of the inner and euteru 1 up

meridipnal contours, respectively, pf the walls pf the upper passage

between stat iens 2 and 3« Similarly in eq. 133

where (L„). and (L„) are the cpunterparts pf (L. ) and (L ) fpr thev

Si 1 i o 1 u x u o

lower passage between stations k and 1.

5.0 losses of Angular Momentum in Upper and Lpwer Passages

The frictional moments along the upper and lower passages

were introduced by eqs. 18 and 22 respectively as

M» = \ m R_ V (1U8)fu u 2 u2

and

M« h i \ \k (lt9)

78

Page 160: Performance analysis of a turbo-type energy ... - CORE
Page 161: Performance analysis of a turbo-type energy ... - CORE

No data is presently available for the losses of angular

momentum in passages of the type needed between the rotor and stator

of the present absorber. A very crude approximation of these moments

is obtained, however, by assuming that the shear stresses Y on the

walls are merely those acting on a flat plate with a peripheral velocity

V at R being the velocity outside the boundary layer. This over-

simplification ignores the effect of the meridional velocity components

which may cause large increases in the frictional moments.

For fully turbulent boundary layers along rough walls the

shear stress is

T - «, | \2

(150)

where c„ is assumed to be invarient with the Reynolds number of the

flow. On the element of wall area 2n Rd L of Figure 2 there acts a

frictional moment

dM„ = 2rr RdL Y Rf o

which becomes when using eq. 3

dMf

= tt p cf

(R Vu )

2d L (151)

It is assumed that the passages have been designed such that the flow

is not separated from the walls, and all stresses external to the

boundary layer are an order of magnitude smaller than stresses along

the walls, and therefore negligible. This results in the product (RV )

being constant outside of the boundary layers and equal to R V ~, the

value at the rotor discharge, for the upper passage. Integrating

eq. 151 from station 2 to station 3 yields

79

Page 162: Performance analysis of a turbo-type energy ... - CORE
Page 163: Performance analysis of a turbo-type energy ... - CORE

,(3) 2

MfM " I

{2)" P C

f(R

2V ° («2)

Mfu " " P c

f(R

2 V' [CVi + <Vo] ^53)

where the inner wall is of length (L ) . and the outer wall is ofu 1

length (L ) . Hence by eq. lU8u o

tt p c. R V f(L ). + (L ) 1= f 2 u2 ,. u i u_oJ

(15 ,

Substitution of the mass flow equation and velocity relations into

eq. 15*+ gives

1 + $ Tan p f(L ) + (L ) 1X = c £ ±=-^ ^ (155)

* 2 bR h?Id

from eq. 19

to

1 + $ Tan R f(L ). + (L ) 1•n = 1 - e - L u 1 u oJ (1S6)

For the lower passage a similar procedure and derivation leads

c Tan as |~(L ) + (L ) ]

and

Tan ™ F(Lj. + (L.) 1±m _* k_±_J^ ^oj

(158)

2 SU bs

cf

80

Page 164: Performance analysis of a turbo-type energy ... - CORE
Page 165: Performance analysis of a turbo-type energy ... - CORE

In eqs. 155 through 158, the absolute value of the flow angles

must be introduced since the loss is a function of absolute deflection.

For fully turbulent boundary layers, as in the present case,

the local skin friction coefficients c depend on the surface roughness

ration K /x, where K is the peak to average value roughness and x iss s

length along the plate.

hCx.

=- .OOU for K /x = 10"f s'

and

c^ ~ .006 for K /x = 10~ 3f s'

Since there will be flow irregularities and possible flow -separations

,

it is advisable to use a larger value for c . A c = .016 was chosen

since it gives best agreement with M-21 test data.

81

Page 166: Performance analysis of a turbo-type energy ... - CORE
Page 167: Performance analysis of a turbo-type energy ... - CORE

APPENDIX B

DETAILED ANALYSIS OF THE ENERGY ABSORBER WITH

THE FLUID CIRCULATING IN THE REVERSE DIRECTION, MODES 3 AND k

A separate set of equations must be derived for the reverse flow

modes. The reason, mentioned earlier, is that the relative flow exit

angles which are assumed constant are now different.

This development follows very closely to the previous analysis.

Therefore, the intermediate steps of this derivation are omitted.

1. Assumptions

a. P-i~ constant

a_ = constant

The remaining assumptions are identical to the normal flow case.

2. Analysis

The geometric relations employed are obtainable from Figures 6

t

and 7. A new flow coefficient $ is conveniently defined as

VM1

feffl^1 -M2'

The torque exerted on the fluid by the rotor when acting in the

direction of rotation is

a)

TR " m

(Rlvul " R

2V ^

where the mass flow equations are identical to those for the normal

case.

82

Page 168: Performance analysis of a turbo-type energy ... - CORE
Page 169: Performance analysis of a turbo-type energy ... - CORE

The frictional moments acting from stations 1 to k and stations

3 to 2 are respectively

Mfi = h m \ \l

M . = X m R_ V _fu u 3 u3

where

\ \km m E

lVul - M«

2 u2 3 u3 fu

The relative flow inlet angles are

bR *B2 m /*2\ *B2

and

ly (1 + i' Tan p1 )

*!

where

'2 rm Q **

83

(3)

(*0

Tan^2

= V bj K^ ™ ^3 " V 4 l/$'

(5)

T£m*u

=,

i^, e: (6)

^ bs

The torque is now reduced to

TE " 2 " P R

l

5

(^) Si »2

TR <7)

Tr - * + *2

[Tan Pl - jg JJ ^ Tan oj (8)

Page 170: Performance analysis of a turbo-type energy ... - CORE
Page 171: Performance analysis of a turbo-type energy ... - CORE

Proceeding to the rotor, one can write,

V =¥2

C°S*Z

h = P2B " P2

YR

P - PE2 El

£ W 2

2 1

and finally

^R Hl- H2 .

Sl" ^E /"g

2p 2 .A 2 " " 2 Wcu R., 1

K b

+ *'{Tan pi " Grr ^ V Tan *

3 )cos " ^k^ b

g'tau ^ "3/ ^ ^J (9)

•2 r

sin % ^lyr/W /Si bR - T \

21 _2r i- $ \—2— (id lvk—;

+ fc b- v Tan<v J

+ :—2~i^V ^3 2cos P1

where

^ " R2

- \

for this case

n A HA H2„ 2

oj R

In the lower pas;sage

.

pUTh " PU

1-£ v

2

2 MU

(10)

(11)

84

Page 172: Performance analysis of a turbo-type energy ... - CORE
Page 173: Performance analysis of a turbo-type energy ... - CORE

and the energy drop is

Hi

- H4

(1 - td /R

i

2D 2 2 VR.u> R 4

1

4

2 VKB4

bs V 2

Nor for the stator

i

V. = V. cos i4 4s

i =0/ — o/

s 4B 4

v =P - PT4 T3

Is p

2 VAs

=bs

R?" R

4

Ap Of. - °^s 3 4

and the energy drop across the stator is

H4

" H3 sin2 i ? /

Rr 2i" r 9 ? /

R1\ 2

co2r

2 - ~ir^ ^ m 0;) + * {t«*\n m Gr) *» *J1 4 4

2,_ sin i ,R4 ^2 K_ . b 2

*' 2_ A \ Sin

2

+_ 2

Ys VR 2 b LJ

2cos a 3 s 1332

85

Page 174: Performance analysis of a turbo-type energy ... - CORE
Page 175: Performance analysis of a turbo-type energy ... - CORE

In the upper passage

P2Th " P2

Cu

="~

V

( 1 4)M2

P "5-

and

H -H |2 R 2 r 2 b If 2

J^tt V (57) (cu Gg) - - ^Xr § Tan

"J } (15)

The loss coefficients are now given as

Lu

s

Cu

= 2 '° § -+ W" Xf ( 16 )

LXu =

0fTan or r-|- (17)

s 134

X„ = c„ Tan

The Reynolds numbers ot obtain § and \ graphically are

2\ ..

The expressions for Y, YR , and Y remain the same as in the previous

analysis, but the Reynolds numbers are now

86

Page 176: Performance analysis of a turbo-type energy ... - CORE
Page 177: Performance analysis of a turbo-type energy ... - CORE

b , § co RR \ 1

<B

^ =v

cosp.. +(bR/R

1Tan ^ - Tan 8

2BJcos ^

R2

Ir;- 1

^ ^r

*ns=

*B3

R.Tan a - Tan or_

4-B 2.

2COS O'

coso/., +,R .

. /R-7

°- 425(s7)(^- 1 -

(19)

The equation which is finally solved to obtain $ is

A IL, = A H +AH + AH,\R u s &

or

H1

- H2

- (H4

- H3) - (H

3- H

2) - (H

1- H

4) == (20)

The equation is solved by the program. An iteration technique must be

t

carried out until all parameters dependent on $ converge.

87

Page 178: Performance analysis of a turbo-type energy ... - CORE
Page 179: Performance analysis of a turbo-type energy ... - CORE

APPENDIX C

PROGRAM NORMAL

Program NORMAL is essentially a modification of the program

developed by NAEC.

Program NORMAL solves the equations governing normal circulation,

Modes 1 and 2, for a given design. The solution is based on an

iteration technique which is repeated until the flow coefficient

$ converges to within a specific accuracy, A starting value of §

is picked as are initial values of the various Reynolds numbers which

are also § dependent. The initial iteration step occurs with all

losses based on standard initial Reynolds numbers. This subsequent

value of * is then used to improve the estimates of the Reynolds

numbers and consequential losses. The technique is carried out

until $ converges to the proper value.

If the design parameters and angular speed are input data, the

program will compute the flow coefficient, torque, velocities, losses,

energy changes over each component, and the dimensionless torque,

power, speed, and energy. The flow chart of Table IV depicts this

process.

The method of data input is clearly indicated in the program

itself. The program is felt to be self-explanatory in that comment

cards have been extensively used. The Fortran symbols employed are

given in the list of symbols.

Subroutines have been used liberally. Each subroutine accomplishes

one individual task such as determining a loss coefficient, or

88

Page 180: Performance analysis of a turbo-type energy ... - CORE
Page 181: Performance analysis of a turbo-type energy ... - CORE

enthalpy change across the stator, etc. The subroutines Pig. 15 and

Fig. 16 are closest point approximations of the curves depicted in

Figures 15 and 16 of the analysis. Thses points are given by Block

data which is called by each subroutine.

89

Page 182: Performance analysis of a turbo-type energy ... - CORE
Page 183: Performance analysis of a turbo-type energy ... - CORE

Table IV FLOW CHART FOR COMPUTER PROGRAMS FORMAL AW RFVFRSE

>New a ndRev-iolds \Josnow nsed

.

Dat ^ T lpt t : Ocs i on si;^e

Ass i gn In i t i a ^ vn 1 JfS ofand Re vnolds numbers

to be?. i n i ten tion

N =

_JLPlMUct <*:

c* I

v = o

^v--

1

PftSZ rirST

r1 1-.? \nalysis: Calculates and Prints

Veloc i ti es

Enpr^v DifferencesLosses 3nd Loss Co~ r fieient c

Non-dimensionali zes nil pertinent quantitiesPressure DifferencesTorqu.e

Flow Coef f ic ; ent

90

Page 184: Performance analysis of a turbo-type energy ... - CORE
Page 185: Performance analysis of a turbo-type energy ... - CORE

LO o:lu.-t • CC ox

Z 1 ZO 00 h-i— •*

LU r-< ».LU wU. 10 <I 1 UJ rH O •LOLU z ^Z) oCH-om

oo s: Z'-S _JLU z>-<fa. H-H 0— U__J O00Z 1

• (/) LUO OKh JI O <_j 1 00 OoO U_00 f_ <Z,-a

<aoooo OLU<LU<l— z UjsO Q LU LU*- OO Cvl

-JUJZU CD CD < m>roc£ UJ ~LU O- CCY- »•

x >uj< LU 00 OOZ Hi-• <T O WlCC ot- 1-0Hl/)JO X LULU I>

•»—• LU 1 J-O0.J < LUO ^h OUJXr\lDDOQCUJ f-O-J-J Oh vCOZO _J LULU LUOO—l—OO 1

zo^lucq ZOm|-00 1-1 00 ooujsio CL GT.O IZD <JJr-(LU»-H > o:luZ3<m 1 z> ZQ-OZ O h-LUZLUoO'-'r-lCLiZZJ Oa.'< x 0~) :s:oo_j< LU LUZ • OOO00X »cl<ooj LLLU 00|— >- -a Z5LUO CC o^>- o<<<>>-<Om LU>—Z *l— m< _jq:o_j < •-•-J LUOLUOOO-LU^H

t- 3: OLU>-<000>-» 1 < ZLULU O*—10000 O I

zlu<cc t—<—<X —< 1—1 CJ HO •* im <r ^z> <o <o:<h

mODlljZ _lQLU0000O O0Z H- -— 1—

- v«H _j_ja:aLu_jZOhO < 5~_J z< IOOm Ol_)(— CLLULU "iCDtODmUjLLm >_j2lu_jlu s;x •LUZZ z O O CXCCO zLUOO <K- <OX<> Z> CIOh < KCCLU LULU UJjaZH- O < >-DJhZ _JI~ LUOO <LUQ- oiXc^Q. OZ>Z"-**--* M -JHLL <LU ui K-ZLULU •» h-ccoo < i— -je a lu 1— _jLUXh- •*-* ZU - 00 oo.-<oox ro oos:lu •»<• DIOOooa.< »-j 0<lucclu 1—

1

3 V.J- •« <.cc fh- 1-0:0uj cc<f<. XLUXH- • Za: -?zo CvJ 00 vJ-OLULUcccconJ-z O0LUH>HZ 00 —

I

o>—<<I • #• z I wujillcza.O«C t-(X LU LU O LU <^cr:iTi t-t <zo HDU-HOhHLUO >-> 1- szz CC OcO H^LO <r-r fTS_J

OO OZoO z •o*-«o < LU 1-U.iC 1 00 cc^ 1 LLs^LUt— QTOzuj oz zi a. ot- X-JLUvO Z OZH >-oxz>o0>H-'-'UJ <-* tO OS <00 Of— LU^ O K ro ZLU(- OOMJlhS (— (\4*-« v-LUC < -JZ? t-fZja. >>-< OLU <IhIZHhOO<H Z> Kt->U I— 0. 2: a:o^oo k- arxQ h-OOJ—LUZl—<ion3o jq:<zo < 2l < hZ OOJDI- <o | OOH<_J-J LUOO octiD K K < OU-OZ 00

-J OOaldJZ 00 O H- Cl< a: a: aiz<_i 00 <o mOOOLULU UJ< LUH-H- O i-t 0£" 00 5: CC —

.

<LU LU<-JO \- - 1 HjCl^Wy <s»z <0 ZLULU I»- O cc z>o H 00 >-H(—> <LUXd u.>- ao — ooH-d X •**" cclu Sl[- < LiJUJO) '_XJ <-i LU JiZo Oc*:< Q xiLinoza z <K- Z50JZ _J_i i

Z < zz H-Q< 0»-i LU LUZ Z_J< • 00 OOr-l JI«<>"D»— 00 UJ< oizhq: > >-•- Z 00 DC ZZ(M CM KQi< <

3: LUOO > i— z:oo»-!i— lu LU Z-<U_Z O • << 10<LLl U'_J

< O0LUH >~<00 < <ZCl 00 CLU Z) 00 HO 00 Hv-tj; >LUX2Dcc OZO*-" X U.SILU ZOO <xar. hh OvJ- HLUZ <~tLUlU<f XHo LUUJUJ UO f-ZOLU>CC z <LU Oh-H < 1

-< J-51 »-t-<Z t— cCo IZCZ> O a:zw X LU>—Z< U-rH XhJ OOwUi u_oa; h- ZGJ QhZ OUJ »t- xoluo: m UJ _J -«LUy:XLUCH-a ooLu«-t<r LUKOKOX > t-arsiLu LU C 1 a. ko <

oo.-ia.i-z CC<l-<00 \— LU <l- LUI— OO 0J »0 .-(O)LU 0OH- •

LU IU<< LU_J(-Z5Z h- Q< ir>u.jcri^-i <m >o X LUO OOO >>LUOO ceo 02: oil • h- X 1 xo ^ 1 mNZ WJ,!^-C M '-, —

J

_ir> 02 3TOLU »-hhhZ O H l-ZZ o«-t H- 1'-' zx hoonj

CGmUJo LUCCtCCCoO O 0. X i-H »-<-< OCM <t<-\ 2HQO«l->COh-»I _J 3£n-imO lu —

Z |~ LU LU O -J t. JhO z^-hc^q: -•

zo-lulu LUCJ>CH-LU>(— t—4 Zh 00OLULU coo LU O _) ^<|— cc\~5:1 cU <x>-<<r OO Z XCQ r\J aid OZ <r'J.

; ::JOO<OLUZLU _JLUH-H-J— 1— 00 siz Sool- • Ul | Z1CC oO ^Ilt-ujc£ujcc<x LU<X00 mQ 1—

<

Z3Z) O IH LU<0 h-.— hKQaOH~<-J(- cosh- OoOcx LU _iv-< »-H- h-H X t- Zh-l-LU Qi<^

< CC OH-O < X • OOir\ •» H ••< "•OCX »• •• UJ

eCZOOCQ » \-O00Z O.LL H- H>- tj<r0^-< O Of- H-<oi-KH-iuct:Q-OH- O OOZ'-XiLU O < _l or t X • •1^ r-HO0 CC LU XXX

.-.z>-lu 15 Z5LU O LU oa LU I •• 1 • •LU 00>- -ooi-luo> Slii/^DCCZ ••> • •LU(\f LU«-t O-hD LU 0»'LUUJ O»-i<I»-<aiUJ e OLUQ <o LU LUWH OX U- cc z >U-»-<X *-*>-* LUvJ-

XcCOiU.-tO t— Ql—O "-< X ZH 3:1-000 Xoo Oo0< i-«OcO»-<XXO 1

h-LUi-ZXUJ mZOCll(/)I- h- 00 H- t-Z h-Z LUZ LU Z500 *-*

l-LULUOX OSlcCO'-UO LU loslu 5: Z^CC l—O LULUOfO»-«U_ <O0 m Z_ILU 00- OC\JZ)D DD OZJO OZ QDDm

UIUJ »-< H-LULU<OCC or 00 (X 1->-i CC-J CC>JK- CC LU CC CC <.< K-

ZDIWJ hIIIZm <.LU <s0O< <o <oo <f-H'jj<_l_J<Z<OI— ^-<CL Oh-HO<iQ occ U.-hU> 00 00a: OOQ_oajcOcC<

oouuuouuuoouuuuuuuuuououuuuuuuoouuouuouuuo

91

Page 186: Performance analysis of a turbo-type energy ... - CORE
Page 187: Performance analysis of a turbo-type energy ... - CORE

o1

oo

r-l UJUJrH zX i—

<

l-O t-1-1 O

LL 1 o —J * a? • »Or-4 a:

CDOCQ » »»^f0Qicom _jr-o-ict:co

KW 3 Z< UIXi/)DIZ 00 _J «*o0 *-5TO-CO_JOS •-CDcQIDsr »••»••

ujr> UL x>r-i »-oxcn<\joo*-«—} O ccoo: •><o-crCcoIO CQ •'CCOO »-f-<o0-J

o cc 2IO ->4-ICD_JUJ UJ >jH-.ca xd_ -az GO -x si" en 5: »-m_i<M 51 00 0. <>- rn i— a:-J z> CO - - »-XO>J"CQCOO z _J_icooo<Oc£'2.

UJ -JSlojcn r-or: »-_j

UJi_) UJ <co<m *•<}- •»

I<I o cm- * i>isq:di-_i a: cq ix1 st a: 2: id c\jq

O. < X> -ctOCfMOOCCCO MO __• _iX)X<x< -2: X~2UJ •2 a. •*< »-m_j < f<o: UJ j<a: i»—1 r-z.ee •» SLCC< X <f-<X--<OC\l_j 2!M

tf V- Oai •-Q-Xooa:< OZO«-» x. «-m «-s:cq »-o -cc

OoO o <C'<i_ji^j "-cms: ttfslZz:uj t— JI'IUJIEclC 3arCI •~cno.£x:<Xr-<-j OK-Jo LJ 3> »•_j » foocn •- clooq:

mz 3 <>t<dhu -0 l-H>f_ Ot—

i

O OcO «-UJX »0< a. »v) S:00 5:^mo,?:hzq »—•> 2: Ozz LU <i »-<t ^i ~s: C3?—<

•- ••

0"-« o jmiwis^< Dir-H— •» Ot—

4

z »•CO Q-UJOvf- CO _J 0<-fNj O t—

1

coJ— LU UJ o^-jct «-xa. »• y— rsjr-i -( CD X ro 00<a: • H-l 2 »•< vtCD'COSr •-ict:*-. x ro 00 a. < CQf-O- z •»CM »-ClX » »-0 Q-XJ 0. < CQ •» •• a:00 _J UJ 00CQp-HUJ5:^C\|_J • F-rv' *• »• cc 2: co CQ

00 UJ > w^<af(ii£tai S«~X r O CQ Cl£ •4" f-« •»

U_UJ> z •- »-I ISiQ Qi—t •• a: vfh r- < _j CQ CO ccoz>»- a a: 1-1 o_ _j m cc »• l-H ,-<— < _i cc co a' UJ UJ ^ »• CO-JK o -cDjt-' »x -s: O- »<M LULLING • CO >- •» -4* *—

<

00<O »-iti<oor<". CCCNJCJ O'r-H >-0 ^<JX-h >—

t

*» m < z a:o>uj a: vj- »• r»Q. X »»CX •• U.—

w

>-t <-;n<Z(X^ •- OvJ CD X »• »•

t—i Q- O cD^-(\j •2:rC|>tc£_J UJfvJ_J K- f(\jcQX »-CO >- cc Ni .0- 00O-J00 a. :Z cC <O cmX cC X>< ££>->- * >-q:n^ci.Ooo •> H- <t •» »- _J X CO<_ILU •> h-Mll ~<h~ IS > < - -_JXC0C£ O r~-i C\J < a: _ior<o: Q ro rn uj 00 fM 00 h- uj O vs N». t-Qr-ICsJ<!X—JCO 0. t-H cc co •• » _j

«-* uj cocncOQ. »-XQi »-M ^Q. X'—CtTcQ »• r-«J • Z •• •» x: (\! a. •»

luc£ »• 00 —' »- v- «m—<coc<mjj * « ..UJUJ a. •• »-^r\jQ. ••>}• >—< z z •» < Ci

IOC ID CMr-IOOl. ••Q.DDU.-J'XCLCi: zz*c »-<occa: z> t—

1

h- • COhl-t CM Cii < h* 2: >--« »-0<0~3Uj<K »—OZ3'—iK- t-cQ •> < s: a: CO LU u_

< 1 00 co y— •-CMX'-icnh- *--)CCh-Ci 21 CC CO UJ LL Z> m 1— —

*

1—

<

i£ CO _li—r~i —4 ^.-cujorxsictiouja- *a:u-iy <MM^c20Ja: <

••oom o:c0mowni-nju"3Onj OCT-00 HfOlflH^-H^C^Hz < r-l IQC "3h <000 OOOOO O ^" r~iO OyJ CJ -.O >-l '-> >-l CO r-«OluDO h- CO CD "s.^ Q^^OOOOO t— 10 ltim 2: tTi in u°i it. or> unu^mm in

>ZZ < *iZ Z zzzzz ^stmmLnif^Ln 00 OUJ<< D O O 00000 *• cr»—*l—KK- hHhHhHhhl-l-00 •> -IS 21 5: sis: s:m *OOODOOO -iZZZ II ZZ^.zzzzzzz

(v:o ^ <5I 21 2: 2: szszs: -«•<<<<<<< II

aotn O uju a uuaoo LUUJUJJJllJUJLU CLO-Ql'SLCCcCCi'.CCCCCLCCCCCCCCCCh- 1 O ao oouoo ccccccaia-ccu.'x'- q.o_clljQ-ixq.o-o.q.q. 0.0.0.<Orl _J t-KMrOvt t-HCMO0C"(\J CO *o

00000000 000

oCM

92

Page 188: Performance analysis of a turbo-type energy ... - CORE
Page 189: Performance analysis of a turbo-type energy ... - CORE

oo

X

m - 00o ZTcOt—« O-X »—1 »-

Q. l-X*»«* •» <00— •"».—» •• 1- -CO - - X 0-fO CMOOCO 00< OCQ t~ CO

->• oo- _l.- - odcds: <: »•

Orx~.m . o 5IXCD f*- — r- «>_J oco>»£ OKXIU Om m ZsO'OD z-•-co — •> •*— sf"

X r-< »•— — — ••Or-eoxcMOx CM-•— mococr* •*

«—» — »"r—lvj-»—H •• zx- rnx »-oo- Oco

eor-- - - cm »—1 •»

v»i .-O f t-O H-• - xxx- <ro-*tccoo - Ko

• XO * -X 00-oo r-x — - o> --. -

t-O-XCMOO COKXo - _jr-oco- • <co Zlu c\j< -ro_j.-t in #- O—i en- - o_io •—too- —

i

^ »-0-- - - LLf-CM h-•-^. » XO »• •» •> ->—<o <^m t-vt- xxx inx- MUJt-tX • -OOcO • LU » p-H

—iroi— •• x •- »• - — tr\ x _J«•». O »• •-CMCO- — — mH2cC «5

co o- - < «-rsjo:z • LLO - l-H

• «~ ii r-ii— - ocoo CO -_J- —. 1-—oro cGuju_r-oo HCflLLHrO >--!

fOr-i • uj^ coo a: -j 1-1 u. •> • z•U-O h- - - •» - - w^O -- O •—

«

O •"•—I <£ — •••.»•«-•. -r—IX »-<r-HlT\LL GXXXXXX ITi LL C X LLu_ ev?-- - r— mco^oom —cog.—i^-vO

in *.-< HOOOOOOO 00000Hir^imiiiii xxxxxfOMtflHHHHHH-lr-IH «—Ii—It—!.—If—

1

HHHHI-l-hhl-HI-h l-HI-l-l-<<<<<<<<<<<< <<<<<ssrsszssssss sissss:altrQiC^alOOOOOOO 00000oouooooocaoo OOODUIJL.LLU-U.U_U-U_LLU-U.U-U_-^LLLLLLLLLL

r-H #cro OCH *

cooo'-|N r-Hrn-j-ir\vOr^t-H m <r iri in *

O^^lTkOOlTl^-l^-lrHr-li-^fNJ cNiminmin #sf inm ir\Lnir\mir\in mm *

Xu2•—

1

00COr-

Xz: .

t-H

OCO»•

X2:»—

I

4-

•>

Xeg «fr

z. <l-H rvix

CD ro <ro.— O H--J

CM •O UJ<X • CO

•J- OO #00 zrm « coco

Ilia] •* M\ • i-Htil

OOOO CM C\Jv£) •OCQ<ZZ2CQ o--j O CO # }?mmmS en -st COr-! • •

<\jc\jc\ix Ihh t-i^O jOOOO f O • • s CO 00«- *-* Z • fNJ Zmo <£ i-l 1—1 r-H CMcm cm cm -i •-<# r-<>i v.v.ac'0.0 0.0 n-( -I 9-Hr O vj" >3" f-l \0 vO t-t

m^oca OO • •CM00CM<ir-< »r-(r-(0

C\J

CMCMCMOOOO^rv;«xSOOOOOcD •• -OX(MCMOCC<X cr0sf<t-V»«-ir'"i>d'CO v0>—i&r-1 co< "H i-H -;? 01— ore <—1<—1 »

000 11 11 11 11 11 iMomin 2:svk rMccuj_j 11 • »r-i

mmmm 11 2.hMu.'sc< 11 p".mII II II IIXXXXXX OOOOO sf II

UOUUUOI-I-I-I-X COCO II II CvK II II

cM<NfMCMZ-z:z:.Z2i:z:.zz2:2i< 11 11 11 <x »h

OOOOH-»~1 K-1 ^H >-Hr-.HH f-. >-.KH5: II II CvJxM-aCCCQOf-HrOvj-o»-<cMrn«j-ooooooo^-S:—tcMOooccKU-i-J'-incMoooccoooococQa.o_Q.a.(_)00ococc<<co<co<o

000

93

Page 190: Performance analysis of a turbo-type energy ... - CORE
Page 191: Performance analysis of a turbo-type energy ... - CORE

O oo*- zu. o

—I

z <I- UJz> \-

c -<CLCO UJ i-h

X> X XOO J- Q.

z. -z. —O CD

Q UJ 5<£

UJ CO >vOO r-l

D O CO» K X.

win ^0COr-* Z

UJ ^,5f

_ILU > —

m

(M_JC£ »—

<

ro • K-t-O o •m *3rO COr-« CM—

i

Lb .-ILL. CCOLL a: u. «* r-l

Z < M> Of<5I • 00 wO oo oo^-«

LU<X a: »—

1

1

q:ll UJ UJU-i CO a:o —»xoo s; LUC? <r

UJ x> sen <DU) z *— OO XLUoO in O-K O-MO 00 * _l>-t_J Q tt ujujo <_J _J CM UUlf) w-

<o O a: Z.Z zmZ z •^ ujujo <(_-, i-iO o > * cccc\- Ht-<0 11 II C\J • UJ -»x UJLU *zz NJMCMi-* a: (M< LLU-O nJ"

-^ -UJ »—'HH * s: UJLUO coCM~» CD O 1 UJ « s: cct: x:cCrf)U) —

«

K X xo «— i—

i

^—CO r-4QL»-<UJ in-* O H < U1UJ X «—.*— rHr-<

a: a:<f x (MOO « z:# xxo • Q. CD CO(Moom 1 ccac\~ • •Ocj u, s: iLL.LLI--I— e 1—It—t ^ZCOCCcOCC | CO <^> !"< t—

i

o Ou-ujuj- - o UJ XX *:<.•-*

CMCM CX-CM e ot-Hu. -»# -riuQCa: •»' K Q.O. -JKCO

ct:o:-><-cQQ:^-irHa:o ft ftoa: oomminm # ct2n:xx • < STwrovf \-m-ww UJLU CO UJ 4r * # *- OaiQO'JJvQI— CO —

)

WW <Z 1

QCC£eMCMC\j^V*LLoO JO • •—'M O -R-•« # # XOQ-H- - -O com O h-<

*v^ a: cc cc r\i roo uj ft ft UJaC»-H -JOOOOOaTK •• ««oo • rH< o QioO LUl~f-<• ftNf-Q-i/ocia: o Z -J <X • ft • e i—

<

UlTiXI CO O _J LULU i-i cm ino —«< <f-li-l(XcQC0Q:tOUJ_J cCcC • II < >OOOOI II f-lr~«f"*rHI-l O II -t < enex: OOII »-

CDCOX< CD CO UJ t—lr-tr-ir-1 Q. s3-<r~~i • II o zz OOCJC31

|| || LU

II II II II II _)>0>-"-H rvirvic£ -J LLU. hi-a a roo UJLU LULULULU CD

II II < CCcC »—1»—

1

< II II II II II LULUHh-<< ft r-4<|- II II i—4i—

t

m-j-mcMcn ~>z li ww— -i II(—

<

<X aLZZZZ— O IK X _J~l_J_JC0< II

oc c£ «: c£ a: a: oo hh < l-QiOOO_J •—<C£Z2'i—ii—'C£0C II 1— O.Q C£oO JJJJZH(\j cm -j- oo oo o: Oi UJ<M U- U, LL UJM »-l LU LU UJLLIXO O Oi CCO O LL (XOOUJ_JO LULU <<<<<uja:cd cc a: co cd<<x i— •—•»—• hh t—tci:*-

1

Za:a:a:a:ai— o.Q.o.u.LLH-1 t—it—iCD«l ccta: UUUUHtCHKCD •—

«

«o

CMf-lf-H

*

CMoen

OO oo o ooo o

94

Page 192: Performance analysis of a turbo-type energy ... - CORE
Page 193: Performance analysis of a turbo-type energy ... - CORE

CD

CMCD*!.

>t—i

Xcm

O— X<— O-OCM (Ml/)< — +*-< ZH- m O inLU «-»<! MO *-4 "SI •—

<

CO hi XH h- O C—

»

<Q_ Q. < sO^O • *z t--J ^O -J -o^ohh a: oc< UJ< «^0 O ID r-lr-ivfv}- Z) M-f

»— CD •• O S CM O ^4-r-Hi-H < Cj

-M- »sT t-H *-.—

.

r-( _J .—IrH • • |— *>

»-h r\i< r-t O < • »mm •* c<^ cl

X <X »-iir> O O rorOfn^v.^sO iu X -J

D. hO. O IO hh <SSO «Mr-< Z> C <— LLI_) h- Q-O UJ 3 <-<X toeO-J-^ O _J -J

fro CD< t-H O —JO O — <nooncOHH a: <" lu< »••- XO I • I—O —I h-JXCOCOH • • O O Q

•Zco ccw) ex. <s> O Z> u. •-< uj<r-irH^ rnm h- *• ••~<<r0 alec i-h 0~~ X CD | *#<<-*SS »> H H-wt— < <<; O — X • Q D- | vfhO. • e -< < U~•8- w * »• 2 O-LD >-0 2 fM<UJJHMoO X H- CD

Z>2! J CClS) >-< . r-l *-_l I— (\J < — <XcD<<<CO0O Q. UJ _J

5I< UJUJ I— #11; 0"- t— Q UhlHH »• CO UJ<H-cn eta: < </) i/i i •-' u_ • \— 1-* uu _j ijj lu u_( a. ^ o oh-<< «-^«— corviro uj uj lu •-< t/)h- <h-»-« Z> coo co <iOO co _J # •«• •« •» •UJ X COCOCMrMr-ICM— t— O X CDOO rHOOOXLO D- OTM < QO^f-IC\l(NjrOLfiCO

II fX *-*(-. UJU-UJClH-4 • O-in <LU eQ-CM h- UlcOII II II II II CC COO CT>MO •—<•—: CMOII _J OOOOQOI cm H + O C2f II

>-< >-< ro c\j ra ro rO ro rn ro

fO< UJUJLUUJUJUJQ. ^ || || ^||0 O |» UJHQ-)— Q-r-tfOCO< CM O •— Ixi I- LU_JLU_J<X II II I— I— K- J— i— i— I— H<xn ii m i—

<

i »—

t

« oh- h- ^-o a:_jco<:o<i~a. zzi^srxszzZa I f I I I || MH 00 II >~<0 Z)_J-J—1—1 -J UJ_JCr;(/)MH t—^H *--.(-! I—MH<_)</> (XiyO<<!:<<< U_ XO LULL LLXO < < UJ UJ UJ JJ CD < •-< •-( c£ 0T CrC OC C£ DC CC CC\—<.>— >->-ouuuu h-i^cxo h-i-H i<i mcl 1-uDDQDDUQoaaaaQ.aaa.

o #»• O ^ * -K- O

O * O r-t # -K- cm

o ooo o o u ooo

95

Page 194: Performance analysis of a turbo-type energy ... - CORE
Page 195: Performance analysis of a turbo-type energy ... - CORE

Xo »--

r-t _1

•« _j oom t-i »—1

CC oo •_3- a •< X1- —

o

m X» T-l

t» rH_J -X -~i-HLU-o „ »-a: •—

toa.t^

-D—1 _J00 UJa. cc

•» tN

-j _j z>o 2: LU•» < O-

__> \~ *•

O UJ 00#• ft UJ

00 3 a.>- 2: »-

»> < a:cc K UJ>- U.l cc• •* •»

C\JC*f\IQr<~lOOOhOrorommro

(-hhht-Z2ZZZ—<—1 t-H t—1 HH

QiC^QCQCOia-a.CLa.a_

o

« > H-<rMQ.Xuj ••oot—i*-> a.

c\jo ro» - »•< —• o. r-< »oxino xluo< 00Hh - -HCCr-ll— f—u_- r5r-4» -_i 2:.. .. t_> *- •>- UJ -Urnx - - XrOQ -«•o •>_ic\i<r- t_i

tOi—

«

X2J-HX •" •-1

r-4 •» f0< »>D-X U_

U_. r-«h-- -JCn la-

in «»-« »-ujoo<: ujCM C\JX - - UJ«» •• o

eO, 00 o. •— OO in- >x- x<y— r-i •> •• t-n c«i—1|— 00

LLX HXHUJ 00o »-o x »-c\i «-co aO \T r*«-»—-CO" tH» <— _)

• r-roi4">r-i_D »-i-H<rnITi _• • «-21» <t- elS

r-< .— -h mm- <o_>— _ju~\CJ• u_ __: r-i t-h a: 1— u__uuj-h_jO X •- LLUJ>-UJa:cCQU-LL

< in- sj- <-_•--«- cv-#2: 2; >-.•.-•.;....»........O 2: »»xxxxxxxxxx

x_t O X^rnoivor<"iir\c\joc\jo<iuj cCi-t^-ii-t(\if\jf\)(\j^t-Hro

21 -TO « .•.•...•...•.•.•.i.t.ujujs: -( uj __« 00030 oDDO+I -J IIIIIIIIIII2—I O. • 1—tt—It—tr-Hr-Hi—4.—1^-<»—Si—I r-H

0< II 31 5: -_-wwww__.-_-w»_-w~_-2> O II -HO I—Khh-i-hh-KhhH_i_joiioiiw 2:2:2:2:5:2:2:5:2:2:2:0._j_j_i i-h 0:0:0:0:0:0:0:0:0:0:0:00<<l_j2.x_«-u~ oodoooocoooi-zOOQOO. «-h U_LLU-U.U_U.U_U_U_U_U-.00UJ

tj'OfNimoo CNjrooncroooo^OH^HN(NiromromO'-ir-Hrorofo

mrnro

__| - CC *• —qcd - •s.'coa:coro _ii-H»-icr:cQ

21< UlIWD_» .-oo __:__. co _j»-cQ_G_D<4" •»•»•

_Di-h »-(_)Xa:<Mooocacc »-<a.o:a_CD »-CDO0 •»«—:0O_J2:0 ->-^XCD_J_jh-<co »-x a. •• ••

Xvfaiz »-m_jooa-O-rof-o-.oCO • »-XO^t_Q_i _j ca 00 <r cc 2"

_j2_c\ia: •'CC »—

1

••<co<m ».>j-

QCh- » Iil-DcoujnJ-o:2:~')c\jo_D ^<o:(Njooct:cD MJDKK -2: HH2!Ql •-< «-n_) •»

_i<-J'-h »-5:o: «• cc<h-<Xi-HO(M_l r^i

ouj »-a.xooo:< 2-J2: m »-2:co »-q 0:<ro<_jc\i cos: M2JlI-JIS:r-< 0: -••O: O- O:< _D r-H _J h--J z>

_D «_! • »-ooc_: •> 000: —7

<-i-<D"iO ••-_> >-(- sQCO »-UJX »-Z5< OO 2:2; -_:r\j0:2:^2:0 —>< »•< _^i t-2: rH ». ^_jffixoox2:oo< f-H—

-

CJ».coa.ujovt-co_j — CM o:3_<:_jci_ iq: •- Mr-H *.-

_i •»<! »-vi-cQcn5: a:— t—t

»-(\j »-o:x * «-o X_J X00 ca -huj 2: <J- c\) _j 0: a.w_.<Q:rrilc.uj ~-x •«•

•• -x i_:c.o --1 »• CO0: i-h a. _i m co --»_-- CD»—<ca_ji—< »-x •"__: -CM _<:

••_<: <t uo^ cc cmO ChfH *vv^- •> »-a x ••a: •• «_»w- r\j

CDv}-CM SrOsJO'—l M_J CD

__: cc < _d <mx or. r>< >-> _<:^hIS »-<h~ ^:-

rooouJoo<_H\i<\il— uj w r<"i

1—

1

ccoicQa. «-xr_ -m __: Cf

CD* __:«.». «-«-hcoo"iuj •> UJuJ r\j

O z> ••oo^HooX »-o'. r;_D __-"?: a: cCUJ UJ csjo:<»-'2:--i «-o<o-o<< ft

cc CO »-h- (MlHC'.l- »--5H-0 00UJ _:hujc_is:q:o-j-- ujs: CD2: c »(_-.i-iOM(M(-MO"3NJ *-

t-H 2 ^H XO. -J •

K < CD CD V.^v CM

=> __:2 2 ZZ..Z_j OODO II

0: -JS 2: 2:^:2:2:CO <2Z 2! SZ-SS _D__> 00 LUO U uuua UJ00 Q

2: f—l(\Jf*>vf <-Hf\J

ouou DC

o 000

96

Page 196: Performance analysis of a turbo-type energy ... - CORE
Page 197: Performance analysis of a turbo-type energy ... - CORE

Z>QCDs;_ift

ocCDZ>_l-ft

—inr> •— LU

LU— X>cnc\K

0>—'UjMU.NU- -ft

II oII •

CM23D oc<Q n x>KCD I—QLU21X>UJ2N_JOCtLU

UJoc

uCO

CM UJ

O I-o <

LU

Z>OCl'

Gj

CO

IDO<

ft

ft

ft

•ft

_j a: •• •>

oco »-2:ma:corn _it-j>-<a:cQ2T< 1>IIWD—i »-co »-5:a.co_j••CDcDZXf" »••.•»

oooa: •»<a.a:cDCO CDC/) »-t-tOO-J2:0 «->-<i-xco_j_j>—co la »•>X<fa:2: ro_jcoa. o-mh-^oto »- •• »»xcj-j-cq-j-jcoco<oc£2:—jscmo: a: ••-;

»-<TcD<trO ••vj' •*

cCK • ISaDcoujvi-QCsr^cxjoID •-<o:c\jcoc£co m_OX<X< -51 *-

*-2Jcx »•< »-m_J •>

_i<_iM »-2'a: ••

<i-<x^z>cm-jouj »-a_x</>a:<t:

<0<_jcm ••cms:jiiLuis:ii<

Z> »-_j »• »-coa: .<^<z>.-«o -Z)Qco •lux •0<r^r^cvrvrs-rH^T-.< < -vfX -2

»-CO D_ UJ t_j >J- CD _J

^ ..< »-v^ajC32:•-CM t»c^X •* »-0i/)coc-HUJ5:vrcM-J*-•^< ct: f<")X Q- LU•• *X ISttQ

CCr~*Cx. _JO<"OCO ••

(-Haj_j»-. ^x ••SI

•-ii<oomcorMO«*- •• »-q,x «-ot »•

CD vt cm »-2:m sj- CC -J^ en< Z> CMX C£ Z><•> ^his »-<:h-

CO (T) UJCOO CM CM l~ LU(DcnCDD. »-Xcn "-M^ >- •> *T-*carOLU •»

cMrHooX »>cxrj3U--5C!c:a:ct;cMa:<cmcx:<^-<5:'-< »-o<i. 0-3 <<>(• 0^1—CD .-H- r-CvjXr-ifXI— •""->»— Odi>-<OUJi£ 1-1 LU OC X 51 CX OLLI a. «-LU5:cOUL»-HVl••Or-CQ^OCMfNII—MO ~5^J —'-ft U--ft

i-H XOi -3 • II IT\

CO CD *v^CM II •

*:z 2 2222 CM2o o OOOO II _)_J or

-is 2: 2:2:2:2: o< 11 z><s: 2: 2: 2:2: 2: _i cot- 1-0luo O OUl_»olu5:lu_iuj2cno o uoooct-JNUiiuu

r-lCMm*4" r-lCM

a:m2_J-ocM2a: -i-_JZ)00 ens>-i—

v

cos:—>-o ^Ji-« »•)( Qr-l«— CM CD^"CMQC: S*

r>li-t# -Jct*- 1-<

XJI ft

fcno.—.X-K- 1/3

,H «.,—( CDr-t-~cn -i-CM^ _J

O^i-^*^«^-^CM -*!

NJ_JCD>>-i^— LO

ft —1 e

SSHU.I'^ o.cn_j +LUUJCM— 1JJ_J Xo

LU

LU

Z)aQiCD

CO

UJCD<COco<

ocLU

o

LUXh-

QLL

OO

o2<

<LU

<aCO

COQ

LL

_J »• OC + -qco •• »-5:rocncoro _ii-)>-<ct: cd5I< UII^D_j »-oo «-2:q,co_i••cOcD3<t' »>•••

Z>--< »-oxcf:cMcoOcoct: f<.txcccoCQ ..COCO K-.CO-J510 ^>-^XCD_J

l>—<CD »-XCX •• ••

•-x^cts: »~rO_jcocuO-roi— cr:QCD •> »-IO^CO_j_jcoi/3<OQi:2:—l2:CMcj£ t-OC r._|

»-<i.co<lro «-nJ- *OTh- »• IZKDCO UJ >* OC 5! 3 CMDZ> »-<or CMcocnco_IX>X<X< -2:••2:0. •< »-ro_i_i<_im *-s:ct: ••

<K-<:x<-<Z3c\i_jOlu diwa'<21 ^ro »-2:cd Q<0<-JfM *-c\J2I

jiiujis:q.'<"Or: ex oc< x> --•—

I

X) »-_j ». »-c/)ai ••

<<J-<Z>—'O t-X)

QCD »-UJX -Z><21 i^ cm cf.

2' .-1 >_: O< »< -vTX -i._j ro x cox 2: 00<••COClLUOvJ-cD—IDyja" »-x c •>

2 »•< *-4-cOC02:cm »-cnX * »>0

COC0^-iUJ5:^"CM_Jh-^<o:(<ixq:jj•• »-x -x:iiciQ

Ct!--tQ lOCOCD •-

mHJjh »-X »"2I

»-^<:cor^cn(MO•J" »• "-Q-X *-CY. -CGvJ-CM »-2:r^sJ-Qr'-J

i^ci<XCMXcrx<

ro ro lu 00o cm cmk luco or coo. •lac »-m ^iei •. »• Vf-HdjrOLU »•^Njr-icox <-o:3Dll-)NCC<>-(2;h »-0<0~3CO »|— »-CMX<-<fv:t— »-~5

^i-iLucc:x2;cnoujCLQC COmO CM CM I—Mo "^

CQ^2o

-J2I<s:LULJ

XCjlCO2O2!21a

r-fCMCO-d" •

22002:2:2:2uu00

«<M

*ft

•ft

OOO

97

Page 198: Performance analysis of a turbo-type energy ... - CORE
Page 199: Performance analysis of a turbo-type energy ... - CORE

_i •> cc - - _j »• oc: •• ».

oca sma: Qco •• simcccom _ii-4»-ici:cQ corr. >jr-<»-<Q:cos:< uiiwd 5I<I HJXIVO_i ^(/) sza.co.j -J ••oO •-2"Q.cO_)*-C0cOZ>vf •»•»•» cocdOvJ •-»•».

DH .-OXOCfMOO Xl'-H M_>XC£CM00Ocoa: <Clqc:c0 Qcoor: »-<clq:coCO ••COoO »-i—<00_l CO »-COo0 »-»—ioO_l5IO >^-XC0_l so *->-^-xco_j_Ji-icO -TCl. - - «j»-iro »ia •• •-

I-taS t.ro_j x^ois: »-ro_jooo. O-rOI— cCO ^» waoni-acCD f i XQ'J'CO CM CO »• »-IO^cD_j_jcooo<oo:2: CO _)_icooo<ioa:5:

• -jsccmo: »-a: —

i

00 ^ -JZcocii -cc »-_j

OO -<LCCK.cC) ».«J- «. LU * •«! co <r ro ••^- •UJ CxTI- »• -X5ZQCZ3 3 CrTh- •• IStfDo coLu<t-a::2:z>cMO >J •—

4

CDLUvj-OiSIZJCMQ< 3 «-<a:r\3ooQrcQ < X r) •-<ct: cm 00 cc cc00 JDKK -31 > a _ox<x< sOO sro- < *-co_i «-» 2 a. »•<: ro_j< _J<_J»-i -SiCC - LU v. _!<._)•—1 *»5ICL »•

CL <l— <X^iZ5C\J_Jolu «-a.xooQi< Z) a: •

<I-<IHDNJolu aiooo:<

cc 3s. »-rO ^21 CO -C> _J CO 00 2: p'i »-2:cq -aLU <o<—km »-t\j3: D r) > <o<-jcm »-cvs:Q. JIIUJI2££< 00 _j JIIuJIXa:<O. a:aci:<z>r-H_i CO »-olQ.q:<D'-h—

j

Z> Z> -—) -<y)cc < * 2: Z) •>—J » ••OOQi »•

LU <vj-<Z3^0 »o < <:>r<r)r-<(_) ».dZ5 LU OCO »-UJX *-Z>< CD «~ oca fiui fD<r_J X T^(Mrv<v < -r» r~> Z ^~ CC. TVNO'SH7Q< H- < < »-^X "3E t—< CM > <t »-< »-n3"X «-21

> *fr —jmxooxsoo< ~Z CD -~ _jc<'ixo')X2:oo<CQ or »>coo_uJo>taj-J O CO CM 00 CCCLLUO>tCC_J

UJ ^ o Z)^_i:£ »-xa: t—< CO O K z>v:_jc^ »-xai »>

h- ^ LL Z ».< »-nJ-cqcos 00 CO Z Z Z -<. *-<t-coc02;r> oo cm -c£X »-0 00 ^*» < LU cm »-q:x t-o_J CO i—

i

ooco^hujs:^-(M_i < z p» »-« 00 co f-i ai 5: ^- cm _JO -J oo t-i ^< 0l ro x cC lu <t ft O -<^i<ii.f<,.Xci:ujOO _J a »x "i5;a:o > K O -H • "X »-X^-COCO -ft or«-ta._joroco *• CO * z LL cC'-'O lOrocO< -^ -. o H-.aj_j_ „x --£. —1 »-. < LL ^-iCQ_Jfc-. t-X »"X

vt-JCM 2 -i£< oo ro CO CMO 00 X CM r> LU ^i<o^rocDrv;01— <<«- < 4" *-CL X •• Q£ •» z a.3)<- Ct O >^" •• clX -cc -z— <o-k- co *4r cm «-s: ro <*- a: _j <* < O cOvtfM ••>:msj-nr_jz>>t<2:-j •• ^oi<Z)r\jXar=)< »—<•-• + 03 » ya<DNio:D<o<:<<2: < •» •>!— ~X2I »-<h- 00CM 215: LU V) «> cHMIS c<h-UI-J< h- CO fC) LU 00O CM CM h- LU <a: •<< a: 00 r<i ro lu c/) c^J cm l~ aOO.Z H- >o LU coarcca. la: »>m V Cth-HJH —

CO ZC CC Q. XCt. »»M<_J< » UJ X sC - *• «-.—i cO rOuj •« ^ QLLlw LU _l ?jC ». - -r-ICCC^UJ »<(_ w o *• CMr-SOOX (iDOU. —> LLCQ-^ |

>»* CO CMr-fLoX c:z>XJiLo«--«- o » LU < tMQC<wS:'-' »-c?<o~j LL. 1

t—

1

LU CMc£<t-'Sr.<-< ^0<0HWU. • Q en -\~ »-cMX»-<ct:H- »< —> C00OC X CO •!— r-CVlX—ICI-zmo^o LU CO ^.^ujccjz^cccdvjCl. %* -z.ee.1— *o LU H i«i r-; lu ou x s: a:O uj a.»—i<t • z s: -CC CO *-*O CM CNJ h-MO "3 !-<< l-< • CXCO'-HLJCMCVH-MO

II II rH >-* < i-i io: ~"> h- •II r-( z 00 1-1 XCL"O II h- _j CO CO 2 II II LU CO COz _i_j ii 2: z> ^2r z zz 3 D II z 1—

1

K ^z: zr zf-lvJ-<S CC o 00 o o cc DCs.IO a. H < c c^<o<_in a. a -is: 2: 5: s: ocqos: Z5Z) O _J -J 5: 2: 2;<<s:h-»-'KO CO z <s: 5: re 5: occ)S< H-!»-Q Z Z> <s 5; 2:h-<<LU0OLU2 ZD >—

i

LUO CJ uo <co<h-oouj^: 3 O LUU O O<_J O-CCLU OO a. QiO O OO lO-JLUQ-IXUJ LL _i ecu

# rHCMrO-4" r-lCM # < r-ICMrOvJ" r-fCM

# # « O# * ** # *«•

•fr«

o UU<J> «.JO OOO

98

Page 200: Performance analysis of a turbo-type energy ... - CORE
Page 201: Performance analysis of a turbo-type energy ... - CORE

LUX_l<>UJ

incm•

•-«UJ#CD—_JUJlucXOSI in••«

o#CO •

r-«o

I

*«-

x

LOCMst-LUwCOO'-'CDS<2! • _!—<roiua'

I- I so<Xr-io# inoooo r-UZH00O

:£0<-ttcM •<wO • +-? *-Zc\!in-joi/x r-->h-CQ—I I O

-a ii o>—o ii •

ZZU || ZO'-i^ujii orSi^<CQ COXS<JJMM|-0OH-ujuji/oauiJZ'o ooo-luotlu

•ft

K-

#

Ol

orLU

UJ

za

or

oh-o

LU

X

u,oorUJco

x

i/>

o_loz>-

UJor

LUX

toLU

h-<_JXO_J<x

_i or •-

oca zma:corn __ii-<>-«cy co

_j </) *;£:a.cc_j•-CO CO ID vf * •> ••

ZDr-i -OXcC CMC/)oca or *-<o_orcaco »-cooo »-i—ii/)_i

SIO «->-vtXCQ_j_j>_co »ia •-

x^ors: ro_iLoo-<>-m^_orQCO *- t- »-X O nJ" CO_j _j couo<o or :£-JScmqT -ac --J- <£ CO <. CO -vj' r.

a>- •- IJQ.'Dco uj vt or :rx cmoX> <c£CMooQrco_jxx<x< -s:*-2IO_ < "CO—I—I<I_J»—i -~s.ee »•

<h<I-«XCM,Jolu o_xlooc<Z *-ro »-2lco »-o<o<c_jcm .-cmie:

JXIUJISQf<»-Qro-Qr<r)^H_jx »-_i •> "LOGi<vt<x>-<o »o ujOcO »>ujx -x< xs:iTfMct:5:r-i^ro _j< <£ nJ-X »-5. <jffiiwis:w< >

CO O- UJ Ovt CO _lx^-j<x *-xor lu

Z •>< stcocos:cm orx »-o

ooca.-<ujs:<tcM_j-< ^r < or r^x or lu- -x xsioraoTr-!Q._JOrriCO_ca_j»_i „x :£m^oococccmO

•4" »-Q. X QT h-covMnj »>s:m>j-or-j z^or<xcMXo:x<i x

»i-hI5: <!— orOp^LUCOOCMCMH-LU CJcoorcoo- xor m i^oi>T <-Hcoroiu <CMr-ILOX cxxxu.-)

cMor <f-t?:r-i o<o-3CjCO (— cmX'HCTH -?h-^Tr-iujQixsroroLua ^2:

or CO -!O (\J CM H- ivl L_) ~3 »-<

xor -j

coco

o

LUOoro

oya

<(NJfO>4- : CM

OZZ2OOh

uu

CO

CO

CMX

X

CM<

X —oI/)

CO<

UJ— COZ!CM —

<# LO* O

I CM w<r

—i- sCVILU X<CQ-—X—LULOoT-^CMccO'-*c\ior'-'Ljcr-i;- orX-!S- ^ CO<(\l I CM *i— ro oro

LOUJ^H-Jt CMcoo-^5;-'<< -r- o *

><• in^- rnII CMCMh-iXor<->-.ex *x II

cmcooo. ~z.

co oror—I tt II II LUXlu ori-oQ^-iiMfoz:Lu^:<xxxujoruj

xO-

LUorzLU

o

oz:xLL

oro<

LUX

u_oorLUCO

</5

O- o

LUor

LUx

00LU

<_l

Xo<o

_i •• or ». .oco »• «-2iroorcom _J>-H—iGTcCs< »-OXXLOX_j .(/) «-^.Clc0_Icocox^ »•••>x^-i ^oxorcvji/)oco or »-<rcLct.coco *-cooo •-•—<00—

i

5IO ••>-'s|-XcO-J_J>-HCO ••XCL »• ••

•X n*-

CC >- -CT\ ,_J

i^0_<>-rni-ct:Oco •. •< ».xa>j-cQ_j_jcooo<[oct:5:jsicMar or »--j

ol\- - «-xs:a:xca lu >t or 2: x rv-*oX •< a: cm 00 cc co_IXX<X< -ZSO- »•< »-rO|_j

^<i_j^i t-sior »•

<h<X'-,3NJOLU ••0_XC0CX<[5: »-ro ^2; co »-o<o<_jcm »-fMS:_jxxLux^~or<*-uuCLQr<x.-'-j35 r-_J •» .(/)Or *.

<-t<x<-,o »-xoca "Lux *x<>:yfMa»za<l ••< "six "S.

»-coa.iiJostcQ_jX^T-Jo: »-xcx ••

Z »-<I «~ 4' UJ CD ii.

cm "orx »> »-o00 co 1—

1a ' zc sf cm _j*-»iT < o' rox or uj*» »-X "X^cxQOT^-iDL_lOrOCO "»-iCU_jk-, »>x "SIt.ii<lLOC^.corjO

vj- •" fO.X "QL »c0n}-cnj "SrOvTa;^0-<XCMXCXX». »• j_ >-* x 5. "<Irom a.' 00o c^i cm l—cc or coo. '-:cori<r t. ^ *.^4cornujK\i<-(oox »-orxcMor<t—>i^ »>oCC »-H- "CMXr-^or^t-nujorxsroro•-OT CO i~fO CM CM (—

r-( XCX"co

o-J 2:

LUOoro

co

o

icMrOvf

u

000 00 ouo

99

Page 202: Performance analysis of a turbo-type energy ... - CORE
Page 203: Performance analysis of a turbo-type energy ... - CORE

_J •- Qi •» * # -Joca -s-c^cc • Oca ••

com _j^-i>-'ct:ca <Nl coori _jK -OXXooX w 5I< «-0-J »-to »-5:q.cq_j »«v -J «-oo •COCGDvJ * •• • a: cocox)

X><-< «-OXaiC\J00 > ZDr-t «-0ocacx t-<a.cx:cD DCDQC »>

co »-cf)oo »-t-<LO_i t CO t-C000«— s:o ->-<!• xco_j ZO ••>-

CM CM _j»-tcr) »-xo_ •- •- «-» _J1-HC0 •X * ••x^tcuz: »-ro_j •X^a:v» K- ooa-<>-roi— a:0 »-. 1/JQ.Or-t — co ». ». *-xQnj*-cq C\J co •• •» »•

X cmc£

_j_jccito<iaarz:-jSLcNJOi «-c£ -—

1

K-

CM•ft

_J_JC0 00

+*

»-<co<ro *•>*- •cc\~ - -t.^cczd X

# <co<«•* CD LU <f CC 51 X <njQ ^^ CM colu^o:>J- <: X> <c£c\ioor£co CC x> -<.cc< o _OX<rx< -21 + JDKX LU •-£ a. -<. »-rf)_j K ••SO-o_ 2: _j<i_j»-h »-5:oi •• »-» -J<_lh-<_j a < h-< Xr-O (\J _J CM < <I-<X< —' qlu *-c_xoocc:<i -fr O Qlu ••a.«-» ^ s; *m »-2- co »-Ci t> LU s: »-rr> •«

i/) *— <o<_jcnj .-fMs: 51 <0<-Jo 1-4 uiiuji2a< rH O -JXXLUo X •>o:acj:<Z)^_i CO »— »-a:a-a:

«-« w 3 »._j •> ..coaC •« *: •v 3 »-_J »LU~- V.

1 <I vf<Z)--"0 »-Z) v. ^> <<fOX<4" —

~-» OcP LUX 0< fvl rn Pino »-UJ

_l< cnj >3- (NJ 5Z^r\:a:?"^?'o ~- CO X ^"^fMQ'.<X # CQ X •< «-<. »-»3-X *-5Z ^» ^ < •< •>

>Q- # i£ »» _iroxi/)X SIlo< «j- >-<1 -ICOXOO

_J —

»

"V »-C0Q.LUL_;vJ-ca.J < w» t- CCCULULU< »fr (NJ LU 3Ni_Ja: r-xor X ta« CM x^-jo:h-w < CD O z »•< •-^•cocos a -^•«- X 2 »-<c ••

DZ X m cm *-ct:x »• a —J— ro^> -»' ••cm «-ai_J< 0_.~ a- oo LOCOrHLUXvi-CM-J <CNlXCvj ooc0r-<ajOl- _im cm 1— i-«^<ia:n-)XDiuj «"«• -J> * LU ~.^<oi00 <(X CK Z - «-X -ISi^Q 2* .-•fr O *. »-xCD | — ^-DnJ- LU oCrHQ. _ioroco •» <—X— aCr-*CL--i

< oortrzc* -i H-.co_jt-H „x -s: HCV) «^rH OO hhC0_Ji—<

>

O I ^^ o •»i^'-lcorocO(\jO •« ac 1 or — \- »-i«r<ooh-CQ o •~f\J LU ^- • ».CLX »-Ctl •• -j»-i v\l-~ Z >J- +CL

_j 2ro «—' • evict: u. cOvt-oj ^5: m <)- cc —J siu:— Cl(NJ LU c0nJ-cm •«

< z>< # rH K-ct: u. ^a<Dwlo:D< <<-' CM'w^. »—

<

ica:<X)H O— <J-w K-CO LU •> hJ-HjS »<|— h-*-'< #

'

U) *- r»f— —

t

LU OZ <C>- CM-H- co o rOm UJ toO <Ni lNJ|— LU LU-if 1—*-'^- CM —

<

ro o~ lu 00M iiO< _JCM(-£ • cm o cocccoo. »»Xci: »-m ^CM • ^r (NILU-K- CN) r-\ LL cooccoa.

r. »-<t|— LUCt— (\J UJ is!L »- i- «-c-*COrOLU •• ^* C\l<* X C0(NJ< LL LU ~$£ •• »- ••

xu_-o w Oro *»- as CO »-c\)r-4i/)X »-ct; D ID lu -j •& ^ co | wXh- © LU •CMrH./)<O~?0(y) < (X 2. -is- LU LU <M CC< *-• 21 t-H »-O<U"0—

"V 2 1 LU LU O r\ia:<>-iH- ••-5H-CQ w*Off) h- CD «-f- *-,-\IXi-<CCt— »--3C£r-IV. •< co O CO «•!}— •>

UJQ- »-Z< lfk#X LU < ^rHLua'X2a:OLua ••<-• X(\Ji-Hh- ||— LU ^i-HLUct:

MO~"?t-» fMCNJ i—

<

z _J •• Ql CO t-HO i"vj (NJ (—Mo -j—» co to z. OO *0CcD>—

"J II CC<t •-< II»—

4

3 -H ICC -^co •^ II II hG »-H LU 1—1

O in •X H O co co o t—

1

iu H \~ co2ZZ«t cQOQ-U)Z X> _J ^2 "Z. ZZOwwH r-lS 2 3 < ^2OOh< ujq: O < a o oo xxcnj oc: O _J OSZ^J II II II a: x> ctl o -is: s: SI II ii ii s; SIX =) QC x> -j^:sisklu ZHD CO <s; 5; s:^ (NJfNJ< 1—Q CO <s:UOhO r-4C\JC<\LULUZ X> LUO O OCJ^-iromxx ui2T 3 _J LUOoo < XXX <XLU oo # CKU u ooxxxoco a'Lu 00 < CC(J>

CM # * t-ic\jr0vj- i-i(ni ft r-iCSi

# ** •*

* #* K-o o <*JHJ><J> OO UJ

100

Page 204: Performance analysis of a turbo-type energy ... - CORE
Page 205: Performance analysis of a turbo-type energy ... - CORE

inqC •• •» _J ». cC - - • _J »•

••2: coo: OcD •> flffia: R- OCD »r-O-iQCCC coco _ji-o-'cx:co CM COCO _JIIoOO 2< unao X s:< »<j2a.co_j _i »-oo «-2-a_aj_j # —i *(// »«j" •• •• ^ »-COcD3>i' •••.• 00 CO CODIcr: cm oo «» Dh »-oxa:(Nj(/) >- Dr-I ^O<o_a:co «-» ocoa: <cuoc:cd QCOCX ••

•-•—•00 I cm CO i*COO0 •->—100—J + co »-a:oo^ICD_J * 20 ->-^XCD-J 20 •->-

IQ. - * _J>—«cO »ID. •> • *-. _J>-hCD *2 »-co_J —« -j:<tccs. m—j *- I'd -a:coi-crTO co ooo-O-cot— a'O CM C/)Q.<j>-XOvl-cn CD CO ». . I04-

CQ * co *<*•*•

<oc£s: ^ CM _j_icDoo<ca:2: # CM _l_JCL.O0•-CX ••-J v. •ft- _j2:cmcx -cc *--J *» # _j5_CVCji

co ••Nj- •» CM * »-<iCD<tCO *>$• •» «— « <CO<I2DCD CO ,

»-» act- - «-X2:a:o CM —

.

aCK •- ••

socmo * C\J ajLUvto:s:z)fMO < CM coluvJ a:CM 00 ££ CO w CC ID <t a: cm 00 a: co H- a: z> o.o:x< ••s: w JDKK 51 LU -J3K< *»co_l # # SO. »-<t f(T|_J CO * 2.Q.2:0: »• 3 i<r i«—• »-s_a: •• ^-«» _J<_J»-'

*-»:r>c\j_i < <(-<IH3fv|_J z < <I-<IIoocr:< olu aiooo:< < O OLU »»Q.

2cD .-O + LU 2 CO »-2cD »-o ^» h- LU 2 «-C<t •>

cm «-cm2: 21 <o<_icm «~cms: CM * "Z. <o<_jI2cc:< »— O Jiiiuisa< * CM 3 JIIUJ<0-«-J CM w «-a:aQ:<3'-i-J #* 2: ^^* •0:0.0:»-ooa: r- * •^ 3 «-_j »- «-ooa: ^ ^** < v. O -_J -^0 »o •** «— <£vj-<I ir-lij »._/ ro*»- I . — <rvj-<r>x o< — -4 Oco »-uj.j: » 3 ^t Cu^~ Uj r-l QCQ »-LU

ZhZO CM X S^NQiSHZO CM— —

'

X syiNa:m-i »-5: < < •-< «-^-i »-5: 0C^ *~- <a »-<; ».

ISW< h- 1 _jroxooxs:c/;< w<1 _JCOX00

O-J-ca-J UJ »•CD O- LUO<" CD _• wX ••aac-Lu»-Xa: •• CD co r>^_ior: fioc: • a. — + M- o^-jq:

>cfCDCD5: w X ~z. »•< •vJ-COCDS: « _i CM X Z ••<£ •1 -0 ~Z w ••CM oil •• «-Q —

<

< «— •-CM *CC51^<M_» CM< 00cO—tLU2:<f(M_J ••*-'

1 oocO-^luroXaraj <h- u_ *— SC< CC COX 0- LU CM O0 LUCM LL. »-<i£.'<a.

XSc^Q |_w O •• "X IZCCQ "^O CO-}}. O *• »-x ••

OfOcO •» LU# arr-HCjL-JO^co »• —O *-# CC r-l O- _l

«-x *-s: coo 00 (-.cd_j»-i x -s: -«.»- ^>. z-~ 00 r-l0J_J^cOcocmo •—'»—

1

K- •"bi<00fOcCCMO CM^CM:<5co h- »-^;<tooX •'Qi »- ZOO z \J- »• •• Q. X •'CX •• «<—•« Kro Z >J- «^ »-Q_

2cOsi-cc_J •<0l LU cd^-cm t-s: CO 4-CC —I * -4" * K- ^ LU cr M-Cvj •-

C\JXC£ID< CMr-«- —1 ^CC<D(Ml0CD< <~ccz: ' «v. —

4

^a:<Z)I£ <!-- *S»* < O » ^HIS -<H- 00^5: CM CM O •> ».)..-(

OCVJCNJH- UJ l-ll-H-fr CO »—

1

C0 CO UJ 00O CM CM 1— LU •—'..'*».<: •X- CD hH COCMLJ00»-X0i »»M ^ XX r—

1

•a. cDniccO- *3Zcc -t^i i^w^H-<t i^ C^ LL CC CC 03 0.

»-<cdcouj *ft CM*- -IS- • UJ IL i^ •. •. •..—IcDCOLl) » »-00 CC LUXw Q LL ^ » •> »>

X (X7J3U-~> # oo<m O LU cMr-toox o:ddu.-oO^^ i- <-» O LU »-CM<—loO

S!r-« «-o<t_j-> •K-—<h->v UJ O CM(X<t-«^.i-" »-C?<LJ -50— -> row LU O (Ma:<»-<cmx<-icch •O .— OOOOr-i O CO »-|— KMlHOiK ")"* '-'iX* O CO r-l— •»

XScXOLUCL ffiaax LU i^^LUQiXIL'oiCLUQ. - | vfXO'-l UJ i»ii~iuJCr:

OC\l<M|— MO~> Q£ Z 00 ••Ct COt-iLJtMtMH-^vIo-? «ci X z 00 •'Ci^cO'—

XQT -i CM II II II-« LU ^ XCX ~3^HlM II II II

1—4 LU r-t

CD CC 1- 1— CO CO *~cc H H- CO

Z ZZ wfcicocoz 3 < i^Z z ZZ-v-<(^^Z 3 < ^CZLO OO Ilia: O _l 00 ilia: O -J O51 22: II 2:2:5:3 CC O -15: 5: SIS: 1! II 2SEO a: D -JZ2 sis: c\J cnJ r\j t—Q CD O <s: s 5:5: rororOh-O CO O <sO l_)0 HIIIUJZ 3 _J LUO O OOHNIXIiL'Z 3 _J LUOO uu XOCD<tHUJ 00 < a:o uoxxoco<o.lu 00 < oro

ro<f- r-icM O •-ICMCO^ r-<CM O r-)CM

000 000

101

Page 206: Performance analysis of a turbo-type energy ... - CORE
Page 207: Performance analysis of a turbo-type energy ... - CORE

CC - - _j » a: •- » tsmo: Oco •• "-siroct: \—

*

f—IHHQdCQ com _j>-(>-<a:cr> XIIcOD x< cuiiw: axaco_j -J »-00 »2CQ.C0—

i

St" •> * 4» rC0cD3'4' •••••- a.icrrxjoo *— Z><~i «»LDlo£r\joo<clq:co —• QcQDi »-<:a.Gi;co•.4—4 00—

1

CM CD •-COOO •-!—1 00 J LU^ICO_l tt SIO -XXCO-J 3la *

•Jr4—

1

_j>-ico >ia •• •• -Ix •>m_i .-( X I>tci:x •.rn_i <cot-oca X 0. ooo.<t>-rOh-a:Ci >xo-4-cq *-* CO . •- •XGKfcD<oc£X * CD -J _JCDoO< c£ 2. 3•-cc »-_j _J Z -JXcmo; -qc »._j LU

ro »->t •• l-H »—

4

•<lco<co *•>!- •• ZIIOCD uo z c£\- - »-IXci:3X3c\ia 0. 1—4 couj->r!XX3CMo UJCM 00 o£ CO 2: 3 «-<o;cMooci:cf] XK *X + a: _I3I<1I< -2 h-< «-ro_i UJ -ZLCl «-<t «-m_J•2 a: »• »— \- _J<_Jt-' ••ila: •• O •

--<3cm_j CM UJ <H-<l4-<3CM_J 0. _lXooor< *- ouj aiwci<r. LU UJ5: CO »-o * 2: »-m »-xco «-o LJr-^r-trH (—4

f\j t-c\jX *— Z <0<-JfM -<NI2; QUI >-—IX(X< l-H »—

<

JIIaJIEo:< <xxx jr<3r-<-J CO »a:o.a:oi-<_j vi-vj-st OD••1/5 OCt •» *: Q. 3 *--J •> ••cooc •> 3III h-00HO »-3 \ UJ <si <rD-"wv »0 nij(n< t.J

X -3< cm H QcD »>UJX »-3< Zs;hzd CO 00 2:bif\iCri"r-42 1 1 1 UJ#2S4-1 -X * < r-< -M- X -2: UJ > 33ISW< — Z _jm X toX 2:000: ac"<J-^f>i- -JXo'joOOvd-CD—

I

<» O •-co a. lu o-J- co _ 1 <III C3<< in10: K (—4 D^Ja "la: - XXX OO OO A" >.- r-H

4-cocox _J K z -< «-vfcocDs: oororom <oo cMinX •• o O <T »-c\j »-q:x - -0 mill 3T-K- • e OX<t-CM—

1

cc O0CDr-4LU5:-4-<NJ_J zoco< OOCMCNJ hOOI-roxor.Lu *•» UJ ~(^<iDiroxQ:uj t-H X »—

w

OHhixaro #"^ # H *• -x r-xxoca h- 1 1 | <s- O OCDCCiCO »• •4- *— —4 CCi-iajOf^iCD e- •D 00 V.N. ccooox ••x < CM h-iCU_j>—( «»x ••2: Ocorom M

1 <~— LDOcococmo X •K- _J •~i<;<oorr!Xlc\ja a'lll —h-K ccr —X fOC •> Q. •ft < <- *. »-clX «-ai «~ CQ222 2CMOC LU*— -^X co >*- cf _i _J *— z covj-ovj »•2:^x1 a'—

1

ID CM CM CM -:.- a. 00CMXa:D< < 1-1 —4 ^cc<D(miq:^< OOXXX t-< -Jf- Cd cc OO • •

II -<.\~ w ct: 00 U_ * *•!— •—<X2 »-<r 1

OCCj< h-X cc .00CDCMfMH-LU Z CM UJ m pm 1 00 cmcm 1— lu DC <3+ 1 0.0-ZLCC "M ^ < a: 1- UJ co a: co a. »-xoi »-m x. ID 1 1 1 300 • 4>

r-icor^uj » » 1— w »—

1

X iti ,. ». »,-<corouj » 9* a orcoxx LU «t— 1—

X •0:33 U--O Jr w X t— •A'r-iool a.'DDU.O U,f-Hr-I^4 UJ^DD II- CD -JX4-4 .C/»<;cj-* -too# CL c\jo:<i-'2:'-h »-g»<o"3 XXX wOOoO H-J •

CsjXr-HOlt- ••-? CO OLH 00 co »-(— •»c\.l<-tac:i~ *--> OOXXX oi— cocc •

XSaOOJQ. «- ^CO • UJ UJ itii-lUJOiXSCiOUJQ. •« ID CM CM CM -Cr' I \ CD «CCCCOCMCMt— r-JCD"*' ^ y X *<C CO •—

1 CM CM f—MO ~5 OIII (_0«_-w xa^XD-let: "3 CM ll 11 II 1—4 00 h la: -3 H(jcQ< <O0 wS'-'MCD CO h- 4—

4

co co > Di II II ZhIIz xx bCi-Hr-l—lX 3 _J ^2: 2: Z2 UJ II II II O t| OO mICQ.a DO Ilia; a 0- OD cc < C£OC XCL5: XX II 2: 2:2:3 Q- 2: _J2: x XX O.XXX 3i- a.x 11 11 Oi *-*-"-'

2: SIS: 4-vt-si-i-a CQ <X X XX DDD OOww —> LUou HIIXLU2 _> luo a 00 UJ 00 00 00 OXI-3-3 KLLLLLUuu xldcc<cc:uj (/) a:u uo xoca< aiaao.-)-) LU t—4 1—••—'

ro-4" •—«c\j < t-tCMfO^ f-»r\j H 1 O

CM

CD CD CD CD CD CD CD CD CDCD

102

Page 208: Performance analysis of a turbo-type energy ... - CORE
Page 209: Performance analysis of a turbo-type energy ... - CORE

UJco

O

Oo

oo

•cc2:

<ooC£Q.

UJXV-

QZ<

UJ>I—

I

<oLU

UJ—

.

CC-

v-

in

X*-

U_# t-H

a* 00* II rHr~<

O-fr ->HI~

DC*-—OOK- CDO

X# OK* • »

O-K-OCD* f-i^-i

# •

a: ••* ,jc?c?D.O* e'JJUJ•—<_i_tt • •

Q-XOOX—i#»~<

X f-LUQ.->-)Z HZCLHOf-ll<a. ->c£h-<a:— h-z SZ^^z^D

hh t-ni-KXiD i— «-<a:i—olLIOaiDDlLHHUJC£OUJ21-1Q.OCLCLU. t-it~tt-*QCD.U.CC^J

II

"5

in

II

-5-5

"JOX

_j »• ad * -

COf*"} _Jr-4l-<QLCQ2:< uiiwd_J »-00 '.ilCLCO-J••CDcQIZ'-d" »••>•»

X»rH *-oXo:r\Jooccoa: *-<a.a:coco -cdlo »•»— oo-j2:0 *•>-<}- xco_j_Jh->cQ »X O. p-

••X^ftrs: -ro_jWD-O-fTlhCrOco •• •» »x O -4" co-J_jrOoo<Oa'5:-iSNa: qc: •--j

<CC<(i1 »-vJ" »a: i— •« -T-"Z.ul~dcouj<J-cc:Z"Z)cmci

-jdkk s:<-~Z.fX- ••<[ «-0O_J

__J<I •—« »-2~Oi *<|—<Xr-(Z)C\IJOIL. »-CL -L. I/) cr <2; »-co *2lcQ o<TO<_l(NJ ^(NJM_JXXUJX5"cc:<••QrcLa:<3r-i^j

QQU »»UJX »0<

*4-

<XD-

_J r- CC * ••

oca •• oSifla:corn ^jr~i>~*cCco2.< UIIWD_i »-oo »-s:clcd_i••CDcOXvj" »•».».

z>r-< »-ox«r(\juoqcdcjC »-<q.oc:coCD »• CD OO rJ—1 00 _l2TCD »->vtXcO_J_)—icn »ia •• •»

»-X^'C^S »Tn-Ji/OQ-O-coi— oCOco »• »• •XO-J" cu«J _J CD to<o vCZ_i5ic\ia: »-qc -~j»-<cD<ro p-nJ- *

a:f- •- xsrafxcouj-<; otzldcmor> •"crctcxjooa'co

2: a. •-< «~rO_j_j<_j*-< •>s:ac: ••

Old »-Q- X </) c£ <.2: •-co •"SCcQ »o<o<_jcm t-cvis:

jxiujiso:<Z) *-_J * •OOOi e-

< vJ- < X> *iw *X

2Zmcmcc:2 nZG ~* ^_iiic\ict:xr-i2:Q<; »-<t ».>j- x «-2. •4" < •< r.<TX »-2.

_JfVlXi/)XrCcO< CD _jo-.xtox>:oo<•-CDCL JJo^'^J—

'

ii ••ojcl jjo<tcc_iZJ^_JQ: ic^ - v. X)i^_J-^ -XCX •2 •.< •• 4" CD CD 21 f\Jr-t Z •< *-^CDCC2:CM *-oc;x •- p-o 00X CM p-ClX OO0 CD r-(UJ SI >}T\J_J ^it tocQrHUJ2:-4-rvj_j—

• ^:< ocmx tr uj •x—' *—. —>*C<. oiroxoiuj•• ••X *-~J12-<XCi X C\J »• p-x »-xz:QiCja:«-<a._JOcncri »- _J* a'-ta ju^c ••

,-»»—«co _jt—i »-x "<! 21-ir hCDjm §»x *"X^<loof<iaTr-jO < t-V < 00 CO CO CM CD

—* -4" •» »-CL X »-CX »- H»-< <}• «~ «»0-X •Ql ••

»->cd-4c\i •2'mvrcjr—

1

UJh-< . cd>J-cm •Si^Kl-cr'.Jx^a:<r)rsixc!ix< X *: cc:< zkm x a:x <a. •- •!—wii -<a:i— 1 a. r- •*h-*^< X-^- p"<< H

rnrouJooorviCvji— uj *^*.- O^rOLIJOOO^MCMi— LU«— ccorcDQ. »-xa: »-m *z —

»

CM'COoicoa. ..xcx: »-m mCT>i^ t- »• r-r-tajrOU-! •• •«. CNJ + cd^. — *• »-r-<corouj » »•

f-i »-rj—4i/^x mzddil") < a? »-rMr"<<//X »-ct:DDLu*:co r*

j

a: < •-< 2: r-i •-G{<o~? !-»-« ujcvjc^<^-<r2:^ »-cr<xo"7OCC p-H- NlHQCI- ••"3 UJ»-i CO -h- »-<\J Xi-*Crri— *~3uj^^ujixXSTaiOUJCi- cox uj^r-(UJD;x?;oiOuja.

*-OC CO (-.O <M <M H-KO ~3 — Q. Z »-a;cD>-iOCMrv>_,-JLJ~52^ XC£ -3 2 *-*r-t la: -3

OCD CD <. 11 I— CO CO-^2 z: zz K 2 -D^C-Z. Z ZZh- c 00 Qa: Q O O OCDo-js: 5: 2:2: II hd oi_J2: 2: 2:2:Z<51 2T 2:2: cqj-Q CD<2: 21 2C2IX3UJO U 00 HOILZ _>iJJO O QOLLCtU O 00 XUJ1XUJ oOOiO LJ OO

t-(C\Jr0vr .

ic\j 1-4CMC04" r-tCM

IT»

in oHvOfM

OCO OH

o

105

Page 210: Performance analysis of a turbo-type energy ... - CORE
Page 211: Performance analysis of a turbo-type energy ... - CORE

in

CN4

*51O#XX><

CO:*:

•K-

CNJ

XorCD

#

in

*CsJ

X

OX(X•*

ii

LUZoxGDXH-OOLUZI— (XUJ

LUQZC

LUZ

OxCOoCO

_J •- (X »• LULUQCO •• »>2:rOX ZXcom _j»-it-«xco h-Z)21 <l UIIWD l-O_i *oo »-2:xcq_j D«••COcQZXf •-•-*• OU_Z)—1 »-OXX(\10Q ccOcQX t^iQ-CXcO »— cozCC «-CQl/> «-t-<CO_J m 0021 O ^>-<McQ_J • co_j>-hCO »-XO- •• •- O H-••Xvi-ixs; »-ro_j u_ COt-(

toxo-rnt—xo - ^ t-nLLCD »- »• »X O -J" CO rn X-j—iccl/xoxs: 11 1— LU-JSCVJX -Q- »--J c —0^ >»-<co<ro «-«3" «» LU— (T}LU zxXH- - ^St^D Luro • •-X)CULU-J'X^IOtMQ ' X »LO.-X> •*<X(\ioOXcO l^lsO^H II Qi (vj

_jox<x< -s: X HU- o< 1—

1

»-2.x •-< «-m_) < _IU. -\- X •*

_J<„Jt-i »-stx *- S < •- 2: LU X< h- <<:X'-<oc\j.j ^- 2» II UJ CjOO Molu t-xxoox-< O II « luXj Z2: »-f0 »-sco »-o •* l-H UiO h- •*

<Q<f_K\J *-c\JSI X h-CCD" <o MZ jiiujijq:< 2 <LUOLL 511- XO •-x0.0:0 «-<—

1

c H-SXX t—

1

H->—i Z> *"—J * »-oOX • x oooai XLU LOh- <I vi <I ZD <"-'

' 5 "ID »—> a: cl 1— Oco >< OcD iiJX^-Z>< 0- in' «M s:^(\io:z:hZO •» </>i/)</) XO *—1—4 <t •><! »-nJ-X »-2- CJ l/) 00 co 3; X_J r-l

_J _jrr,iooi:^w< X LULUUJO O 1—

1

< •COXLUO vfCQ—J O 1'1 —1—

f

O «--

Z O^-jx ^xx V- 2:2:2:0. ts)-s. MO 2 *•< »-NtCG.CD3: w-< OOO V—1 X—

«

cm *XX »• »-a X LL •—<t—'»—iO >- X c</) l/OCu'r-HLUEvj-CM-J •» LU ooiyH/)uj HO »• C\i

z »-<M<Xi-nxxuj S X Z2ZW Z-J ^»

LU »>x 120:0 O S LUUJ JJf—

1

LUQ. rH O2: Xr-4X_JOCOCC •• 1—

«

O 5: SIS: > »-<5: r-( 1-

•—

K-tCD..),-, »x s: O. LLQ- l—H —1 >—« UJ OLU «-

Q ••^door^cocMO t» UJV. ooox —

1

O c1 vj- «- »-X x »-x •> LU X-^ xo wA

Z cOv^OnI »-2:m<ra:_J UJ Xlu LULU 111 liJ U.h MO *rx<Or\)XXO< X ox> xxxx —

.

X' >" <~

Z * l-Mli. *~<H— j: h-a» (-KKI- OLU "

fT) o~l LU 00 CM C\JK LU O v.xs: 0:0 -«,--. LU.OO *V -5

LU cox coo. ia: ^m ^X XluOO 2X •—« •»»«•• v- X i—

<

^^

X i£ «. ». »..—icorouj t. <» •> <XH-HH 'ZCjCjZIXXXX LOO UJ r-J

h- t-CMrHCOX *-XZ)DLL-5LL SIC?* X x v- x in in in lt. w COX X Xc\iq:<hs:h •o><o-}uj i-Qiix 1—(>— »—<—(,-H^^r—IrH OO < X

00 cq •->— t-NiHorh •>~>x COQmXXXX •••»•»• >—1 _J l~LU ^^-ILUXXSIXOLUO- o-X n»H—'X r. •• ». coco U- UJ LU •

X »SX CDkiUMiMHNIO"50 :£ xoinar-ixxxx OH l*vl LU

CO -1 xx -5H- 11 11 OO '. ~J r- ! 1—i t—1 r-l r-H z: Z< _Jt-H CO CQ II OO^vD^-^ww hZ ^>» •X_J ^z z ZTZTZI 11 ax hHHI-Z »-< ox z INI

0. OOO q:3h I— 1—t-K<<<<fX K ZLL' HUJZ.a. -J2: 2: 5:2:5: zooizzzzss:ssd O UJh- 2: X

<2: 2: 5:2:2: 01—ax "Mi-«t—(XXXXf— z: coo !?"II ^ II

luo a cuo t—< »—( *—H *—<xxxxoooouj^: < O Xao OOO XXaXXXO-XLL-LLLLLLXLU LL. LU O -Jt-.-5

< .-ICMrO-t ,-(CM

OOOHvOsOvOvO

xzH<

OOO OOOO o

104

Page 212: Performance analysis of a turbo-type energy ... - CORE
Page 213: Performance analysis of a turbo-type energy ... - CORE

o

ll! • IOa: no z<LU r-H

h- -<(/>< LU H- U.lus: or < O3h :d O_JX o '^ HH (/)

<o •-• —. u. 5:>a: uu —> HH ,(X

Q- *i^ QLULULUQ. Z -J azi-X< O (X Zh

V. »- • X i-z~— 1SHS)\- >-3^«-~ t~»CC>~* 1 zo-J • LULL <cx:oow LUOOcD ^. CDLUM z»-«z:lu t—

1

3Doc wID> + •v)_jX l-hZQC

r> id

-3 1^ <-<or>>

1 o </>oex: «o

_l 00 1—

<

>-x>-oUJ CUO_J< X -fhZUJdc- DHO --* < <h-w */3 ZLU ^ 2"Z <H- LU>-1/) ^» <- «-Z>^» C/OacLUZ) _J —

.

Z-J— m^q: cr; -3 3:lu~^<i-3 xo o z w ODO>•» H-HILI- •* -J _J<HLUM LL-O _J oc: U-51^—

i

Z LU Di X UJ*«^ i-<2;ujaj H LULU >- COM CO <•)

l J CD Cj

> OcCUDLULL <_J LU >-LUO

1 f- >X><o o (M

a: oo_iarz:UJCD^

in --N ZLUf-2 t-i in •« x<<^:c\) f-4 wZlO ^»» OJ —» LOCO <

o O + X»-iLU>- _J o O —

.

hOWOCO c\iO ~3 0<c£0 or c\l CNJ o^JO -3 _JQL»-I

K o »- C£H~<-J X h- *— CLCL V)o O rH M a. cd lu a. * O O O O _j 5: h-ce:

(-

Oaozr<r. lu CM

1— h- rH >- OOZLU0_JU'h-

o o h- M— <LU .—1 o O O O 1 OlD^-'UJo o~ >-)M LOHXO w o O o—. \~ <OU2

~~. O W »W DC — t—<h-l— -J —

.

rH X>—<—* ~~T-4 e> Ml— o >• «—. ^^» —1-1 O + LUc^/U-cr:•— — + + a:to UJ cc ' olu -^ *— — + O -3 Z U-<-3 -3-3 —»««» x>- dc OiihU "v ""3 ~> —>"3 »» UJ MJ-LUO.M WW -3 «— # 1— u >-< *— «»- "w- w_- ^«- J x> HDDM MM DC • -^

I>- w oo>o LU _) _J _J_J _J. 5--J _J Daoo

dc a: a: MM •» CM <_J—IX a: C£ a: uia: DC — cx: < Ch- •-X XX 2«-< M—-

Hr-

1

II U.CDZUo Q

X X XX Z h- > OtZZjiCCCDOQl—

• • • •M — + u_ z:lu lu 21 • • • • • > LU 3 -JLULU G? |_ _<)_>_ M"-5 OIWH -J LU UJ Of-i-i|-— — # 2 IflDL."O LU_J .J o> 2 t—1|——t<I _J LU_i J-30-5> >—i UJ U• • • + • ro m o h- z: M «-_J • • c + »~fOw 1— co a: lulu

II ac 2 (—

*

ozhq: -^»DC _J -J II z 3 •—i'—"XcD

UJ^IUJUJT-? li a: H ,_.-• .-hLU o r-ILLl2:LUr-lLULU->-3>-Cj>- DC O X00H-DC dcdc H>~— 3 O a: k- ^ DC DC DCDC h- ovjr? or h-LU Qi*"l i

ww II— Oh-

a

2! LLZLU-J s: II «-|| w ll«-«-• II «- II II OH-O CD GLUZ3u_ U-U- LL O -"LUZ Z? UJU<. o LL u. LL.LL U. O MUJZ Z> Oi—i—}»—«—<~3>-<>-0 U_O^UJ ti- LU>Z o -J k-i ~7 H-" —^1—I >-h -3 -! >-O >- U_ DC LU LO liiZ"

—< X«--<Z X'-'Xo o HO00< h-L^)a.

o C\J in m O O inof-i CM r-H C\J (\jro

<J><^»^>KJ><J)U> o uouuou

105

Page 214: Performance analysis of a turbo-type energy ... - CORE
Page 215: Performance analysis of a turbo-type energy ... - CORE

_J •» c£ •> •»

Oco »• ^macom _jrH»-<QrcD2:< oiiwd—J »-co »-5:o.co_j»-COc0lJ*4" ••••».

dh oxck:m(/)OcDct •-<clq:cqCO »-COCO t-t-<00_|

2:0 O~4"IC0_l_J>—iCD ».IQ- *> »•

I^ct:s »-m_jtoao-mi-ciDCD r. »-XO^CO_J_ICDU)<Oct5:-jszcsia; «-a: »•—

1

*-<rao«j;m ».<j- •»

couj>ta:s;x>c\jo3 »-<c<i\)cocx:o:>jdx<i< -z: x•-5:0. «-< »-m_j <—j<3: —ri—1 *--^c<x •- s".

<h<r--*DMj 5:

olu »-a.ii/)a:< o2: ».m r-i.cc. »-o »

I"5 1 •> *-i/)ol »- o.

OCD ••LUX »0< O.

s:sic»jQCSr-<2:o •«

< < s^X -M O_jmicoi:.ico< cC-co o_ ujo -3- co -J ODii-tct: »-iac: •* h-~2L -<X. -<lcncij?C 1—

i

••cxj -arx O o.cocOr-iu'5:vtrg_j »•

wy<arffixtiuj SI*• "X »-Ii.CQ O

a:>-40L_jL)mcc •• »-l

i~'Co_j»-i »-x *-s: D-•>i£<rcomcor\io » c\i>cor-i2:cf <s:c!:-~5:

<r •» -o 1 ~a: *• u. < ^ co i~ > cc >*• >CO>J-(\I •-glrOvfO'- -J llj H -f h- lli < ——:*:c£<x>rvic£x< ae uj # uj + # «.+•« 1 + .-<r\i•- I-mIS t-<|— 3T CO CM CO Q_ <<mmUJcoorMCMl~uj O co — # .-<»-CMmmcM*j-_JCMt— H-cQaicQQ. »-xa: »-iv) ^o_ uj <mz# a:z-«- a;cr:# a:<*- ujlui^ . *. »..-(comuj * *.•._! a:<CMCM<r# cMCM-ft cm«~# coca•»cm^coX orX3X5U_-)U- f~ -M- I— X>Lx:i-.--ia.'Qimcr:2?:4- ,»--

w

roct:<f'-i?:^-< »-g'<o-)uj hh s: > z> 3 <x>cocoCO »-K rMlHQ^t- »-->a: o a* —*•«- # >-H-#>-8- h>QO^r-4u.ia:xz:c^oujCL -&, o * »- —• ^2 -uu•-a:cot-'OCMvM^mo^Q —i »-tcMcx'cM.-<j— cmcmhcm^i— v.*"**.

uj I2G5. 5. ai 5.x 0^2: 2: a: .-4 cm

> cl>co>>c?>>g>>o:z:2:CO CO l/)>>

U II II II II II II II II

II II II II II

<\ir\i r~(r-< mm -^-vj-

2:x cm s:x -* 5. 3m s:x <r -< cm>>>>>>>>>>>>:£3

000

m •j-

— cc co5: rH i»i ^

£X v.. >v* •)t (\l CO(NJ CD COCd— rr ^ i<i— C\Jr-40 «<» ^-. •^

K-cn ro-s- CNJ-Ji- CM+ # i^-f # # MCM"^ •{f cox 1 v- CO Vr

^•SrM— r-<co:-: mco >t

»-l la: ->H-CC co^2: z. ZZZOOO-is: s: szszs<5I s: 2:5:5;LUO a ouoCC<J> uuo

t-«c\jmsi" «-(c\j

5:5:5:5:0000aLcccccc«•»<- ^ -M-

*-%^-^,-— ^^ «•*»••**-» -—

.

HUl-t-

<

HO"|vJ-r-l

xxxx XXXX5:55:2: X. M 5: 5:c\j f\jm <f iAjo.im>txxxx XXXX<<<•< <<<c<•$(• «• X -K- •«• * -> •&•

«—'«.>-«». 1- - .-

C\JCM(VC\| z> r\\\ic\i(\j

•«• -:< * {;• u. •i.- *- it -x•> -it -k -S- ~*L i'. '.'.- >f ->

»^MM —

4

<

MM *-* *-4

XXXX XXXXao-o-o. O 0.0.0.0.w>^-«-* . 2 w^w .—. . —

,

+ + + + < + + + + i-H—

>

t-im-j-r-* CO t-nm <h—<>IIII LU IIII*5:5:2:5 (JD r:a:r:5:rH

CO c\fc\jm <r Z r\irjm-4 0^UJ xxxx < xxxx z

co co cr. co X CO CO CO CO 1 r^z co—•« * -;t * .;;, .k. .;i. ;,.

^"

UJ UJ (\J ^<H »—<—<—

<

»—•* *—i *-<* >-h r\J ?ga: -;-. X XX X V XX XX XSIUJ z* O.D-CLCY o.a> XLL <5 Ct' a: 1

U- xo+ + + + UJ + + + + f\J*S.

(

0- z. tX zxQ 7^ rHm>±t-< UJ —im-tr-j^WH

>-~xxxx XXII* ar^> ocnj^^ss: CO >jxt n5: LU5:CD Di ;; CMC\!m-4" CO fN4(\J^<T2: Z(NJq: UJ-JIIII LU IIIIC LUXUJ zwuooo _J 00002 UJCX z wwww II II II

UJ w CjUJ II II II II

—( tl II 1! II ZlK II CO ZZ^Z 1-* H-Oz> H(fl^H z HfOsj-r-li: r-H_J

-ISS^SX UJ 5: 2: 5: ST UJEHocjcNJfMm^ 2. oj'Mm^r5" CMQCOCCXXXX H-

<

IllliiilCO O<

0000 OOO

106

Page 216: Performance analysis of a turbo-type energy ... - CORE
Page 217: Performance analysis of a turbo-type energy ... - CORE

z—I 0:cc ujUJ ZZ ~ LU— lu Z *

• • • • Z * »-i •CM CM CM CM •— • 0: CMV*^^«v. O: (\i LU —Z2ZZ LU w z—i —«--• *-•< Z "v LU V.OQOO LU *~ * -.xxxx * CM • CM0:00:0: • # CM ** -M- -M- * CM * — *»-~ *-.. »•«. »—. w ,-0 s, .-•

.-*—.»*. .-W V Z> —• 13to CM CM CM CM —

• > CM >CO U-l * * * * CM — -it- —UJ * * * * * -~* *—

*

o z cm cm co >t -•-x- z—— coz—Z UJ >>>> z--im »z>>-< 9

UJ 0: W^«-****w MS^Hw^aHcc UJ O— LU Qi* LUUJ u.

1 1 1 1 LU* Z 1 UJ->Z |

LL LL z—.uj z-~luLL 1—

1

—...-.«>, ,~. LU*—* —-LU CM* —t-H O CM CM CM CM UJ * CM 0—-* * •—

«

O * * « * O • * CM CM c * CM CMUJ # * * * UJ CM* — 41 CM—>—

*

LU O r-HfOsdr-* 1— —«— v»-ft wtOV.*C£ Z> >>>> z ^.O— 13>v»-i—-_Jr> zzzz to «— — *..»,- z> *-»•—«CM£T*-.»—-CM2Tto HMMM 00 ^•WW-W a CM— * <CMtO* <to cocao LU * tO * K * O * 1—UJ nin O- + + + + z * OfOLU* Or-HLUa: -4-0:0:0:0: a UJ CM021— <*— 2:—a r-l* * * * pHro»4"iH 2— >v.> >>^

x^^-irOvt r-< IISZ to »-* 1 w ,w | w c-j OSSJiS —4 CM CM CO nT UJ * * r-l* • * r~4

< XCMCMco<t- H 0.0.0,0. to CC f~*D— to <—1 _J—i- q:iiii < l-Ht-K to >-^ w>_wtJ_,o l~i- 11 1: 11 11 ii to II II II || _J II II II II II II II II

Zr-(ff|>J-H r-lrOvJ-i-l a: 0: 3 Z) to to _j „j>-*Z2: 21 31 2:2:2:5: >- >— LU >- •—• LUOrOfMro^ cM'Mco.t i__j 1—

1

t 1 1 1

ia.0.0 0. a. 0.0.0. ZZZZ^ZZZOh-w-i— H- to to 00 00 LU LU LU UJ LU LU LU LU

0.

x zSD <f CL>> 5: I—•. •» CO *•

ro co <}- x en

2:r?> •. 2:>> •• m cm»• »-(ri 5; o.

CMCM> CM \-

z:d •• z x xto »•

>>CMCM>~< - ZZZZhO —

<

» •~>r?o: •—1 *-i rn >? *-i i—< _j 2:»—<<—» •* «.LU Z SX^^Zh CMJD^hZ cm rgcM(V,vfrMO o.>>>:slu x XXXXXa' I-».».*.^»» •» »• 1^ ». «^ •" •• ^

»DrHrMCO>tocMLr>or^cocro--:rnNto<N.'>J-ocoooooo itilom it , mir. iri <: o -o >o r~ r^ r^ r- r-

r^h-r-r>-h-r^[^-r~r^r--r-r^r--h-r--r~-r^r^ 1

s-rv-lv-

\- \~ t— h- h~ \- \~ I- K I-K I- 1— I- I- \~ \~ H- H- H- »-zzzzzzzzzzzzzzzzzzzzz0:00:0:00:010^^00:0:0:0:0:0:0:00:0:0:aa.Q.Q.Q.aaaaaQ.aaac.Q.aiiQ.Q.Q.

000 ouu ouu

107

Page 218: Performance analysis of a turbo-type energy ... - CORE
Page 219: Performance analysis of a turbo-type energy ... - CORE

z.UJ

O ~a. y-

s: i—

. z—O z- Ul-O uj^ 2>t

zo. oa.X Of- Q-00O Q. I 5: I

< s:--i o—<«— uj Ocl oa• Oh- tok«~ a: x-z- uj X •> o •>

U-ist > ox <.xzi o <>o ujnOOl UJ • •»

a —< is) —. m c£ --—six uj <\i a:-*- uj4CMO- O «»~ujcl >o.•OX. Z vOfVI>H- 00

.— co co < u. »0 I I

•» hi •• x «•*.—».-. »-o co ooco•4" U.O» O CMCMCMCM- U.UOQ- UJO.•• ^<.st- « • • • I! ••lus— o</>•• -ujx >- cornmen o- 2T»X —|0 HHr-IHh-ll^ •- < »-

ih oc£co-»c*: u_luu-u.D <» X»h r>Lux«-<uj CL</)Xro oco•» _J> " • i^ »•••••• <lV)O Cj_ — Ol• •-«——-»~00OXC\iLU •»••»• hG H'-^LUl/}

rtmHrHHHV f_T>.-H _Jl-U I »CT (

:z> • • • •cot// t-u-oo 11 11 11 11 >- ac\ic\oc\ivj- t>c\i<Mrj(\j_iUi« «4 v> OiDannaaXHHHH 1 om uj c\i(\j(Mc\ja-Oooh- u-ooooHHU.U.U.U.I-i.1 ••_) +r -^ * -* LUI~l/>- <j-uj-•»r-<sj- <i-xtvru.< I

• 2: # -x -ft » ^rouj «- a: •»

.4- •.*.«. » i-wiiN-o ~-~-—-»ujairx'x *-clx2> *>•»« 00XO'-' cmcmcmcm 0_in- incOcm—"-^^—lu - Z>i/) a. a: o_ or. 0000 »--^o •>

Q-» UOUUH>-XJZ # i>^ -«• iai/i _j» 2^»00 ••ujujuju-oor-oouj r?:E:-C2:Tujuj<rr-4t-ii— •-<

xcoooool^q-q-- n^s: ocoojjha *<a.rOr-(>v v^ ,^ ,Vv2!:iiJ«-<4/)t—< ww-wwzzcH-oi-to2.rHl~|~t— t—wZJCCD ^^^^-vQOl— I l/)</1 I

CvJ *-U_U-U.U. UJ I _J <~.«~——•_<— CMS CMo_» —^w._->- cm 1 uj rim-4*r-4i/></)iUCLt/)Uja.WH OUJXI-X IIIIZZlhcDIiO••• £_D oiX- U-l— lilt UJUJh-" -Ji—

-

r-\ ••>>;>2 uj l— •>«-' cm cm co .4 s: 2: »~^ »•

2X Z XX XXXX>-.r-i XO. Xcmco- • - » uj co *«»w-«-'«^qo c^i cmQ.CM »••-•.•—• CM- - ».---»- CM- - CM(/> t* *- - .- .- .- •.•.•.•.•»•.•.•»•.•-•.•oxxxxooooo o 00000>tlHWHHlIIII xxxxxxxxxxx

f-rH i-Hr-lr-Hf-lr-t r-H 1—I r-H r-l r-1 r~) r-l r-( rH r-1 i-H

Kt-t-l-l-hHhl-l- ht-hl-hl-t-l-f-KKZK<<<t<<r<<r<<< <<<<<<<<i<<<a.•-< ex or^^oi a. a: cc cc cc cc cc -»cc cc cc <x <x cc or or «: cxcii—oQIOUUUUOOOOD' OCQDOOOCCDOUJZ0_U_U.U.U-U-U_U_IXU.U^I~U.U-Li.U.U.U.U.U.U-UU.CXUJ

r-l

Cir-*^i<^-.<-ofMinvor- cocN o^-im«j-o^^"^coooooooinmininin in in vOvO^Ovor- r— r-r~- >-

UJXO

u-z:o<UJOOZ30_!-<<»-><UJXO

WZh-a:ZZ5un-toLULLQLQD.UJLOaruj

IDh-_J•-<>

ITM/OhDO

LLjt—

1

arcrZ3<o>»—<

U.OLO

5CLUOech-U-Z

UJ

C-«UJOZwhhLL<U-K UJl/)coooiOOUJ

CO< looos:H- »-<(/)D< OZO <_J

1— </)»• <OQO CX-JO —O-J WQZCO •-•2>.

t— cocr

oUJ»

CO

LT\^^^^^^^^ soCM>tCMOOLOO!n i-HrHUJvOL^^r-^o^^-^OsOt-'^'-, u~^Lf^ •CO CMCM r-< r-l t-l rH t—I LH rH i-H CM• • • • • 9 e »r—1 • « •>

•.•.•,•.•.•.».».«•. ».mococomcoo^o •"h-l^-O

Mr-icorOr-^crcor^r-r^^^OUJ-H vj" f\J CM CM—< rH r-< r-l vO r-t r-< LTW*>••••••• »•—I • • «r—

I

Qr*-*»»- •>'«-•»«.•••» ••r-li-H

^MOrc-iLarr.LOrHijr.iA ,00 •>**»

2NfOh<fiMOa>co&ccojinc;•• <}- CO CM CM CM CM r-( rH CC r-4 r-lO NJrvlaet**c«. »rH • »UJ^

H-Ovfr-iLnor'-cnN!- *>00r-<^LOriCOCMCOsDCMr-iOOOO «-o

rHO LOi Is- O ) O" LT\ CO <M LO CO CO CO CX

-— >Ov^rOCOCMC\IC\K\JCMC\JCM ••(—

rM« eo •• •••CM* t-J-W)

xoolc>-4-oo>nj-o •OCMUJ r

»-cOvj-LC,cMncovOiMC';r->-iv- 6*^—. vO LO st CO CO CM CM CM in CM CM O If\

r-l« ••*••• c CM •• »-0

0>tcMcMOsj-OCr *c\lOO •

OX CM CO^ CM v^) C<^ ._- U^ CO n3" LU CO«—i>NOinN$->rcocorOr-Moro • •>

lvJ«a««»«eOfCi«»sf.n>.•.•.•,•.•.•»•.•.»•.•. »o

LTl O CO LO CM vTj LTiC; »>C C ^ LU

c>r-vOmLnvt<fcocj^">ct-ujNOLUe •••••••'4* •• • •>

or •.•.•.•>•.•.•••.••. .-cMin<io>tr-ofMincom -oovoh-O *4" "4" CC 0") >t CO 4-O ONUJuj ecor^ooin<f vrm<j-mcii •

Mh «••••• •vj" e •X*!'^ e

O2I<

o< ZOO LU

r-<(Mn ,»4'msOi>coo><cco

<J>W^>UU

108

Page 220: Performance analysis of a turbo-type energy ... - CORE
Page 221: Performance analysis of a turbo-type energy ... - CORE

U-

uj \r\ -

V- HOOLU

U • •

O »-co

ITl •-

I/) v£)>d-

UJ HOZ3 OUJ »-

_J e »V.<I »-<OLn

> m »-o

LU HO »

x oujcoI— • • -

lu in oa: co^ruj< ~jho •

oCOUJvOQ 2! • • *"Z. t. •.ffllA

< _JrO oC£o^"U»

•> K-ho •

t—I e >-•••»I/) •• »-C\JLf\

LUCt ~vtSOOTLU (NJO-JUJ3CD HOJai e

os -oxroLLZ c£ smv

Xcor-oojSI </) ••—

1 01 UJHOD —-c\Jh »vCC-J MOOW-lU.O h • • *-cC

D>- JfflHO •uiuj ^ro-^uj^2:01 (MHino•—

'

soo • »<fC0 • •—t r—

I

h-r> lu »• sCOO C£lT\C0Ln_JOt-H <no<-ocx

ex: QMHiuh< </>< 5:00 »ooh- *—> -J • »h>-< "VD <l— V._j

*: < OO Dii 5I<o o St- oCD mJ uo LU

I< r-KNJfO

OOOO

109

Page 222: Performance analysis of a turbo-type energy ... - CORE
Page 223: Performance analysis of a turbo-type energy ... - CORE

APPENDIX D

PROGRAM REVERSE

Program REVERSE solves the equations for reverse circulation,

Modes 3 and 4» The program is very similar to program NORMAL, and

the flow chart of Table IV is the same. Further discussion would be

mere repetition of Appendix C.

110

Page 224: Performance analysis of a turbo-type energy ... - CORE
Page 225: Performance analysis of a turbo-type energy ... - CORE

z in ccLU t-i • QiLU I 2:0 co h-2 1—

1

••LU •—«u_ 1 O <1 1 H rH O «U>LU 2: -25 OTK

oo 5: ZLU _|LU ZXa. (—

<

— U 1 OCO• I/) LUO OaOH —IX Q <_J | CO CO CO u_co KCCDi/)UO O < LU< h- z UJ-O LU. LUw OO_jlu2:o LU CD < • Ln>r<"ia: LU —^OJ c>- OiH-

X >UJ< LUO 00 WZ <—•—( <t O coo: Ol-MWJO XZLU_l»-it-"l LU 1 »-CO_J < LUO —

<

OLUQZDOCtUJ HUJ—l_J OH <£)OZD _) UJLU UJCO— HOZOOOLUcQ OT.O •—

1 H- OO t-HOO COLUSO Q. LXO X2Q <LUt-n > q:ujz2<m I 2QD2 O i— luz: UJCOQ-Oi^Z-J ou_< x o--> 5:cO_)< LU LU2! t 00 OcoD-<00_) LL.LL. OOH>- 0 3LUO or Qm>- a <<rOmOh •—<H-Z »H lh< _JQiU_J < *^_

1

LUOlU COO.H IS QOt-'Ot/)*-' I < 2LL^LU O*-<C0 CO

ZU-KOi 1—1 X>—1»—1(_) -»o C_) •» •-< «fr *-*Z> <2) <tcc»-<02)LUZ _j_jluooooo ooz -,— f- ww« _i_jor 0-UJZOHO << >-_l Z< WDw o:_ji— Q.U.LU 3:Ot~<LULL<-H >o:s:lu—ilu SIX • LL'ZZ 2: 3 L_5 a 0:0UJ(/) <f— HOXO 3 oxo-< < h-qc:lu LULU LU^Jf- < >-UJHZ -JH LUOCJ <LUCL oiXCxi aZt»-t>-H 1^; _J<LL <LL ox \~~Z. LULU »* h-cQco <.!—•« CLLULUIH m z - OO C0»-tCOX ^ COSILU ^i- 25Xooo_<: «_j OLULUaTLU M 3 *v.K #* <o. -1- HLU o;o< XXluXH • za OZC (M CO ^OLU LUt^ttCNZ Whh>t-Z CO »—

<

Qm< »• r- 2 •- 1 t-*LU ILLao<cco t-H LU UJ IU <«— or in r—

1

<Zc HDIL HO•llZ) »-• 2<ZZ a: CCD h--~LT\ .<.vt m_i

00 OZW 2 e •O'-'O < LU H-LUO | CO a:aj |LLw ULH

ZlU dz D>tZI D. Ol- X^LUsD 2! OSh Q > OXOi-'—uj M O CZ <co <S\— iu<t O h- m Z'-Uh•-1JH-2: f—a*" LUO < -J 2) >-<2)Q. >—

<

OLU <Ih IZhOO<M DZkh>-U H 0.;r aracoco h- OTID |~ CO t— LU<cO>-OQ _j<<zo < 21 < hZ O O-l

LU O <-& 1 C H<_J_J O ujco OOTID h- K- < o'xo 2:OO oooiLuz: comOH cl< a. 01 q;2:<_j co <o moco IUUJCC LUh- J— O cc 00Si ac —

«

<LU uJvi _jO (— •i •—

JOUJ oo>-2: COO ^lUJUJ r- O CO Z>o K cO O r-ir— > <I> U_>- CD K-^LUh-O X ^ oau SI— < LULU CO c\t< ujo;LU OcC< ICU.UZC. z <K dluz: —I_J ( ••LUO OLUCC < 2-2: t-Q< 0»-h LU LU2T z:_j< • CO OOr-l OX t-i <>

HoO UJ< zizhq: > >-H1 2: CO o: ?!2fNJ f\l t~~ ££<.S UJOO •> h— CO *-iH LU LU z^llz: O « << 1 o< LU

< COLUH >-<CO < - <ZO- CO QLU zj oa HO CO Ht-( T'Z >LUcc UZOh I21L2LU 2" CO aia: •-. O^ i-ujz f-tLLLU <Xo LULULU CO HOOLU>OL z <LU Ot-h- < 1

hij: »•—< 2! H

o IZQZ>- »—« c^Zw X uJt~z:< U-rH Xt-2> OL)m LU

CC J- 23—1 Dl-Z OOJ H lOLLifC rn LU _J r-^LUic'. XLLQ. L/)UJ»-h< UJ<G(-UI a >- h-aCSZLU LU ». O 1 O. \-o

00>—0l.H2: Q_'—>>-<00 (— LU <H LUh- OO LU »U r-JOOLULU UJ<< LUOHOZ h o< LTMLlCui—

<

<f^ >a X u_o> !JJOD CQUOST.OU. « H X 1 XO ^ 1

-<!XJ2: COUJt— Oh-JO 02 SIO^LU *-!- Z 3 h- i-zz O-H H- • *-< 2!X HOO-hLUQ LU •— Dl Cl CO O a. X r—1 •—<l-

<

OfM <r-t SKO o<co—«x -J 51O •—

•O LU >—

1

z t~LU LL CO _J i~ _Jr-<0 2> .

' >-oiZ^LULL. LU 1— LU> \— »—

1

Zh COO LULU CDO LU O _) •-< H£1 O OTUJ <X«-h< 00 2! Xco (XI O:0 02 <LU<i luz uj OOUJH-HH h- CO zz Slcoh- LU | z*cc OO •• o:xo:luo:<x U-ialXco mo t—H 022 0' X-i LU<0 t—!<-« Hoh<-Jh couji— ococt:- LU —J*-1 »-t— H-^t X t- 2TH-H- LU

O < > oho < X e OOlc\ »• H- < huq Xarzooco . H-LUOOZ CLLL h- l-> O<tro ,-H O OH —4 O K-HaOH OO !X hh< LU O < _J ct. 1 X • •r~t t-HCO oru. X

>-<z>-lu 3 OU- O LU voa. LU |•• 1 ••LL O

OOH LUO> ST ll. co a; cc z ••> • •LU(M LL^r-l Ql—iO LU O ••UJi-H<»-iQ[:aj e OLUO <0 LU U_lH-< OX LL OH O 2! >LL»-i x>~>XaIOUJ»-<0 I— Ol—O -< X ZI- 3:1— coo Xco Oco< H-lOOO —

1 J_HUJ^ZZLU >—

<ZO >_J LU COH H OU 1— 2: HZ u_z: U- 2) CO

HU-LUOX CSOtOLL'U LU LfASILU •2. SOT l—O LUwLL <00 t-i z_iuj QOL OrM2>2) QO 000 az QO

LULU »-< h-LUlU<Oo: C£C0 Oi 1 -J-J a:_j CJt- aiLua: o'<ZOI00J MlIIZ^ <LU <vOO< <o <oo <MLU <_J<OH»-,a 01—HO<C ua: UHU> 00 OOo: oocl Om

00000000000OOOOOOOUOUUOUOO ^<J>Uuu00000OOOO

111

Page 226: Performance analysis of a turbo-type energy ... - CORE
Page 227: Performance analysis of a turbo-type energy ... - CORE

HIXK •>

OOm2 I

eg• *•

hOXC\IO I

LUrHt—lr-

4

X •»

oUJr-H

O I

_JCOoO

errsooh-_loo

0£0DOO

OXoo

LU

LUX-z.

2LUwD<

LU_JXcOI-

ccLLOot-<Ooo>-M _lQOUJ

iuooXH-UJH-OCL

a;ooUJ

h-luq:xxOH-LU oxo I

ujomo«-<<I-Q_I<2TCOoK

oC\J

I

LUrHX •"

t-O

o<-<

t~00IZorLUO

XOo

LUDZ<M_JCOO

UJLUOx<t-_j

Q.Q^LU<c£<

Ooo;zlu<xo

rox>—

<

00ziz:

h-LU<r£ o

H<>-oo -J

O0LUU.LU>OD^

-Jl-O0<00>uj»-( a.o_joo<_jluCC<.C£

LUa: r-

xoai— v-<-< I

• •ooro-z.

LUOO>z:2LU<<

com<OfHoo:cnj

ooLU

ooa:CD

00

o

LUCD

o

LUOa:<

LUX

o

LU

LU

azLUi—

<

LU>ooccoU-

QLUOOO00

<O

oo_ICO

_j en -a •> *-Svj-CD _l>j-v-<C^s "-oiiw—i oo so-ca»• CDO i—I » * »

O »-OXcr:,-».JO CC »-<CLOi<co «-aooo ••—iooh-SO >-f<,lXCDLU_j»-<cd -ia "MX ^4" a' s: »vt »crro_<>--J-*-cr::z>CO •- •• t-lOm<_J_jcooo<ocr:i-—I^1(\1CC -c£ -Hi•><CO<OJ »-sJ-Mooh- *- -T.'SLct -coLu^r.ois: Or-ice:O »-<f c£ ro ooa: ca iviJDKK «-_J Xh-h••SO. «-<l ^m—i < •*

-j<_ji~-i ••s.'cx •• sex:<l— <XC\jIDr-4 00 SKIOLU Q-XOOQiCD OZJs *-r>-i ^2i cd »~d * »-ct:

<ro<_)'-i *-c\i_i csTnjzjIIiuiEa: 3o". •-

»-(va.a:<Or-<_j oi— _jo -.J - »-ooai< a. oo ex:

<<5~<0<t"O «-0 »-<>-KOcC s-LL'X 02 0- *-O0

Sb::r\mrs4-S< —-><t »-<: »"i-hx »-_j o>—i •*

jroiooisw *• crtr-i—»• CO O. LUO--' ccD 0>^i.'MZ>^_joi ^x cvi< H-Mr-^Z «-< ••rniocoo i-^cd^'•cm »-a:x - -s: clx_j

oo co .-i toS rr,^-t< ~ »-cr:

w^^'cc-tiau s:—

x

•> »-X "IZ1 •• O"-! ••

a: r-i n. „,jo <! co xr *—«t—i—

^

»-iCO_j>-< ^x t-O O- •>(%]

•-i<i< oo r\j co r-4_j ^O^^h •{'•

CC-4-CNJ -S^lvj-O LUfvj_J 4,-

^DC<OroXcr: •- or:>->- (-•. ».(_ i—lis ».;>; 3: 3ro rn lu 00o r^» »-<O O^^ o.coarcoa xni i^Q- zi«i »- »- r.r\j cdm a: _j «- «-lulu hh•-cN^tooX »-a:iDC)LL->u-ixcr:

(Mar: <-<:'>: co *-<coo"Ouj<.< <CD »-h_ ^^X 1-1 !— ^- »-~3Cr:(—O I—^ rH 10 a: x 51 a: —ia. ^caus <••OlCi.J^O^lCJLU ^"5QM_] O

r-< io:dd -51- •«

CO CD OO -v,>v «i^Z ZC'CDZZZZZ #O DOSOOOOO ^i-

—IS H-J5.S2S.2<5I S SSSSSLUO o oouoocto O OOOOO

osoot—

<

Xa

ca

<S CO

00CDa:co

ccCD

2;(XOnJ-cm<r_icf)coLULU^ «-

1—< »-fO<scr:oo»-r\jcDX »- »-cn

>-c^i^a.oa: ^< •• »-_JXcDOio t-n (\i.< oc: _j co-<Cr!cO »• »-_J »•

zz ^uwa'ODH ^" "CD *•

SctcjLUU-Dcn—<»—< ^ COO —IOC

COOOvOOOOvJ-^-LaLOiLfMALO

oQQOQQDO<<<<<<< II

LU ID UJ UJ UJ LU LU

ancccCfXcccca:^.

a

err

<LU

><

s

oX0-•>

so_JLUoCM

a:

QC

1— O O< S Of

t—1 t—

1

•» »•

1- 000 ^'Hfiro00 Osfr-!OrvJ(\i(NJr-4»-H LO LTi inS ITiLTi LO LO-J Ohhh h-h-h-l—zzz 11 S'szrs

cr: a: ck: s a. ex. err a:aaaoao-Q-o.

UUU^><^>iJ<^UKJUU 0000

o(NJ

112

Page 228: Performance analysis of a turbo-type energy ... - CORE
Page 229: Performance analysis of a turbo-type energy ... - CORE

os:o•>

Xn0 —

»

«*««t» •» V —

• zoo—

o

Oco• 1—

<

a: •—«»

X o h-0. »- ox

—. l/)» o <0^„ —.— CO •- or orCD - - X t---t f-100 CO h- ujor< or co- »• < QCCD

«»• cr cc *•• m- •> cocoxs: <T> r- •-

<fX— - - >oo or r-<Xcor-- t- •- *•_! < 0^iC *OXX- Ui s 2* K- - ZTnOvO d z O-

r-

1

-,vtXCM *m w cC * h-o:r^- cox i-i a: cox > <•••» chorea on -J H -

."•

.

•» fr-lvf-r-1 •> _J OOXft- oix -oca'." »

CDI^-- - « »-C\J

^ o •- »-xa:•> «» .i_XXs0»

<Q<or.

ooor or

• x<r» •• ••- x o-CO I// r-x — - <o 00~~h- »-

st- 00 •-O-Xr-tOiK- •* mcoOX< co O » -J r~ or co lu - •oro z:»» of IU CM< »-m_JI^Jr-l Sin •• o

CO co _J C0» <* QT_J» cc Or-«/>- i—

<

«* CM »• \£ **Cl. - » •.- _JU-f— CM h-CO CD or ••— » xo »• -x - LL •-HOC <*r •- a'j VlTi vf- XXOX lf\X«» NJ»• ro X) •—

i

UJhX »- 'OvO «~C0 • •UJ « >—

i

CO < z a: -JrOf-- X • •— •- -~ »lTi X _JCO X •* * —-. o •* *!—! CO •» •» LL » CM<r-<3:o <^ O- o a: CO or • m <X HWQZ « LLO •• V—

4

•* _l X CO • __•. II r-o—- arcocrO CvJLU »-._]• — HCM < Qt -J ~~aro<t CD LU LLCMX 2i aT t-K/)rou-i-ic\) »—

i

CD * •* _i CM.-I • « i <: :*r coo or —J_J>-< LL< •- or • Z-^ 1—1 Q. fr- •ILOC | « ft» *» ft* »• ft-- «J moo • cm r—

1

* < O lZ^ O Mr- i <i t" •* *- t> ft- ft- »- •» HX •"•—

t

t-i h- *- CO 1-Hinu.u. QXXXXXXX IT> LLO'XU-COi*r

UJCO o

LL • -ts}" - h-L^f^-O^vOfC) h-«. CMr-Hh-^O

lf\ -r~t r-HOO^OCOOO cooooor-Hvf i-t ITVO r- r-l CO HiniLiiiiiinixi iiiiiiir\ (^ ir"\ir\ir\ir\irwr\

(l"|MCOHHt-(t-(l-<rHl-1 •—1 «—1 r-l 1—

1

r-lj—lr-ti—lr-lr-»

l-l-Kt-hhl-l-Kl-l-h-)-h »-»—H-f-J-Hl-l-hht-KKI- <<<<< <<<i<<<<r<< <<<.<«zzzzzzrzrz IISSS --:. Sinsssss: S5Z2T5ISISr

Xozt—\

LOCO»•

Xoz»-<

crCO•»

Xozt-H

•4"

or»•

rer-l aor zor *"t

CO ro* or

i—

i

oor X •

<J- <_>ooo or :^ca

xxxcr. »• r-t>^

OUU a: r-H CM-Ozzrzco or OTi-^__!— >V ro »-4-

'Hr-<Hl or X r-l

crorcro •x O e

* * -*:z r-l Zmi—( i—i r-ir—(r-

<

or r~<-K

h r-t i-M or or or or a: CM r-i •

arororv.r-icMf^^orcD or oro*v v,v or or or o: or co »• oCMfO sf-jO nOC^-O—ICOor or or nun n n n —.«~uma

LfM/,i/,m i;

II || II II XXXXXXCOUOUUh (— h-l~ X_< ,-h ,-h r-i ;z ;zz zz ;z z: z:zz <hmwhhmmm or or or cc o: or or or or or or or or or ororarorora. or or or cc •-«»-< r-i .—,>—i ^— *_•_, r-.»-<5r

or or or or or or or or ooocoooococdcq ooqooo cMrasj-or.-icMrn>4 or oo or or or or s:a,o.CLO.CLO_o-o- u-u-llllu^u-u-U.lullluulu.ll.--.llu-u_u.u.ll cv' q^ c^cc or or or or ld cc Q.O. a. tuo

«-« *cj^O r0 O OC)H 4f

00 0>Oi-IO0^rHC0vfiris0r-C0r-l CO >4"O <" ^"> LH ->

O^'J'UICl^OlOHHr-iHHHCSJ CMCMO'lLninU'i -)(

vt in iri uMnininin^in minm »o ooo

113

Page 230: Performance analysis of a turbo-type energy ... - CORE
Page 231: Performance analysis of a turbo-type energy ... - CORE

•-h 2TU- O

»—

«

UJ I-z <.-. a:h- UJ

Z> I-O HH

a:oo UJ

3 Xoo H

o ujUJ CD003 O

• Huurnco.-< Z

UJ -^_jlu > «~ro.ja: *-> .ma3:0 m-n

~i UJ ,-iLL

OU. Qi U_z: < •»-<s - 00O 00 (/)-»

uja: a: t-<

CCU. UJ UJuj co a:z>IW 51 UJO

uj Z> 2 a:

uj oo ir\ a. H-m mo to •«-

< ^-J Q # luujc-HI _j _j cm uom<D. <0 O C£ ZZH--J «Z Z w UJUJOUJ<t >->-* rHO O >- # ctcsif-cO mo II || (\| • uj —X ujuj

ft ZZ NNNH C£ <\1< U-LL.O•ft COCO ^tHLU mm ft 51 UJUJO

• c\j>4- —>c co 01 uj * s: a: a:•OCC< O «oo — K x xo •—oco## ihmlj-i in— 01— < ujujcor-<»» -« 1 x ^c o • 5: * noi-h^OO <J-O0>t I <f-o£h- • »OC U_ - 5: U.U.I— h- •^vOCOCO C^CDOCi-tOicr) o»-i »-• O OLLUJUJ- » o

f-< vOf-<'-ir-( I-4r-ii-i^tci:^(cir.ro>-, LL —»•» «— ujq;c£ •• *• t-^v.^a'o^c^oiccctcNJc^QCCj • «oct: ooLomir\ir> *a:3a'xx •

O O ro>tr-i^0vOCNJr<^>4--fi- ^-«- 0C«— ujuj cq uJ-fr-g-tf-* CclOCO^I- COft • •r-iOOl-1< 1-l «^-(^HQ:aiQil-tl-1r-t«^«S.|J_(/) _JCJj «I-<(VJ z> ft ft ft ft IOOh »> "O CD^-

X(\j(\jc^cd<x •m>4-^ sv vvv.ct:ci:a: >^^OUj • • u_;oc:>-« jocooooii- •< co • c\j<<r-Hr-l# Cfh-O-OO r-Hr-H e • « f^ Di 00H CC Z> Z -J < • « • • *-1 O^II CDSIv.'^rHCOUJ-J II • • i-ihh en co cfj o£ oouj _J oicx' • II < >oOOOX II II —i>hhhm o no5li-<c\j ac *vcd< n nim a;coD< cdco lu ,-4f-ic-<r-iCL Nj-<r^-«^x • ll 01Occcccca: m n i; h n h h co _j>o^-"-'fvjMDL —i u_iu 1— 1—a o >*

COCO II II r~i<. II II II < CtTac-"-" <i 11 II 11 it 11 UJUJl~H-<< * C\J<011 11 11 <x (Njro-4-^^4- 11 >z 11 ww^j 11 hh c^azzssiw. oikii-

11 11 .-<fnh-a-cocoa:o'Qrcxc*:cv:c£oo >-< < f-cyooz)—i>—cc :<*-*>-* cc.ee n i— o_Sf^C\|CtO0^<UJ^C\Jvt^^^mo0O0O'Ct:uj<Mu_U-U.UJM MlUIUliJUJIUOCLCCCCU. CuOOUJ-JOOct" oi co co <x <a3<co<c£c£c^cu'cQco<<aXK^>--< -<•--« fx»-' za:a:a:o£ci_i— a.c-0-u-u_H-i hmi-<cc<o

(—CD H-<

O c\j oir.cm •—«•—

^^00 uo o <

114

Page 232: Performance analysis of a turbo-type energy ... - CORE
Page 233: Performance analysis of a turbo-type energy ... - CORE

Xo.v.*-»

t-i

CD±Z —-*^ —»CM r-l

CO <HZ \->*«* LU# CD#—• *»^

(M 2T# <* 1-c-l «•

ex •-H

cm Xcc o_

CO

o

co »^< •* —

»

+ oX *— ^~ CNJ

Q. *-* «—

<

H-i,_J o0_J M CMX X ZT< vi- <Q- O-O o«— CD \-~i ^l- t—

<

v0>02 ^ UJ< +w O h- r-t«-H

o< v. co t» o V.O CNJ < <t->t•4-1- i-H ro r-i ~o r-i _J HH# CD !-<< i-H o o t c

on s/ <x •—1—» o o v^-rom1-cO o~* h-Q- o X h-h- _J <V.v^^ *— LU«J H QlLC\ LU < CN.'X e •

O"^— <-«<f- co< o -JO o «-» <aoo«^#». CD cm cm x«.r •• •• O 1 o HO I-- .J CO CO

CD CD CL2'«4- ctoo o o D "gl-»^ lU<If-4i-(

y—tt—i —*b£LZ —<< a::* *-* • O— o X CD | # *XX 4r<(M >^h-X << —

.

X -J o. inai-O-O- • _JK-<_J—-0- e. •• O- e >-o LL rH<_ILU

os:-h-SZ-J CC 00 —

<

.—

1

w|JJ H-CM *-• <tJK.C£*M»«^ <2 LU<1<<1 LULU X -J UJ t—

i

a o I-0.-J—I• K<CD(-| quo: < oo a. • *•

' • LL »I 2 r-H LU_J tJUJo£oo UiUJl— 1 uu< » ^«-^co(\jm m LU »—

«

oo <o~cl < CD^OcC<OQLuujr-<fvimsO_j»-< w co co c\i —i r-i cr h- o o X coh H00O LO C?CM0:0:0011 CD || CD wmUJU-UJOi-< <£. e am <oo • 11 CM H LU CO II Ii II IIZZCOOO • || || CNI II ^ ooonoci »—

»

cm UJ + O Iaiuujujujujuj t-« co <i-< LUlULULULUUICX »- •XL H II H ^OO a II LU|

II II XCMCM <r<a 00 CNJ C s^ »-r- K UJ_J_JIL_j_j_j_jo.co< IKIII II II _J_J„J_J«J UJ «-* OK H-w —X O oc:-JcQ<<rco

C. oo _j _J _J _J »- 2f t— za _J-J_1_J_J f- II(—1

c

00 ii o-o o O-J-J-J-J—

»

uj lu<<< < ll< uj a:< _joo c«:oo<<<<< LL xo uull LL CD < < UJ LU UJ LU

(XOLOUOU-ihaD >—ii— <£—

>->-<_>CJOC->0 •«• nyao H-»—

<

^ >-t •K- 1—

1

JOQQOM- ** O *n- o .-« # * o

in O o o rH * # CM<M m ^ r-4 # * rH

Xa.

UJ

I-<_joo-J<

#•K-

•«•

oo o ooo u o o ooo

115

Page 234: Performance analysis of a turbo-type energy ... - CORE
Page 235: Performance analysis of a turbo-type energy ... - CORE

21Om **»

XO oo —f—I t—< »* Q _J• —

<

c£ - 003 •> Q.< -~X -I— >tt-» •—

»

• trl X... »• o •• «—•—

J

x ft-. ~»r-<UJ

O u_ - -cc~~,-c -OC—i- - -

UJ «-< »l/)rHa«— x> •»" xa *_jCNJO ^ "CO- « < —

•a: tXH »o »loo oa t-xuu< oo•—1

1— •—I •—I— HQ^H- I'-

LL* LL -ZD^<* _J "Z.

*• •. r>» (_j •- »-a_i u_i

u"\x. X\T» • XO >—

<

•O 0< ••_ir\i- oLTir-H r—ixx2;>—< •- »-<

_j oo w~i •» •"Q.rrx *x ll51 •—

i •—i LL* <t —ir-t\—- ro U-O CO Q LT\ +-» •< MJJCO UJ

>0*0 »• Q. •> MNI O"- • • UJ » O»—«»—

i

oc •> oc «a_ <-< »-oo *-c£» o>j-<f x> z> •-< olt\- u_x>-x- <f-lr-H <t •—1 I Q h-»—• • «-r-l« i—t •»!-- 00• • h- OO UJ f LLX Xr-4 HXLU 00rorONOv£)«- a o: ^ a O «0 o »-x »-r\!co CDN^V.r^^H uj •• » X _i o>J'<—'—»«-.<-h« ro» »-< —>_JCO^^ 3 _j _j X a. < »t-r<,u-\ »-c\j.-0 «-<ro• »i-h^-< G O 5T UJ _J _J rH ^.LT,» 9 »>f <. -ZH- I— »3:00*6 C£ •> <1 ttL <L UJ * r~* LTMn«H-«<^-J^OCOOOmpi O Z> \— - Q Q XU.^Hr-lCliJD:KU. | UJHjHHSS h- V_> UJ 00 »• f- O <•• U-UJr-(CJ>-'JJC:OU_lLtf-fcOD •• •» U.I (M H SUA- <r^u_- • •— - (\J-

vt- • • i— oo x> ct: < uj •* s: s:»-< •.•.•.•••»•.•»•>•.«.cm<oc x > s: •.' J— CD O O "XXXXXXXXXXX<Xoooo a. •« < ac jj _j x_) xh^. oc\jr\i>oroLro<NJOKQ.HH »• QC K . UJ CO UJ <.LU • COi--<t-<C\IC\J r\]r\IC\JC\J(\!.-4Cn

uj_j *; >- ui a: c os: :ro uj»--»-r.....»....-..-t.CQ<;## •• •> • •> •• -UJU^2I m J h . ooooco o

OCMnoo(NJO^cNjor°>(v-Lr\r\jnQX'0 + X •IllliriUIIIII HQilOOO'NCOOOHOOOHHZJ O. ^HHHHHi^Hr-lr-IHH

H-n-.fT|c\j forr,r<)rnm(rirr)ro^)rorr)a<: ii 5.. 2: ^«--"~"^—'«--«-">"-'— *^«--c\j«4- z:> cd it

»—icdi— t--i— 1— (— 1— )— (— 1— i— 1— 1

<ize: l( I! 1— 1— !— I— I— I— >— 1— I— I— i— I— t— sr <<«•'<<<<<<<<<1- a. zzzzzzzzzzzzzjjo 11 o 11 —suzzszzz^^saUJ _J Cd 00 >->w— >-i t— .-.mw >_-..-< i~. i-<_J_J_J m CLC^CC Ci CCCCOLCiLCCCLCCciiCiOtD3<MMa:Q:a:Q:a;Q:^cfD:Q:ci:ofa;«uJE:i^u.coocoDOOoccci-2uooQG.aaaaa.a.aD.aaaauucioa ^llllllllllllllllllllllllooll!

OCD _J5: »-o_J 00 ••

- COX)z> »-oQ OiCO ..cooo5:0 >--Ji-'CO »XvTorOCO-O-co *• » *_j_j co tr>

_J5Ir\ja'»-<CJ<oof— »• »COUJ^OCr» *<a:_JX)X<za ••

—i<^»-<<h-<XQLU »-0-

2: CO •>

<0<l-Jji::u»-QCO-C!i

X) "-J •>

»>i>J «I )

l-j co *»uj

Sl^rvJc^<t •>*i »-jroxoo•-COC1.LUX^-jct:z •>< ••

••fNj *-CC

00CCr-(UJ>-(^<a:•> »x •*

cs:^o-_jwCQ.Jk,i^<O0

xj- • »-CL

CCstfM •»

^:cr:<X». ».^->-.

r<) LU 00-( ccoicQa

^ ». »-

ZD •<vi 1—100UJ LL (MDl<>-*

a: CO »-|— *LU l£.-HLUc£2L •^1. CO>—

"

*—1 2T f—

!

K- < Cu

Z> X-21O Z) Oa: O -J51co <XZD 00 UJO00 O ClU

z »—«<VI

O ro CO (NjmLO hh

O^OtMCLOI^-OOO—<f-4CNJ LL

o^ roo rooO^O «-• rom rocm 01 roro com 000

116

Page 236: Performance analysis of a turbo-type energy ... - CORE
Page 237: Performance analysis of a turbo-type energy ... - CORE

cc -

IIWZCLCOr-4 t> •» ••

<:cLa:<

roxooiula ms: >*•

iom<

iso;s:z>rHo£mc/>a:co mx<r »-_j •—

<

< co_j »- •

set: •• or:

cmo^-hoo mXoOc£CO z;_jSICO -3) -a:

i^q: a:<D~«_J H--Jm/) a? < t/> cv;

I OS t/Os:>tz< —>-Hi •»—

I

i—I •>

is;w •> —<~-o>-<coz) «— CMxa:< tviHmcGcoo a:**-

x »• £: x_js:rOrH< <*:j-iq:j —.xxsa: •• rH «-

O^"C0^ •-•*—X »-0 -CMfMCOr-<_J Of-tx q:uj >—

^

s: cm st o M _Jcoxa: •* >->iz «»2;

»-X(X •• ^cvJaDrooT-J ujluX -ocz>C>u~—)olo1s;cm »<CDO-3<<HlHhS ••-51—QIZa; -jo. *-lus:

id:dd ->

CD OQ ^*^vz&^mzzzzoosoooos: 5: s: 2: 5:o uoooo oouo

XQ_•ft

i-H

(V

•Jf

SIo-ft

mCD

CO

=5aCD51

ft

toCO

O

in

•ft

roa:1—

(

cc-ft —

3oom +zujqtz)^ct—

<

l/)-' CM t—coom•)f IHMNJ•U_U-#

CM O— II tt 9

cmzH XJX? c:<o 11 oOH CO r-OUJ LU STO LU2

<\i

ooLU

UJ

ooa:co

LU(v:

2:<

o

Q

LL

Qco2;

Oo

OIIi/)00 »-x:a.cocoo»~~* •»

0-OXCjCr-S_Ja: •><o_cr:<

CO »-cQoO -<i/)l—s:o «>>-r<ixcQLiJ_lt-tcO »xei- <>-M

x<t-a:5: ^4-a:D_<>->j-|--a::DCD »• »-XOC0<_i_jcoi/o<oc<l—.jszcmo: a: ujr-<tCO<tf\J ».si-M

t^oh- f-iso: •couusj-arsrD^cr:Z2 »-<ctroooaf:co_OX<X.< »-_J

•-S.O, "<i. cO-J_J<_J>-< •'SIOC< h- <x cm :d i-» toOLU Q.X'-OjiCO5: »-m *-:s;ro »-o<0<—1«—

1 »-(\J—

J

-Jxxujx^or.»-a:o-oc<3r-i_j

3> »-_J *- i/V'Y' <f<r<t-<ro<t-c_'> »-Doco t-ujx »os:

<. <; «~i-hX •'-J_i enx 00X :l 00 •-

»-COO-UJO'-<COZ)r>^_ia: ^XcrT<Z -< »-r0CQcOQcm »-Qix "-xz;

(/)co^LL!5:r")r~t<Hy<a<flt I

»• »-x -isa: -C£--4D__JO^cC2:

•~i^<00C\JCOr-(_J<- »• -O.H -CxllUCOvtCXJ •"SCVnJ'Oi^ororoxct:*• •*

I— •—<X ^-" »-5I

rorou.iooom^-«0coarcocL ia: *-

^i *. ». ».CMCQMoi_J•-CM.-ILOX »-0L.z^Cjii~—ia:aiCMC^<r>-<2:CM <fJjU -5<<CO t-|— i-hIHI-Z OKO^r-tUiO^Xi.Cr' -ICL HJJSI'•O^CO'—i(JrICMUJ 0"~5 r^J_J

.-4 io:d3 -5

CO OD ^"XZc^ccZZZZ005:0000s:k-_j stasiss: s:s:s:>-o aouao ouuu

CM 01 <}" r-« CM

l-vl

a:MZ_la.

l~ -JUltY

00— >-

-'CM

a:—x_iDl

«—

X

CMCTi-H

iULJJ

CO

o

ujooco

XQ-«•

r—

I

a:

2:o

Qco

ex:

co

8-

LO

Z5LU_J +2!a:uJ_J>s—CC<C£CM«-|—COOOLLIft t—iH-iM©UU--ft

cm in— II II •

CMZII -J-J CCQ< II O_JC0r- H-Ouj5:uj_jlu2'0i—IrvlOCtLU

o 000 o

117

Page 238: Performance analysis of a turbo-type energy ... - CORE
Page 239: Performance analysis of a turbo-type energy ... - CORE

_i a:•» -2:4-

cq j'two:2: •oxxco_J CO -'SICl.CQ

CO X> r—• •" •"

3 »-OI^hja oi <ac<CO COCO »—<l/)h-

5IO ->-f<>XcOuj_!_[» ICL ••M••x«4-a:^; vj-ccCL<.>-J-}-a:-D

CO cu • •> »-XC'cn<LU _j_Jc0cn<OaiJ—o —JSKMqc; 0: *-LU

< <CQ<CM sj-fvl

CO CO H- •• ! 2. D.^ »co co uj 4 or 2: , w a:< O •><ror:(«-»coct:ca

a. _JOX<I< —

1

•-2Q, *< ••CO -Jc£ _J<_J>-H ^Sloi •«

UJ <(-<Xf\)r)r-HCO3: quj ex icoaicoO S •-<<"> "2IC0 "ID_j <0<-J'-< »-f\J_l

jiiujisq:UJ »-a:a.cx'<o<-i_jX zd -—1 • •>coa:<Y- <*$-<:o ^CJ c UJ

QcO IL' I 05ICC 2.1^ cm a: 2: <J-2< -J .-H

O < < Hi »_J < COU. _jrOX^X5lco > i£

••CO Q_ UJ C_> r-4 CO X) N.H-4 o*:_jcx: *xo£< UJ C£co 2 •-< romcoo f— CQO- ••(M oil •« »-s: -J

cocQr-(uj>:ro^-t< „J -JC wy<i^>tl^j ft2 •- »i -T.sr.ci. - CO -~< a:HQ._io-ti;5' CO —

_aj_jM ! -O < .-1 ~•» ••i<i<ICOC\!CUrH^J co cm< >t * t-CVX *-C£UJ \~ CO_Jftf- co^-cnj srcM-to 2T CO<*LU itioKZDc^Tal - D-CQOJ

»(— 1—< *t~y ?* Ohw^s»• rornuucooror-io o<^<<

in < coorcoa. 10; ^ o*-<-ji-I O i*£ cMcoma£_J *• <LU>~ UJo CO •KNr-HtoX *-cCOOll.-5 CO— 1 —UJ 5: c\i a: < •-< 5: c\j »*<cccj-> 0<-'«-

1

< CO (— -r-iT>~'l—>- -~) I- CO0,0LU _J m. i~< uj ocX 51 ql *--JQ- 2:coo *o2 »-oicoi-«OT-iCNjuj (_)"> 1—1<£ r-1 •t—< CO »-• xa:xx> -5 II Hh- co co ao II II

X> 2: i^z 2:0:032:2: 2: _J 11 2:o »—

1

002:00 >-<nS<-J oiCC Li- —is: zi- _12:2: ^cnosjDCO <S 5: £S <C05"<>-«h-Or> UJU 00 f-Ci'D<|— COUJ2Tco a:o 00 co-Juua.a'uj

rHC\JrO>t i-HCM «ft #* *ft *ft *000 00

_l CL -O •• »-s-4-co _m —•oc:

2: -oxxco_i co »~5;o_co•> CQO>-h »•••O -UI^HJo a: *-<o-Dt:<cco »-coco ->—»tot—5"0 »>-mxcouj_Jh-iCO id. »-m-T<tCCSl —4- -cca-0-<t\-a:T>co iOcn<

co _J_jcaco<oa:h-uj -Jsrcvjo^ -a: ujO <CO<f\l »-tN<r coi— •• i£o: ••

co cc uj 4- a: 2: D--I3:co o <c^rocoa:co< JDKK _]a ••2:0. < »-ro_j

_j<_J-h 2:0: •-

a: <t— <Xf\io--<couj Ouj »-ctXcoa^coa 2: »-ro »-2:co oQ- <0<JH C\J-J

C^0-cv'<0^_llu o -—ij- coa:<_c << si <-i /vrU »0(— O CO »-L'iJX •-O-----

2:^c\jq:2 4-z:<CX^ <I •"<! Hi .JO Jl^IOOIiLOU. CQO_UJO'-<COr>

»-< Zt —< •rOcQLOOco (%] a:x s:a. coco.HUJ2:('r>'-t<

>~<?x-.<£C£<tj-Csr.--J

o •• —t —TS.cc —2: oi»-io. ^0'?"cc2:< h-iCD_j^ ! O

•~i^<rcoc\icOr-<_Jvj- ClX »-C£UJ

< cOvt(M-»2:tNj^oi— yctomic -UJ * !— •—

1

T S »•—enroLucoor^r-iO

vO •- COcricQOu »-xcit: •>

X < i«i •• r\jcoroc>i_jo o -(NjrHoox »-a;oau_->w»- 1 ~lu co cm cc < •-< 2: c\i <coc_)->co ;;- I

21 CO !— ^X'-th-2: '•'"SCOU-OLU < b^r-4LUQiX2:Oi ••_10. -<iu «o2! _J CliCD'-'O'-'CMLU O -

' »-• •

-< ^ ICCDD -Jllll Hh- CO CO CO 00 II

o o ^2: 2:c£co22:<-o- 11202; o dosoc«d qc:

ct: « _j5i 2:h--J2:2:<02:x)Z)co u_ <2i 2: 212:<2:<»-<l—

o

Z) LUO O OD«Hwa:Zco a:o o oo<i-JujQ.a:uj

H- i-HCMm-d- «-<fM

uuo

•4-

co

a:co

< (M*~<o^

«QO^_j2:-j>-<< UJ

118

Page 240: Performance analysis of a turbo-type energy ... - CORE
Page 241: Performance analysis of a turbo-type energy ... - CORE

00>-

Q2T<ca>-

«— 00

O2<

CD2<ca<UJor

COt—I

oUJ

o2o

2UJ

U-IU

o00ooo

LUXHooUJ

Oo-J<;o

_i or _i ca *o 2:-4- o •• -s: vi-

co _ivtt— a; ce _j >t -* ca21 UIIW 2: HJIIW—1 \T> -5"D.CQ -J 00 «-2IO_cO

coo*—* ^ •• »• COO r~-i f — »-

ra -on:cif-f_j t-oxo:^_iq a. -<icx.ca< *-» O a: »-<Q.a:<CO CO0O tnt/)h- in CO »-CQ00 MWh-2:0 >-r0Xc0UJ <M 2:0 »->-roXcOLu_J»-<CO XQ. M • ^)>-<c£ i-ia »-rsi

x^j-ccs: n*- "»• ••x^ar^: •-<}- »•

ca 0. <>- nK- a: UJ-f{- caa.o<ti~o:z>ca »-xom< co-~ ua •> •- iO(ri<_j_jcQoo<oa:K _JUJ -J_jc0i/)<iOet:i—_js:c\icr: -ca uj ujq: -J2ic\ia: -ca »-uj

<ICO<r\j >ttsJ os »-<CC<c\J »-4rvl00 1— iSc: —

.

ooh- » »-X2:cv: •cGuj-J-a:n:z5'-<Qi . 1 in cOLUsj-r^5:z5^c:Z> <cfro</)a:ca • *- ar XD •-<c rn 00 ca caJ3KK -J O^- _JOX<X< f-J2T0- «-«5 m_i 00 • H ••i-Q. ••<: »-r<"i _J_j<i_i^-* ^or -<o O _j<:_jt-i -si ca -<TK<XC\jr)--<oo' w^r-l c^ <k *Jx (\j r?—1 1/)

OUJ ClX'-OCCCD S^ uj ki.x to a: ca

2! CO SIcO »0 r-w UJ 2: »-m »>2;ca -id<C<-Jr-< C\J_J 0— X <0<J_lr-H r\.,_JJlllUISOi - • h- -JXXUJX21C' «•

•«c£a a: <!!>•-< _i >*••« ^ac/o^j3 «—1 oook 1 LL O »-_J •» ••toa'<«J-<f^^U O UJ —>. c <r<j-<o<!-^ o LUOcG UJX OS ^» e Oca »-ujx »-z>2.2ii^ojcK2:^-2:< _J >3-r-« a: 2ir (Mjii n)-^.<i _l< <: »^i _! < rr 1 LU < f< Hi »_! <I—jroiwiSoo > # — ca -ir^iwiron o>—-- --coo. ujO'-<cn:D Org s; C0Q. OiU'-'OD 2 COCNJ ro35^—ics: tia< LU • x r>^_Jo: ia:< "S^UJCM* X2: < -10 cacao h- o J

,f 2! 2T •-< r-mcDCOO "h-CO-A- S(\J c£X ?! ' O OH" fM OCX - -2T 000*-*^ »AJ

00 ca r-i ujs ro .-(< _i r-l»^00 C) 0OCOr-4JJ2"OT^-<< #JZH X1—

' it -^ Cu -4" X Cu —

J

O— nV.0. i-<i«£<nr nj-Xo:_j #o<<-T iSa: 00C\Jr-IUJ^ _i ^x x 2: ca - r-Hl/)h->— +

CH C- _J <_? "3" CD 51 cao «QDS O a:^o-_jLjN.r^o2: CtTcQ | LUhmCC_ji—, „x O <2 fO_J— 2" i~<CQ_j f_-< »-X »-0 # < CD ~*-^<00C\JCQr-<—

J

<VU!QT «~ > -±a<XU)(\; cTr~(_i 2' «-*---.r-l>$• O.X C-LU h- cO<r H-

<

UJ ^ O-X «-cr 1u OI---H/)C<CO<tCsi S'M^O 2 1 O v. 1—

<

or COvtCM »-2: C\! v*- # -*<c: «i-^oroTOmXaf O co^ in X ^a:<Droia >-Oy—0—<lu

(— 1—iX5I ^21 0~4 r~* f— a U-l —\— '—*X £l * * 1 mOlu- i ca

CO CO UJ 00 ro <-<O OO COO *— X ro ot uj 00 m r-< lace •*cparcoa. xo^ •« ^ oz •v f\) » H coatoa- xo^ 5>C Q.O »- <- —I ^0!«£.. CM CD f ca _J _ <<0 « + ca $£ - - r\!caroc£_J ft < 2^-tCt.'0c\j*-hooX croou_-j «— ^ic^jin UJ 1/) -Cs!<~i{S)JZ cttDCllO rH < ca cv

c\!a_:<»-<5:c\j <coo~"? OW< Is-

cr^ UJ OJa:<>--t2 C\l <CQO-5 q:c>-coq:«-ca rf— .-!X<-<i— 21 -5 l-CC_l | C> 2; h- CC K ^•:X>~<I— 2: -? a:i-—<^s^ t-k uj crx 2: ca —jq_ 2< UJ e UJ < i^i--iLuciiX2:a: _jo_ c02oo-;: ft ^h••QiCQ>-tO'-t'NJUJ 0-3 H>* OO^ -J -ca co »-» <~i og lu 0-3 *- •—

1 co r-i inx^ xcrorD -> II CJ\w 2: O r-t XOCOD -5 • <d-t\JCO CO CO O II • O O CO CD OO CX'O Cr-vf II

!>az 2orco22 ZO II2- —i _i ^Z Z^cCZZ w2:

II CC » 2o 005:00 hzuj 11 ca K < 002:CO •-. C^Qi

_J2: 5:k-_js:5: X.< 00 COO O O _i2i s:k-j 2:2: II V,ir-< II || LUO<2 5: 2:2: <_J_J»-.(~iH-Q 2! <s 2: 2:2: <co a:f—ujo 00 t—UJU'00OUJ2 O UJO 00 .—II— CD f\jm2 LUaro 00 ooclujo:uj li- oco 00 x < x x uj ca

l-4C\lfC|^ r-*CNJ

K- •ft-

•M-

r-4C\im<f- r-»(\| ft

ft*ft

ft

^L^iJ) UU OOO o o

119

Page 242: Performance analysis of a turbo-type energy ... - CORE
Page 243: Performance analysis of a turbo-type energy ... - CORE

LU

O •> »«5:>J-

cd -)<f—cm

-j oo ••s:o-co•• CQ3«—« » »• •*

X> OlDiHJo a: »-<a.a:<CO •COOO »-t—icOH-SO *>-CDXC0LU_J«-hcO XCl »-rvl

•X>3"C£S.: »-vJ- ••

a:o.<>-<fH-a:3CO •> »XCtv)<_j_>cooo<oa:i—_i2!fMa •»&: »-uj

»-<CD<C\j **trM001— •• i-I?;^ *•

OCO

3a

CM

a: ••

•• s;>3-

oo «-s:q-coC0Z5«-H •»•••

cm <o.a:<CD »-CQO0 »-i—io0h-2:0 o-cdxcclu_j»-(cd »ia »-tvi

x<ra:s: ».^- ••

ora<>-<J KarxCO •• r- ICn<-J_lcOoo<Oc£t—-JSIcmcx -cm ••lu

«-<£0<CM •sfMooi— •» »-xs:ar •>

a: couj>j-a::£Z>rHa: r-< co lu sj- a: 2: 3 --I a.'

O 3 •-ctacroooarco OC 3 •-< Dire, 00 cm cdt- JDKK --J _I3X<X< •—

J

< ••XO. ••< •-cD_j ^ •-51 Q- •-< CD—I\~ _J<_J»-( -z.cm •> -J<I_J>-< «-5rcr ••

00 <K<Xcm3~<ooQLLi «-a_xooaCcO

< <l—<X CM 3 ^-100

OLU »-0.X 00 Lc CGLU X t.fO .-XcO »o LU ST »-rD »-5TCD »-ZD

X <0<-J--t »-(M—

J

3 s: <0<_l^i »-CM-J\- -JXXLUxSar •• 2 JiiuJlSa: *

oia-Q:<3r-H_j v. •a« *-QiQ-CX<3r-(_JLL 3 *—) • »-O0C£< — *V 3 »—J •> »-ooa:<O <<J<X3^0 »-0 CDUJ— *-. <»t<p4-U *Q

oca lux ox C03— CM O CCl »-'-U _>_ i X SI

a: s^cNja:i.vi-2r< ^_j(D XLU < < >-Hl _) v<< — <I »~<J Hi »»_J

CO .jcDXooXSoo - ^>X CD 1 _jcdxooxs:oos. ctiauJU'-|tc3 CQ Q.*-. X ••CO O. LUO -' CO33 3v:_ja: la< 5^ LU _J (M V. r-\ 3i£_)ui ••XOi<Z 2! ••< ••rDcOCOC! *H<^ —CM X Z r-< ».triCCCOO

••cm gcx •» »-s: CD3^# ax •— ••CM »-QiX •> »-5:

00 C/) CD t-H LU 2: CD r-K? CC-J-ZL~ • 00 CD >-< LUS CD r~l<O »-i^:<Qi vf-xct-j HO<rciH + LL H^<x4-la:-i_J •• »-x fiso: a:ooi-< O •< »-x -H'Z-cm. -O Dir-iQ lo^cos: •K UJ X "4" **» aii-ia._jo<r'cor:

«-» 2 »-tCO_j(-< ,-x °o «-(< t Q-Df.rD 00 i-«cO_jt-< x D>- i^<LOCMaDr~<-J CC _JCD< 1- •-i^<toocMcer-i—

1

»—

1

LU vj" »• fO_x »-q'lu ^l—

<d:x z ••t »• »-a.x »-q:lus—

<

a: CO^'CM «-5-CMNtO •—<z;cd—"*'0- LU CD<> cm •-szcm-j-oX :s£a:<3roXa: •• t-OvfCDfc _J t—

t

i«iof:<3cDXa:^Q- UJ .(

mIJ. *5! IQ<Ch< O •» ••]— *—< j^ X *"S.

«— X CD CD LU 00O P 1 f-HO o.u-'oct:'-' CO t—

1

CDoOLUOOOC^^OK cdqcojcl »-Xaf •> i^ ttOZ-* <*n rj LL cOr^coO- •-x^-»- v:

IS) i£ - - *CMno cd a: _J »• '*S- <r< ij- t-* LU U- ^ •• •• ••Cv'CCCDC^-J ••

LU O0 •-CMt-HOOX liDOll-o U l—COQ^U O LU •-CM--IO0X »-Cr-3i-U--}a: LU CM Qi< •-<X CM »»<cco-o •^O— rosj-— LU O cMa:< •-<

s

cm «-<cco"5sr H Cfj »-|— »r-4Xf-l|— ST ••"O toi— oo-^ai'N. O CO *>l— «»i—llHh- SI *-~3

LU < i£r-mj cm iSa: •._jo_ •* CQ2C0<-«- rH LU i^iHLUQlXSTCt: •-—ICi. •-

_l •c£COt-<0<—if^it-U o"? «•-(<< LT,X 2 O0 ••aCcc—»Ljf-ic\)uj •o -'

~ZL 3 --< Xq133 -5 • ttCM t—1 LU r-t XQf33 ~5

O O CD CD OO CNJO II O0«4 II K h- CO CO 00HH _J s*:z: 2cr:coz2i ^Z CO 6 2 3 < yz Ticcca-z^H- < cos:00 1-1 CO C-", a C _J CD OCrODO O -js: shjss 1! i^CD II II LU3 a: 3 _js: zh-uzs2T <s s is <<t CC\-d CD O <s: s: s:s:3 LUO O OU Hf-<CMcnZu.;Z 3 _J luo auLL. cmo 00 X <q,XXLUfXLU 00 < oco ou

r-«(Mi-D<t- r-4CM O I-HCM01-4" rH(\J

CD<tX0__J<t

*-* ^CM 2:^ <K- h-^~ #CM 3< s:

K <LU s—CO LUw. •«

00 ^.

CDco

'

^v. ^»-» t-H

^^. COCM ^

or —

00oo

-—1

<LU

CO

3^•<

Co II II

— CNJCM

XX11 sis:

r-lXXXUCD

OOO o o OOO o

120

Page 244: Performance analysis of a turbo-type energy ... - CORE
Page 245: Performance analysis of a turbo-type energy ... - CORE

in•

o*

X

*H-

<\J

CD

CD

#(M

OCO

3Q

CM

UJCD

OOOo

CM

CX

I

II

cmxio:5T3r-IJ-OIUJZ<cxuj

CM

*

<x

UJ

o

cm

roX

u,o

UJ

o<\1 >-<

f-t u_LL LLC?LU

UJx

3oexCD300

UJOo00UJ

<3u_J<l

u

rx •<

—i-4-t-HCir.

I/) •*XQ_C0C03i—i •»•-».

•-ox o: t-i _jCX *-<O.CX<

CD »-CCO0 ^HHl/)(—51 »->-coxcduj_J|-«CQ »-XCL e-M••X-4-iXX »•<}•

co • •- iOfO<_i_jcaoo<rocxi—-JScnjo: ».cx »-uj

.<r.ro<cM .-vf-r^j

ook •• isq: *-

cQuj-4cr'5:X"-*a:3 »-<rcxrooocxcQ_J3X<X< »-_J

<th- <XCM3--<o0LJ UJ »-0l X v0 Cl CD

2 *ro -ScO <*3<0<_J«-< *-rM-Jjxiiuira: •-

••cxa.cX<3'-t—

i

3 _) . *oocx<cjjvj <£3vf O -GCjCCi t-UJX «-3»i.s::i£CMcxXvfx<<t •"<! »-c-0~ t»_J

_iroxoox>::oo -.-co a. ujo —< cd33^ -J ex ia:<2 •.< O'lCOCDQcm «-cxx - s:

oo cd i-h ujx ro^<H^<a;vt-iaJ•• *-X »«X5:cx_-

CXr-iO IO<l u'ji-

••^ < 00 CM CD --i_J«3" •» »-ClX t-CXUJCDvJ-CM SCM^Oi<icx<3roxcx ••

»• *-'t——« _i_ ST. •~Xro rouj oo <_> ro .-iOcDcrcDo. -Tec »• v:s/ r. .. rMcDfOrX.-J *•

»-CMi-loOX -0:30110CMCX-Ci-iXCM «*<C0O-?CD »~\— -Hlr-thJ: •>"?

^Hiuriis:^ •.-jo. ••

CCCD'-hO'-'CMU.I »-l_>~0

.- laDD ->

CO c?cXrXCQXX

xi-_J5:x

o uao ou

CMfOst •-'CM

ro<Xc.

x<

ro

CM

*3t—

I

00ex.

+

CM*

CMCO

CD

CM

CMor:

r-H

a:

*

CO

O

UJOa:o

CD )0^y e « •

CD II |! II

«-.CMCMCMZ:XHa11 s^sdrOforoi-Q

HIIIUJZxocc<a;uj

<rorH

UJ

UJ

UJz.»—

I

z>oexCDZ300

CM

M-

<OUJ

o

Cm

X

a00

UJ

LLU_UJOo00UJ

h-<_l

o-J<

oCO2:

x>oCO

a:

-oxxoo00 -SCXcOCOZ)*™^ »••••»

OlKrJJcc «-<a.o:<

»-CDOO »•>—<00h-SO »->-roXcouj_ji_cq »-z:cl -fvi

••T^-cf^Z -<! -cc o. <>- si" t- ex3co ». •. •>jrorn<_i_jccoo<oa:i—-jszcmcx »-a: »uj••<C0<fM ><tNO0H- * -XJIOi •COLOvtCt X3r-icf3 *-<CXrO^C<CDJDKK --J-2:0. •-< •-m_j_)<I_Ji—1 t-^" <x •<|— <XCM3^«00O LD -CX. -L. 00 CXL IDsr ••co »-s; CO »-3<0<_J'-I »-CM—I

-JXXUJXXcXa:o.fX<3r-i_j3 _)_»• ooor<<I si" <Z -j <i O «-QQ iD ••'JJ X • 3 ST.

X i^ cm Cii ^- <)"X<< •< >Hl »_J—iroxoox^oo*.coq.ujo<-icc3D^Jll •-Xa'<Z ••< C^' co cooCM »CXX • «»X

OO CD r-A UJ ST CO t-i<k-4^< ex <r x ex —

1

• »-x »x2:cx_»-CXr-iO IO M CU>-H-< CO I »—1 e. 3; t.fZI

•- s^< 00 c\: co—1—

J

*r • O-X t-cxLu

CDs}" CM ->-^<S-C>i^CX<3f<-iXcX_»-»- »-t~ »—

< X ^'- •• •£-

00 rouJ 00o ro 1-1OcCcXcoQ- -Ic * ^^: •. ••rMcorc.cX _J ••CM'-tOOX •>CC3CjU-~>

cm a: < i-h :£ cm -<cco~?

iii^-«ujcxxi-cx «--JQ- »•

•-Q'-CD'-'O'-'fMUJ »-l_>"0

^H XCX33 -3

CD OOzrXcc^X"w_< L-i «i. LJ l_»

si-jzs:

o uor-lCMCO>t i-iCM

CO

O<xujoexo

CM•K- CM

(XfO—

<

wX0.

-:f ._i

^.<«—

(MOO^O—

o

CM"^V- —-:;• ro-co00^

00 CD

— -x

I roocX

11 11

r-(CM

<J>uio<J> o 000

121

Page 246: Performance analysis of a turbo-type energy ... - CORE
Page 247: Performance analysis of a turbo-type energy ... - CORE

oCD

Q

CNJ

XCO>-•«•

in

<C\HU

ZK.<KKwUJ +

*C\I

<•—

CNJLU CD* co*:

JZHS<CD

LU • »-»

>—ro—*-* *r-Hr-Hi—

(

II II II

rococo 2:

2:2:2:3

iiiujzOCQ<CXlUJ

OQaLU

LU

HaccCDZJ00

a:

<oLU2:o

X

LLO00(-

LU—

<

Ot—

u_

u_LUoo00LU

3O<

a: »*• *s:^-IvtwDCOIII/5

OO ^SIO-COcoo^ •*•»•oiq:-ij

cc -<.o.cc<.CD -COS) —<00h-50 »->-coXccuj

"X^J-oiS ^4-CCCX<.>-<t[-CCSco *. «- i-icm<_J_)CD00<OQiH-_JSlc\ior: »-qc: »-lu

»-<CO<(\i sfrvlooh »- *x2Iqc ••

cc lu vj' cc ?. O <-*cO «-<ar roooacco_IOX<X< »-_J

••siq. ••< *ro_j—i<r.j>-< »-5:a: ••

<H<Xt\|Z>r-<LOclu a. looaiii51 .»rn ->Z CD »-3<0<—i-h «-C\J_J

jii.uji5:(x -»-cic:cLCu<3t-<-j3 •-_! »• »-ooa:<<Inj-<Z)nJ-0 »-ooca »-lux -ids:

< -<t «-i~lX »-«JJf)IWI2^ .-

•CQCLUJO'-iCCOOr^-ja: »iq:<2 »><t •- ro co caQCM O'X •• -Z.

00 a?h lu 2 ro r-<<M^<oi s+iQ:j•• »-X ••X 2-Ci. »

oi'-'cx -Joyces:h-(C0_j>-i .-x »-3••i£<O0CM CO r-H—l< •> *-o. x ••0:1x1

co<d cm «-SCM»4"0^rx^oc^xa:. f\— wj;5i r-s;

ro ro lu i/5o rohOco arena. »ia: •*

:*£.-»- cmcd-coo; _J••cNjr-ioox »-ce:r?ou-~>

cm cc< >-< 2; r\j »-<CDO~3cc -\~ r^iHh "5: -~>^.r-iujcciz^cc -sex. --CCCDt-<U<—iCMLL »-0~?

r-» XOCOO -5CO 00ZiCDZZooroo2:1— -j 2: 2:2: 2:2:o 00u 00

<<MrO-t r-l(M

3

CD

o-J 2;<5TUJUecu

CM

UJCO

z

K-4

00CL+

(M

CO

I- COlUbiDQw

r-H<_JXf-O«*—_Jt—1^-

i^ MX*»• (MOO-y- IT>

«• 0-_J »

— inoor-i<4- »a.xa:-1 11 n it

cC

Ilia;II ST 2! 21 ID

HIIIUIZXOCD<OCLU

O0LU

Xa.

UJz

3occCD

00

Xa.

2:oc

UJo

aULI

00

<LU

<zh-

1

LL.

UJX

00UJX00

Q-

2:ooo<

•* •*2T>J-

j«tno:OXX00

00 ••2:acoCDS'—• •"••»•Ulttnj

c£ ^<o-cc:<CD »-C0O0 ••—<oov—5:0 »->-roxcOLU_j»—cq »ia »-M-x<f-oC2: vfocraONM-orz)co - - »-xOm<_j_jcooo<oa:i—_i2rc\ic£ -cc -\xi

-<.CO<<\i »-4-rvj

ooi— •• »-X2:Qi •-

cQLu4-cx:2;X)^-ia:Z? »-<C£:rOoooicQJDKK --J•"2.Q. «-< «-v-0_)_j<_i»-i srar «>

<|-<X(\t3rH^]olu -axooa:cc

<IO<J-< rvj.Jjiiujisq: --C£Cl.CC<S>-<S

3D ._) ^ •.ooa:<

CJaj LUX »-_J-e_

>_ i^. (^1 tx i-„ nj- Z<«i —<x Mi »-_j

_jro,xooX5T^-CD Q. LUO <-h CC Z5

Z)ic:_)ci: r-ia:<2: •< xrOCDCDQ•-cnj »-oc: X •• —ZHoocDtHUjS mr-<<

•• »»X "isa: ••

or—ia _io^tco2:—<cu_j^_ ^x »-C«-i^<oor\JcOi-'_J

>^- •• »-q.x »-cy.Lu

co -4- cm »-2"r\j-4-Q^a:<XJroXQi »•

»- »-f— —i x 2~ »-^II

ro r<~i LL! 00o ro —*OcCorcCQ. -xoi »• ^^ *-<NcOfOct:^J •>

•-CNJrHOOX -CCsCZiL~3cm c:< »-« s: oj »-<crjLj->CO *•[— «»rHX'~<t— 2 »--5

M^-iuJocxsia: so. --CCC0>-4<S>-* C U-! -<s—>

>-* JZCCZ>Z) -JCD OCzrorcoz-z002:002: h-jsis:2: 2:2-o uoo 00

CO

o-12:<2TLUOQCU

LUO<

o2:

L'J

a:<t

0")

UJ

I-saccCDo00

ccZ3o

00x>o>LUCC(X.

LU

X

OOO O OOO 00

122

Page 248: Performance analysis of a turbo-type energy ... - CORE
Page 249: Performance analysis of a turbo-type energy ... - CORE

LUCO

XQ.

U.OLU

<>

LU

LUX

QLUO<

LOS

02:r-i<u-a:-O-

a:II O.

OCLUax-•h-XOlD

2:- <»»

LO »oLUC>I—)HH

LLh--<- OII UJcc-z.Sit—ilU—"• »».

la:- LOCL<# 1—

<

* ^LO •4-H-& •»

r-H XI*CNJLO vO rna*- II

o #OOhO mil.* r-( -JHI- K •o* 00 -5

O cc<j fl- II-H-H -5

OO'JO CX f-4CO><- •oo o "—<U_ I— ><- -JOO •»

«-

X xO-K ->H LO»~*» ••» a.- o-«- -«

CO II cc# ~D3 *.

o • »o C£~ -if OO •«oo • 21XX-n- Oo o »-<Q_J— -ft • ^».^» II

• • X- Ov<- O -5

•h-t— • CX. •.CO* r-4i—

)

">-}K-O-JI- -X * ~5->_J oO •-1 en- # I— e *-—

• »c£ Q-X •• •>•»- -JOO -3 •>

eo^o: s: aaoo^ • LUIIJ ->ca: 2: ex. a:—

<

*- "ii* • • ••X

lu ax-j-x>-— o57X5" s: 2:

X^XH-CO i£UK O <XOQ O ——»h-

1 1 uj -it- 2; s:I > Z>r>H-

IIIOD«I2ssiszcoco;' *«4-^.t <oocolii« • «>-<

OC0<tOOCMCM H-

I I I <f o00 wiLia:

CMCMC\Jf-< I«-—• COXXX —hh<a:

rororoo-j;- 00 a.

xxx .-<«• or a: -aoco<i— 5: tua:0+ 1 >a.

I 1 1 r>oo mOC0 5!^:i— LU

CMcm <\j LU *~3 x> <rXXXX —cocoot-5: s: 5ZOH- CD CD LU

XXXHGw— oOCD<<CO COLL SHMalOOIOHH^M t—Ii—<

a: 11 11•—

<

•~'Xx^CLco(\ia c^«—^ox~3~7 r~<^II n 11 o 11 oooxcvax i-i—lucl-3-5 2: h-z:

< r^oc»-'Z: a. a. 11 ok 11 1—<<a. ->cci~<i.a:s:s::rz>i-o_:zx>~< 11 11 ww._ kz zssisi^^-'rDzzisr^IDZ> Z)00 »-«»-« a 1— ~p »-i »-<i-<.-HC*:a:z> i— »-ic<h-olOCOCO OH CO-3-3U_U.U_LLXOQiXc:OOLJLLLL.U.UJfy:OLUZOco<Lucrci.CLU^Lu^^^HHi~1 w-ia-OC).a.c.LL.LU «-i>-<>-iQra.LL.a:uj

X ^K r-<

LU

-X

00(NJ ITi

LO OOOrHvOOOCXM O'

LL.

LUoO

t-HQC

x<tQ.K

.. COOLUr-4KCU<C'-JHOo

2T-IQ<»-<o

o'£.

-DU-fl-

•H-

•K-

•«-

OO

-J c£ •-

o • -s:>a-C0 _J-4-*-<c£51 OIIW_i co »-2:clcq•• c0Z?<—' »-»».3 OXaTf-i.jQ C£ »-<Q.cc:<CO «-C0CO ».^_iO0t_

5IO »->-mXCOLU_j_CD i-la *-M

cq •. ioro<—i_jcDco<Oci:h-—)2!c\ja: *-cc »-uj

»-<a'cQ<r\] »-4-mco i— • *-X5Ta^ ••

co lu vj- ai s: 3—< ccZ> »-<Q<f^itOCiiC0-JDKK »-_J•-5:0. •< »>m_j

<h-<xrvJl^^-<coOtiJ »-ci.Xcocf:co5: »-n *-Mco »-Z)<0<_i»-i •cxi_jjIIujI^q: •-

15 •-—I * »-CO Cf-<<<i <z><J-o -O

<; »-<t •••—ix ••—J

_jr<~iXcoX5:co•-co a. lu Or-i co z>D^ja: »-xa.<2! •>< mcocco••cm »-cy x *- siCOCOr-4lU5: C^r-t<.i-iyC <x Cu 4" X a:_J• «-X "li. c^ •Q'^CL_jo^aT5:hhC0_j>-h »-x t>0»V < 00 r^j cc. .—t -J

•j- »• »>clx »-cs:lu

cc^-cnj *-"$.. r-Jvj-o

i^'a:<Z;c<iXcd •»

comLUooooi^Ocoarcoa -ICr^ i^Xl t- - ».(\JcQCOc£_l •"

•KNJr-lcOX »-CXZ)QLI_-3c\Ja: <»ni rj »-<cclj-3co »-k- r^X'-ii— s: »-~3

^r-iLUC^X'TCr: ••—io. *•>ct:cQ>-'C_;»-iCMLU -<^>~>

r-< xo:r>Z) -3CO CO 00o oozco

<s: si 2:5:LUO O OOC£o o 00

r^CVjr^l^t-

'-'CM

Page 250: Performance analysis of a turbo-type energy ... - CORE
Page 251: Performance analysis of a turbo-type energy ... - CORE

CO<Xa.

<

enco

co

*

2:

<ri-UJ

LUco

<

x

XQ_

II

coK-aC7UJZLUC£UJ

UJz>ooI-

00LU

Oh(NJ<CO_JCOLUU

_JUJ<2U

Oco

OOco

oooccoo#oo-ft

H-

cC -•> »-2;<j-

_J<J"»— or

to »-s;o-coCOO'""* *• v- e.

••oxoc<-i_ior «~<a.cx'<:CDt/) .-.—iCOh-

O ->roxcr uj or_ji-cco »ia »-m ox^tars: ~>d- ». <

C£ 0. <>- v5" J- cC3 KC0 •- * IOfK-j_jcOoo<oa;H-_J2:r\jar ~ar »-uj

».< CO <f\l >J"M</>h- •• ••xsr.Qi "coujsj-Qis:r)'-iQ.'3 *<:a<<T, ooorco &

•2:0- ••<jT00 —^ r~l

<n— <xc\ir>r-<oo orQLU O.-l.l^CtlCQ CO21 »-ro t.^cu «»o •>—

<0<_J-< *-<M_J «•

jriujr^c/ •• ->tfacro-ij lo

3 "—l * -i/lcC<f. -ft

<<J-<D-4-iJ -O «OCO fiija. 1.05I r-t

2. i£ <"m aT 2: vf 21< or<; »-<I »hI »-«J w_jcoxooX2:</) ». tt

».cocLUJL_)!~irnrD —

.

3*r_ja: .-xuro. fM

2T -< mma3 •«

•CVJ v-OCX »- »-2_ &oocorHuj^: m^n< s:

- *-x -n>: a: •» *—or r-i a. _i (j<f co 5: *t—<C0_j>—i »-x »-0 Q»-:*r<O0rvCO.--t-J X^ ». ^Q X *-Cr-LU CCcOsttNJ *-sc\j<i-o *;*rar<oc<~iXar »• no» »-h-»-< xrs: -'Si r-i

ofimLui/H_>m,~<o -4-

cOeTcOCL +T.CC - ^ >-*

^C * - »-c\j co ro or _J •> ••«c\j«-ii/>X •-oroou-j roc\ict:<^^ro »-<icoo-3 #CO »•— »„_iX'-)|— 21 »>~5 e

^r-iLuorx2:a: -_ia »• cmor. cq>-'Oi~)cnuj »-o~?

r-H iq:dd -j ii

co o QHarcozsr u-iz002:00 OctShJSS 0051 2:2: oTHOo uo oluzo 00 ("OiLU

CO

o<5ILUUCCO

<

O0

LU

QI

•zo

UJC) LUs: xo H-

<>0

UJ UJz x

-Ja.2COo<

ooCOz>00

O • 21<t-co -J4-»-icr:

_j 00 »-5:clco. cQO>—* ••#•••

O -Ol^^jo cc *-<QLor<CO »>C000 »••—iOOH-2:0 •~>-f^XC0LU_Ji-«CC la. *m•-x-t-ocs »vt -ct:o-<>->*-i-aroco I-* xom<_J_JCQC/)<OCiil~

».<co<:c\i »-^mcok • fisa: •«

cnujvJ-QrsiO'-ia:O »-<Cr'-f0O0Ci:c0JDKK »--J•-2:0- •-< »-rf>_j

_J<I_Jt-H —"ZLCC •»

<H-<XC\J3^hoOouj "Q-Xooaraj2: »-ro »-5.co »-o<0<_I'-h »-rvj_j

jllailXa •«

»-ara.cc'<Or-t—

1

O »--J -ooa:<t<:<t<iZ}<ir<j> -aOCO »-U.ir ""Z>~r.

2. ^ t\! CC 2" "4" 2? <3'

<X •.<! i-i-<I »-_J

COQ-UJO'-'COO

Z •»< »-rorocoo».(\) »-ctTX »• *-2I

t/ico^-cjJ2:rOr-<<»-"^<Lar<l Xoi_J

«~x -X2:ur •OT'-<0-_)0<J"C02:»_,cu_ji_i x »-0-*C < CO (\) CO r-l _J

<)- • "CVX *-ot:lu

cOvi-cNj t.5:rMvto^ororoiix•> ••|-wIi. »-5.

rorniut/)Orri-~<0co or co a. r-x c< - i^o-XujOOV! «~ •• *.<\ co r-"> 0. _J •> <Ol-~i-DOojr-ioox a.'DOU-Txrai:- aoai-

C\JCC<»-«^ i\J ••< CO0"^UJZ. CC 21* t-*i-*t-1

CO (— ••'-,X h t— 2T OliOOOt-'C.D.Q.^—<iucCX>.a: «-_jcl »cfv.i~«»'X •-•»••

-cccQ*-«^)r-<cySiu •u^Os. Q-oa-.or-< xaroo -)»-lj 11 11 00cCO CO OO II '•C-OvO

^2: ztfcozzziioa:O 0D2000 a Zi: »- K- r- 1—

-J2I Sh-JSX^SGCIZZZ<2C 2: 2220haQ.««^uuo o oov_i^-'»-"-,,-'ct:Qrccoro o ouoo-o.a.CLaa.0.

X<5:

Oa:3:

Oa•—

<

n

OCCO

2;o

LLLU

CC

o

LLLUCC

3O

U.O-UJ"-var.»-»

QCUJOOvacs: a.a»

000

124

Page 252: Performance analysis of a turbo-type energy ... - CORE
Page 253: Performance analysis of a turbo-type energy ... - CORE

•in

LU •

i-i <LU ^-1

LULU LO< LUzd: uus: a:-o Oh- Z5KO JXZ>"-« <o -<

ou. >0i LLCC Q.

»

CQZ Lua zm DO x<• to N. H •

o t- «-» IOIOKu_ tO»-< «—

.

HHQit—

<

- *—

*

i~«LL -5 • LULL• CO X w LUOOCDII • 1— LU INI ^-(SILUo —a' > oc hID>lu— mil- zo; X h-h-ZQiium • » l-O D Z>cl • in- O , 1 O LOOto vO.-< II M OCT q: »c

T-lU. t—

(

o< LU CCvO_J<_IU- -h- •* u_ CC 0^0< - Z Q< LU **** IO ^LUz» ii lu M oio » LU>-lOO II -< z U-O <— OOQiLUZ! _J•~i LUU »» 1— «— h^q: (Xt-O^D'-' M <o -> xo z<LUC?X CC ZH •> K'-'LLH- »*

h-SoiUL \- 1—5 M LLO _JOOOlu to XLU f-1 Z LU 0^OfQ-H-O > Ocn — •-iSILUCQ 1-

o •* a: M CJI^ 1 J-,

lOtOcO »—

»

Q-Q >" i-JlX—iUJ ~~s~

to to to :s H Q 1 LULL<„J •^

UJUJLUO t-i <z> 1 i- >o «—

1 1 1—

1

^ o <c Cs!

ZZZLL M 10 3: in —

~

s:^L!h-2 .—

t

oo ££ i—

<

c\) —A >-<ZlO —«•

t—<»—<»—(Q X > Q O O + XwdJ>- _Jto to to LU 9k V-O rsj CM CNJO "3 o<a:o Di c\J c\:

ZZZcO _ Z_l H- O r> DTH-<-J XUJLULU'-' r-l lucl o o O r-< ISJ (xccojo. »* O C5:2: 5:> i-H »-<2~ K H h-O HH ClOZZ ^~ H- h-

H-(Ml-(LU »> Olu o O wt' «»^ < LU CvJ

QQOO- 0> —

(

O O o \~ M—

-

<LU (—i C C«-' LLO o o o— >-~3M 00H-XO —

. O OLULULUIU M LLH- *» O «-a: *—

*

»-(<K-l— -J

IIII — >- LU ~— MM — r-l O Ml— O >- —. -^

h-H-h-H Olu —

»

-» — + + a: to IU DC Olu ^~ •».

*» » f» » LU "S. oo -? -5 -}-? — —

.

x>- CC O^h'J V. -3 ~(X »—

(

**" w <ww ~> — «• I—O t-i • w» ^^

xxxxx LU LOO M rsj MrvJ cc - "51>- w UC>-D ai _J -J

Q-lTMnUAlA «-» CC tox CC CC Of Di MM 9* nj <JJI cc a- cCi—«t—1 1—«—H —

1

o < oo X X XX Z»-« M— || U.CCZU <a X XCC •»•»»»• —

(

H- —1 w •—(i-i »—

(

conoo LL LU LU e • • • •M —

+

LU ZLU LU 2: •HlHI M OK LU LU 0|-Hh->- M.-J UXLOH -J LU LUt-fi—Ii—lt~lr~l Z z< -J O UJJ >J 1D>-w Z »—(>—»—«<; _l OvJO 1—'*-"«--"—

O V. —(2! iCC o C • + 1ro m O 1- z V e_Jh-j-h-h-z -H Z oa: r>J Ii CC z >—

(

U^Z\~cC z DCK-<<<<a: 1- o ZUJ r-tLUZLUr-iUJLU-5-5 || O X CC h- Y—(H-«t—(LU r-lLU^LUZSSSZD o 2; LU(— CC CC OlCC 1

->-«- z> O a: 1- 2: a: a:*-<Qt:c£:a'aih-o z SI cc_j II w II

—II —

w

II<~ OKO Z llzlu_j 2. II— II o'

aooooiuz 3 a < LL u. LLLL LL 1D wujZ 3 LUO< LL LLQ-LLLLLLLLlXLU Lu o LU ~5i—<-jhh-jk-o-* —5>-<>-CJ? U-tXLU U. LU>Z —51—

(

"")>—

1

IZ r-l ImwZomc-H K< O O K-OL0<OOOH O <M in mvOOvOO f-4 (NJ

o uuuc 1 000000 OCJ »

125

Page 254: Performance analysis of a turbo-type energy ... - CORE
Page 255: Performance analysis of a turbo-type energy ... - CORE

00zQ

x

CCX

ccX

uucc

in *CM «-»

O •-»

CMO -?

H —

»

O _jHO 1—

t

>-

CDO lo— H ^^.

»

r-l

—«r-< O +-~ + O "J-)-) ^>w^- w- «»» —>_J_J _J >-J0:0: a: — a:XX 2 h-

+ 00o • e >-

UU_J _)-)0-5>-

-J -J II zCf.Qi H- MD

II^w ||^ |! HOKDLLUL U. O t-^LUZ

"3 t-H t~i -7 •-! >-o >- u_ a: uu

o moCM CMCO

LLI

o<>UU

»—

<

h-OOa:CD13CO

h- UL< OO«-" 00LL 5!•-" • CCOUJUJOZK

^o^2:0<oioo

COUUOO

•00 _j00 <t-<00>OOi—« e

>-x>oJK2L1J< <t-22 <

2-J2uu;5<ODO>_J<2UU

LUUUUU>-COXcCCI- <S00-JCC2UJcQ_iX<<2ooaO <mCWOO-Ql OO2: \-ccODZLU0_JUUt-

<oo2:UJOOU-Cii2 U_<t-l|— LUCL

oa.00Oh- t-H

C0OOH-O _jujooau-s:

uuOOCXLUUJ-•-'IOXoot-KUU qcOLUCO

OIZmI»-XI— 00Q.

OCQ21

OQCO

CC -•» »2I "4"

O0 ••2'Q-COCD ID r—I •»•*»-

oXo''-h_jct: t.<o-ct:<<-C0o0 ••>«» 00 1—

so •->-co:ecouu_J»-»CO *-XO- »-Mi^q;z •-$ »•

arcj.<.>-<M-ct:Z)co *• * iO(fi<_J _j co 00<O c£ l—_J5T(MC^ »-Qi »-UU

•• <£ co <t <ni ••vjrvj

to i— •> -2Z51CX. -cnvu<t cc'S-ZD'-ia:Z> «-< or. co 00 cc coJDKK •>_)

•-STO- »>< »-rri_j

__!<<; («—< -^£.cc f<|-<XCvO.-ioOOLU t-Q_XoOo£cP2: «-co »-2;cq «-o<0<_J'-< »-fM—

I

—ixxuuxsicy:••u:a.ar<o^_jo »-_j «- »-oocc<<vf-<ro<fo *oO CO =-- LUX >DI!

<l —<z »•<—<x •* I

_J coX 00X 2. 00 •-

COQ.UUO'-'CDOO^-JCt: »-xa£<:2 ».< •wfricOCOo»-f\l "CCT. * -"2-

ooco—iuu:rrOr-j<<~*^<XCC<t11CC^Jf »-x »-x2rct: »»

a:-<a. _jo-^cds:1—iC0_.if~i »-x *"0t-iiC'^cOCMCC-l-J

4- •» ••cxx ••OCUJCOxt<\J 5I(\Jv!-0iCcc<iZD^i:cc *

co ro uu 00om i-H c5COoiCUQ. -Tec -SC r. - r.f\IC0r^Cu_)••CNJrHOOX «-Ct.'XlQ

CM CC < »-< 2: CM »•< COcd ••(— ••••—«x t—it— rri^^-iUJoiXScY: »--J»-cr:co»-HOr-!c\jLu ••

Hccz>Z)CD

o—i?"

uuoQ-O

CD OOZc£cooosSZI--I2:o

r-icMm>i- «-«cm

co

LU or>

CD sf CCw CO CM2—^ —Qi « —<(M^ CM* CM CMt- * —C -M- rH -fr *

-;{ co -w- co «• cm «•

^r-(^: vt><^ coco cmSrr S^ 5"^ 2"

-h>COi-<>0O— >v^ >x con> corn t-iro

a. + a:> + cx:< + ajrD + -.—co cox ^> —ICM

+ C\J->r },<• CM* O. CM -if •> CM<<co # st-vt* cM_J-;;- c\]c\i4; H-i-

00 cc, 1-1 •«• occcik oi<-M- cxai'K luluLU HfOIr-lr-1 r-l r-H^-f-l.^ fO ,-•< CH C^ CO CO-i a: cy. o-^o ar o; oct. 2 oct:ct:o <-•*-'

t~ -sv cm •>!• -i;- > « > <> -s- > 00 00

o 0:^0-: art— 2:1- 4M- 5:1-00O cm •-;,- fi aH<aHrri'v;r-i<asv._j oC'-Hsrj-.Gsii-o^sior-t-Cr-iMuu oooo>uuoo>>co>luoo>;2;> 11 11 >>

11 11 11 11 11 11 11 11 11 n 11 11

COCM II II

C^Cfr-lr-l ^<f COCO CMCMCM CO 21 O r-4 21O <f 21O CO 2: OCM r~* CM

a:ct:>>>>>>>>>>>>3:3:

(J>^^>UU^-> 000

126

Page 256: Performance analysis of a turbo-type energy ... - CORE
Page 257: Performance analysis of a turbo-type energy ... - CORE

l-zUJzoa.

oOsij:>:oooo 00 ooqqo^a'c^c^ x> <<<r<##*-# Org # *--* *

c\iNj-enc\j a# c\Jsj-mc\iXXXX <cvi xxxx —5:2:2:2: >a 5:2:2:2:

XXXX UJ# XXXX<r<<< X <<<< •»**«* H-fNJ -*-»-#-* XcMOvjojfNj a*- or c\jc\j(\jc\j .-i

;:- * -ii- # ui< « -K- •«- ## •>? * # >Ou_ ^- *- •»• •«•

»—i »—• »—» »—' CHUO 1—< >—«i—<i—

<

xxxx s; xxxxao.ca o^Ooo 0.0.0.0.__w-v uj^s: .— --»^»_-

+ + + + ox a: + + + +z iu ~~

(Ni-4"nic\j uj<i— (Njvi-rO(\)c\i

00 XXXX cx>- IIIIDuj 2:2:2:2: uj_jz 2:2:s:r-:>O r-Hr-tsTCI ItlJJM _-| _)>•}- (?-)#.

Z IIII LLO XIIIMDUJ COCQCUCO »-i 00 co co to co or. <z— CC -* £ tf •* CUJM -R- ^ fc * | -# CM

CNJ1JJ —«—^ »—«i—1 QC »~» »—1 1—< 1—1 ^» SIftLL XXXX >-<Z XXXX-iS!p-iK u_ aaaa o o Q.aa.o.DOi * *r>-> *- **.*-"~-*~si^-i a_oo>-< >ar, 1 <m<m> -<

oooq + + + + ujsik + + + + >s sir)* * 2:3 zuj^ Zct:< r-izx >>c\i<\j *>>>3r^0#>- fvj^movj ujujnj ->r\jvi-mrvjQi'-<t— * *>2X a:Z-—0 XXXX 1-—I MIIII-UTM .-lr-1 r. e-co. . . - UJujcnjcx 5:212:2; 00 _j -;;- 5'2I5:2.-;: ujs: s::zjr-),-i<\j * * * *zc£#uj f-ic-tsj-m 001— <i ^hh sj-ro 5:2: i-h >>>j: * ujUJ#Z XXXX UJ2Z MIIIIDUJI * * * *oxxxx *u.t-<uj 0000 _j»-<o orroooo «— O'-'cnjccvj-Xi-*'-*—MONi'>^hcoc^O'-<rn>oxiilU-o_ ^w«-»w. Z2h hw*,ww

11 11 11 oOOoo--* mirMrMnLnirsmOvOOf—rHr^rHr-i

O H- II || H || mjZ ^ || || || || Zlifl Kt-H-h-H- Khhhl-II Z> 00_JLU ZZZZhHQ hhl-|-l-<««hl-hhHI-l-l-HHZ««

>- _) c\jsl-r0C\j ZOS II c\j<fror\ia:c\j_j ZZZZZZIXIZZZZZZZZZZZmZ^izo_ca 2:2:2:2: u-u_>-« 2:2:2:2:^2:*- ~~^~^<a:.a'.£to£cc*~<>~*>~>>-<<-*>-*>->>-*>-~>*-<a.-ccc£Lv-&cnooo HH>3-f<i 5: o dhh-t^zho a:a:Qrc:a;ooouoKii:crtfQ:Q:ct.o:ci/ o:aoDOOujarcr xxxx "-<uj <xxxxujXqc CLa.aQ-Q.u-u.u-U_a.aa ex a. 0.0.0.0. a. a u.u-u_u_z < dizUJ I—

O

O^rvrOvt oc\j;a-oZ COCOO inin^in

h-h-r~r~-r- r-f^r-r-

f<1C\JC\|C\J(\J

» • • •

*C\JC\]C\JC\J

><r-<r-(»-<>-H

r-iLLU-U-LLr-ts^-vt-4-vf

f> • »• » »«t>* C\j«».»•»—»«—513 - OOOO>> UJIUUJU'•» v. xoooooooorom<! •-l""^^^^21 Z» •-—• 1— l—K-H->> * *ULU_LLU-

z*UJtNJ

zx1

aro^~2:xCMO-•OX

ro ex?

i-HX *U.O-*<ro- UJX-

. 1

oc*<f —Z)UUX^_l>- •

oOOXfNX. Of-tCD00 *u._JUJ- st

10-4-

CM KZI •5! u_< 1

-ro wl—(—X ooxo•» UJ - X)

fO. H>-X_J21 xior-00vt ann- >.X ZlLHMOO

»• HH^XCD<r UJ 1 _Jjr - >- rH |

t—

1

oootuxi™X 3j oax- a.r- ZZ.'Z

CvJ (NJsf mo-JCNjH-Z XX^_ 2151 Ouj mr-^ r-4--( v+ri'-<ix» • cm-X xxx: ••»»••••»V> * * * »> •-1-0000

127

Page 258: Performance analysis of a turbo-type energy ... - CORE
Page 259: Performance analysis of a turbo-type energy ... - CORE

zo

z UJUJ Xz h-o QQ. U_Z21 o<OO UJ00

DOX _J»H

<?|-< ><UJ a:

UJcc xoUJ h-Z> >—

1

O UOZf-cc

I/O — ZDUJ CM LU|—

• -" 00z OCM UJUL< u_ • exoX «~.«-»«~*-* r-Q^ Q_

CNJCNJCNJOJ- u_ UJ00• • • II

• CXUJ>- r^fomro * 3

r—« ^-1 ^-1 1—1

1— II f--JQ£ U.LLU-U-3 1—1<UJ CLl/O >Z »•»•> *-;x (/) •

UJ •»»»•> t—< moo_J r-O

IX) II II II II > O1/) dec UJ>~«

UJ c\j c\j c\j cm a' a: a:_J > tt *• -:< uj h- D<z fc tt * *• z O e>>—— > ujc£ H-l

HH C\!C\IC\JC\! ULQii/i ex a: a: c£ 00 00 Oz -fc -it- * -ij. C/) (/) ZIU.UJ srsr^rsrujuj2: OOCOJJ CXH--H w^_ww Z"Z U.ZD VSSVOQ UJDmUJ CNJvj-fOlCMt/OOO LUOX IIIIZZ Zmh- 1 1 1 1 UJUJ. K-U,

r_i ,-j ^j- ro 5: 5: <LLIIIIhh h-UJlyO, wQQ IL'OOi

m ooai•* *-•*•- C- f c- CD

< cOco2TX xxxxxx H •-•torD1—

1

< oz<— O <_Jh- 1— 1— 1— 1— l-h-Z >- V)< <<<<<< 0£ ^ <ODSL ST. 21 21 SI ST SID O OZ-Jcc--txcccrrtxc/crt-o O >~>o0- OODOOOU-'Z _J (X)OZU-h-U-U-LLlLLLlLCXUJ CD ~Z>-

1—1 XUJUJh- 00 o> ""• c* <J* 1— co a:m LTMTwOOvOsOh- r-r^r-r-r^f-

UU<J><J>U

oUJo

ro

•-in

c\j^c\iOCMnom »..~(^lljvOir\i—1o i^- vo »o in <—<mm •

mC\jr\Jr-tr-l'-'l—lr-llPr-(rHC\l

• • • • e • • »i—1 • • •»

. Ococornccomo ••r-r-oMr-<cor<)<-<crcor-h-i^-sOvOuj•—< vtf

- CM CV CXI .—1 1—1 r—It—I v0 '-<'—< in »*vecccotc «<—1 • »i—

1

Z r- c* ) r- 4" cmOO coO a: or. in cc.

••NjTOnJC\IC\|C\ll-(r-ICX'r-lr-<CM

M •••••••••-< • «UJZ££,...•.»».«.•.•.,,.•.,..I— Ovj-r-iinof^-r*"'^ »-00 <-•*>.

lomcocMco oNrHOOo "j •o^inrorOCMcMCMCMCMOCMCM^}-

•*-e««oeeo ©CM • eOi—<

_„•.,.,.....•.*,•. .-UJ'V.

»-icoinc vOomm »-oc\i «rvj

i-iO^nToc^mrocMinfOrocoac:^^Osf rOrriCNjCNJCNJCNjCMCNjCM »•{—

rvJe»6»«*e»c\l»o^"i/)

XOO m<]- oc-l-O »-0(\iuj »•

••co^f inoinco oiAaol^h- o«s»

— nO in <j- ni ro c\j t\i cm ir^ r j oj sD in

O^CNJCVOsfO^ •CNJ Z)0c.Tvjror^-rMOr^.omro^-UJco

— f*-sC'n>j- N^-ro rem r-< <riro • •«

Ne««»««otri"i« «sf IA

moc^if .njxOino '-co^lu^c\io voc-^m^-icrofnvi-o •

oiv-ommvj-^foON?'-tujvO •

HI I • O ( « t • »vj- « c <V •»

IX*-*..*.*...*.*-** Mb")<0<fr^OCMinroir» -c-ov.oi—c <i" <f 00 co <r co vj- o c ... .•m ujuj ocC'r~-vO vom-J-vtmNj-mct: •Mr—t e •• •• o e^ • eX^J'

V. •

V.NJz>-o2I<2!(- Oa< zua uj

r-if\jfr)-4-mNor^coo<coo

<o$£Oo-JCD

O1—1

a:

uj

X

u.ol>0

UJ

_J<>UJX

UJ

a:<oz<

1—1 •

00LUCXcr ujDeoCDS

LLZ

SlooOQDi~lU-CDZ

o>-UJUJZa.'1—

<

<i/i

h-r>QDOO-*

to<

<do:o

OOK1—>t_)

X<H-U.

inin^thoOUJ• •.CO

m. ••

-<oOUJ »•

• »^•-vom

rn -oh-vj-UJf-<o •

OUJ co• • »•

in oco>4-uj

JHO •

aroujoz • • ••

»• ffCllA

J(<1 »-oorc^-shujI— r-<0 •

> • •

—>fvOCNJO—IU-I

f-<(\'C-< «

>-OXro_J e » «-

a: »-\m»vXccf^-OCMt—irouj.—

1

i^CVJt-t »v.cvjoorj-j—1 » 9 +CC»-» » »-mzJCO'-I-,.' •»

>-fTl>3-UJV,c\j 1-1 in o

V.OO « »

UJ »- . »-V.

ex in go in _j*5.v0^cof:ar.'Hiuh-SIOO »^_J t |H>-

-z.>os:<hi—o<

azUJ

tCMfO

<J>Ul-><J>

128

Page 260: Performance analysis of a turbo-type energy ... - CORE
Page 261: Performance analysis of a turbo-type energy ... - CORE

REFERENCES

1. Naval Air Engineering Center, Engineering Department (Si) ReportMisc-08998, Theoretical Performance of Programmed Drum ArrestingGear , by V/illiam Clark, 1 July 1970.

'

2. Vavra, M. H. , Energy Absorber , April 1970.

3. Vavra, M. H. , Aero-Thermodynamics and Flow in Turbomachines. New.York: John Wiley and Sons, 1960.

4. Horlock, J.H., Journal of the Institute of Mechanical Science ,

Vol. 2, p. 48-75, 1960.

5. Zweifel, 0., "The Spacing of Turbomachine Bladings", Brown BoveriCompany Review , December, 1945*

6. Sprenger, H. , Schweiz Bauzeitung , 87th year, no. 15, p. 223-251, 1969-

7. Biolley, A., Schweiz Bauzeitung, Vol, 118, no. 8, p. 85-86, 1941.

129

Page 262: Performance analysis of a turbo-type energy ... - CORE
Page 263: Performance analysis of a turbo-type energy ... - CORE

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2

Cameron StationAlexandria, Virginia 22314

2. Library, Code 0212 2

Naval Postgraduate SchoolMonterey, California 93940

3. Professor T. H. Gawain, Code 57Gn 2

Department of AeronauticsNaval Postgraduate SchoolMonterey, California 93940

4. Chairman, Code 57 1

Department of AeronauticsNaval Postgraduate SchoolMonterey, California 93940

•5, Assoc, Professor R. D. Zucker, Code 57Zu 1

Department of AeronauticsNaval Postgraduate SchoolMonterey, California 93940

6. Professor M. H. Vavra, Code 57Va 5

Department of AeronauticsNaval Postgraduate SchoolMonterey, California 93940

7. ENS Leo S. Rolek, Jr. USN 1

9808 Avenue J

Chicago, Illinois 60617

130

Page 264: Performance analysis of a turbo-type energy ... - CORE
Page 265: Performance analysis of a turbo-type energy ... - CORE

Security Classification

DOCUMENT CONTROL DATA -R&D'Security classification of title, body of abstract and indexing annotation mu\l be entered when the overall report is classified*

iriGinatinG activity (Corporate author)

Naval Postgraduate SchoolMonterey, California 939^0

Za. REPORT SECURITY CLASSIFICATION

Unclassified2b. GROUP

1EPOR T TITLE

Performance Analysis of a Turbo-Type Energy Absorber for an Aircraft CarrierArresting Gear

DESCRIPTIVE NOTES (Type of report and, inclusive dates)

Master's Thesis; June 1971IUTHORI5I (firsl n«m«, middle initial, last name)

Leo S. Rolek, Jr.

IEPOR T DATE

June 1971

7a. TOTAL NO. OF PAGES

132

7b. NO. OF REFS

CONTRACT OR GRANT NO.

PROJEC T NO

S«. ORIGINATOR'S REPORT NUMBERISi

9b. OTHER REPORT NOISi (Any other numbers thai may be assignedthis report)

DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

SUfl-LtMtNlAk* NOlLS 12. SPONSORING milIT Ah'i ACTi

Naval Postgraduate SchoolMonterey, California 939^0

ABSTRACT

The increasing weight and speed of carrier based aircraft are taxing the

limit of conventional piston type energy absorbers which are used for arresting

gear. Turbo-type absorbers have been proposed as an alternative. This study

investigates a turbo-type energy absorber for an aircraft arresting gear under

development by the Naval Air Engineering Center. A mathematical analysis,

computer simulation and performance prediction are given for each mode of

operation. It was initially expected that the absorber' could operate in just

two modes, forward and reverse, but the analysis shows that four distinct

modes are possible, since not only shaft -rotation but the path of fluid flow

can be reversed. Theoretical performance predictions are also compared with

test data from an existing smaller scale version of the absorber. The

agreement is excellent. An approximation of scaling effects on power

absorption is also presented. It is concluded that the turbo-type absorber

is basically adequate to meet the demands of carrier operation for the

forseeable future.

DFORMI NOV 65

I 0101 -807-681 1

1473 (PAGE 1)

151Security Classifies

Page 266: Performance analysis of a turbo-type energy ... - CORE
Page 267: Performance analysis of a turbo-type energy ... - CORE

Security Classification

KEY WORDS

urbo-type energy absorber

rresting gear

ROLE W T

F0RM 1^.73 (BACK)I NOV «t I S1 / <J

101 -507-69 ; I 132 Security Classification

Page 268: Performance analysis of a turbo-type energy ... - CORE
Page 269: Performance analysis of a turbo-type energy ... - CORE

128616

6.1 f a turbo--tVP

absorber for an , ng

craft carrier a

gear.

J 1

Thesis 128616R68945 Rolekc.l Performance analysis

of a turbo- type energy

absorber for an air-

craft carrier arrestinggear.

Page 270: Performance analysis of a turbo-type energy ... - CORE

thesR68945

3 2768 001 98109 5DUDLEY KNOX LIBRARY5