performance based design by ashraf h

Upload: korosh75

Post on 06-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 performance based design by Ashraf H.

    1/86

    Nonlinear Analysis & Performance Based Design

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    2/86

    Nonlinear Analysis & Performance Based Design

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    3/86

    Nonlinear Analysis & Performance Based Design

    CALCULATED vs MEASURED

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    4/86

    Nonlinear Analysis & Performance Based Design

    ENERGY DISSIPATION

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    5/86

    Nonlinear Analysis & Performance Based Design

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    6/86

    Nonlinear Analysis & Performance Based Design

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    7/86

    Nonlinear Analysis & Performance Based Design

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    8/86

    Nonlinear Analysis & Performance Based Design

    IMPLICIT NONLINEAR BEHAVIOR

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    9/86

    Nonlinear Analysis & Performance Based Design

    STEEL STRESS STRAIN RELATIONSHIPS

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    10/86

    Nonlinear Analysis & Performance Based Design

    INELASTIC WORK DONE!

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    11/86

    Nonlinear Analysis & Performance Based Design

    CAPACITY DESIGN

    STRONG COLUMNS & WEAK BEAMS IN FRAMES

    REDUCED BEAM SECTIONSLINK BEAMS IN ECCENTRICALLY BRACED FRAMES

    BUCKLING RESISTANT BRACES AS FUSES

    RUBBER-LEAD BASE ISOLATORS

    HINGED BRIDGE COLUMNS

    HINGES AT THE BASE LEVEL OF SHEAR WALLSROCKING FOUNDATIONS

    OVERDESIGNED COUPLING BEAMS

    OTHER SACRIFICIAL ELEMENTS

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    12/86

    Nonlinear Analysis & Performance Based Design

    STRUCTURAL COMPONENTS

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    13/86

    Nonlinear Analysis & Performance Based Design

    MOMENT ROTATION RELATIONSHIP

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    14/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    IDEALIZED MOMENT ROTATION

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    15/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    PERFORMANCE LEVELS

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    16/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    IDEALIZED FORCE DEFORMATION CURVE

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    17/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design   17

     ASCE 41 BEAM MODEL

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    18/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    •   Linear Static Analysis

    •   Linear Dynamic

     Analysis

    (Response Spectrum or Time History Analysis)

    •   Nonlinear Static Analysis

    (Pushover Analysis)

    •   Nonlinear Dynamic Time History Analysis(NDI or FNA)

     ASCE 41 ASSESSMENT OPTIONS

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    19/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    ELASTIC STRENGTH DESIGN ‐ KEY STEPS

    CHOSE DESIGN CODE AND EARTHQUAKE LOADS

    DESIGN CHECK PARAMETERS STRESS/BEAM MOMENT

    GET ALLOWABLE STRESSES/ULTIMATE– PHI FACTORS

    CALCULATE STRESSES  – LOAD FACTORS (ST RS TH)

    CALCULATE STRESS RATIOS

    INELASTIC DEFORMATION BASED DESIGN ‐‐ KEY STEPS

    CHOSE PERFORMANCE LEVEL AND DESIGN LOADS  – ASCE 41

    DEMAND CAPACITY MEASURES  – DRIFT/HINGE ROTATION/SHEAR

    GET DEFORMATION

     AND

     FORCE

     CAPACITIES

    CALCULATE DEFORMATION AND FORCE DEMANDS (RS OR TH)

    CALCULATE D/C RATIOS  – LIMIT STATES

    STRENGTH vs DEFORMATION

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    20/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    STRUCTURE and MEMBERS

    •   For a structure, F = load, D = deflection.

    •   For a component, F depends on the component type, D is the 

    corresponding deformation.

    •   The component F‐D relationships must be known. 

    •   The structure F‐D relationship is obtained by structural analysis.

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    21/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    FRAME COMPONENTS

    •   For each component type we need :

    Reasonably accurate nonlinear F‐D relationships.

    Reasonable deformation and/or strength capacities.

    •   We must choose realistic demand‐capacity measures, and it must be feasible to calculate the demand values. 

    •   The best model is the simplest model that will do the  job.

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    22/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    Force (F)

    Initiallylinear 

    StrainHardening

    Ultimatestrength

    Strength loss

    Residual strength

    Complete failure

    First yield

    Ductile limit

    Hysteresis loopStiffness, strength and ductile limit mayall degrade under cyclic deformation

    Deformation (D)

    F-D RELATIONSHIP

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    23/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    LATERALLOAD

    Partially DuctileBrittle Ductile

    DRIFT

    DUCTILITY

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    24/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

     ASCE 41 - DUCTILE AND BRITTLE

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    25/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    FORCE AND DEFORMATION CONTROL

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    26/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    F

    Relationship allowingfor cyclic deformation

    Monotonic F-D relationship

    Hysteresis loopsfrom experiment.

    D

    BACKBONE CURVE

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    27/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    HYSTERESIS LOOP MODELS

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    28/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    STRENGTH DEGRADATION

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    29/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

     ASCE 41 DEFORMATION CAPACITIES

    •   This can be used for components of  all types.

    •   It can

     be

     used

     if 

     experimental

     results

     are

     available.

    •   ASCE 41 gives capacities for many different components. 

    •   For beams and columns, ASCE 41 gives capacities only for the chord rotation model.

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    30/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    θi  θ j

    Currentθ

    Elasticθ

    Plastic (hinge) θ

    Totalrotation

    Zero length hinges

    Elastic beam

    Plasticrotation

    Elasticrotation

    Similar atthis end

    Mi M j

    M or Mi j

    M

    θ θi jor

    θ

    BEAM END ROTATION MODEL

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    31/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    PLASTIC HINGE MODEL

    •   It is

     assumed

     that

     all

     inelastic

     deformation

     is

     concentrated

     in

     zero

    length plastic hinges.

    •   The deformation measure for D/C is hinge rotation.

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    32/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    PLASTIC ZONE MODEL

    •   The inelastic behavior occurs in finite length plastic zones.

    •   Actual plastic

     zones

     usually

     change

     length,

     but

     models

     that

     have

     

    variable lengths are too complex.

    •   The deformation measure for D/C can be :

    ‐ Average curvature in plastic zone.

    ‐ Rotation over plastic zone ( = average curvature  x  plastic zone length).

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    33/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

     ASCE 41 CHORD ROTATION CAPACITIES

    IO LS CP

    Steel Beam θp/θy = 1 θp/θy = 6 θp/θy = 8

    RC Beam

    Low shear 

    High shear 

    θp = 0.01

    θp = 0.005

    θp = 0.02

    θp = 0.01

    θp = 0.025

    θp = 0.02

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    34/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    COLUMN AXIAL‐BENDING MODEL

    Mi

    P

    PP

    P

    or 

    V

    V

    M j

    MM

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    35/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    STEEL COLUMN AXIAL‐BENDING

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    36/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    CONCRETE COLUMN AXIAL‐BENDING

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    37/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    NodeZero-lengthshear "hinge"Elastic beam

    SHEAR HINGE MODEL

    PANEL ZONE ELEMENT

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    38/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    PANEL ZONE ELEMENT

    •   Deformation, D = spring rotation = shear strain in panel zone.

    •   Force, F = moment

     in

     spring

     = moment

     transferred

     from

     beam

     to

     column elements. 

    •   Also, F = (panel zone horizontal shear force) x (beam depth).

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    39/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    BUCKLING-RESTRAINED BRACE

    The BRB element includes “isotropic” hardening.

    The D‐C measure is axial deformation.

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    40/86

    WALL FIBER MODEL

  • 8/17/2019 performance based design by Ashraf H.

    41/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    Steel

    fibers

    σ

    σ

    ε

    ε

    Concretefibers

    WALL FIBER MODEL

    ALTERNATIVE MEASURE STRAIN

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    42/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

     ALTERNATIVE MEASURE - STRAIN

    NONLINEAR SOLUTION SCHEMES

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    43/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

     ∆ ƒ 

     ƒ 

     ∆ u   u

    1 2

    iteration

    NEWTON  – RAPHSON

    ITERATION

     ∆ ƒ 

     ƒ 

     ∆ u   u

    1 2

    iteration

    CONSTANT STIFFNESS

    ITERATION

    3 4 56

    NONLINEAR SOLUTION SCHEMES

    CIRCULAR FREQUENCY

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    44/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    Y

    +Y

    -Y

    0 Radius, R

    θ

    CIRCULAR FREQUENCY

    THE D V & A RELATIONSHIP

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    45/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    u.

    t

    ut1.

    ..

    Slope = ut1..

    t1

    u

    t1 t

    Slope = ut1.

    u

    ut1..

    t1 t

    THE D, V & A RELATIONSHIP

    UNDAMPED FREE VIBRATION

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    46/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    UNDAMPED FREE VIBRATION

    )cos(0   t uut  ω =

    0ukum &&

    m

    k where =ω 

    RESPONSE MAXIMA

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    47/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    RESPONSE MAXIMA

    ut    )cos(0   t u ω =

    )cos(02

    t u ω ω −=ut &&

    )sin(0   t u ω ω −=ut &

    max2uω −=maxu&&

    BASIC DYNAMICS WITH DAMPING

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    48/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    BASIC DYNAMICS WITH DAMPING

    guuuu   &&&&&   −22

    guMKuuCuM

    KuuC

    t

    uM

    &&&&&

    &&&

    = 0

    gu&&

    M

    K

    C

    RESPONSE FROM GROUND MOTION

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    49/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    ug..

    2ug2..

    ug1

    ..

    1

    t1 t2

    Time t

    && A Bt u

    g

    = + = −&&   &u u u+ +22ξω ω

    RESPONSE FROM GROUND MOTION

    DAMPED RESPONSE

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    50/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    { [ & ] cos

    [ (&

    )] sin }

    e uB

    t

     A u u

    B

    t

    B

    t

    t d

    dt t d

    &ut = −

    + − − + +

    −ξω

    ωω

    ω ω ξω ω ω ω

    1 2

    2

    1 1 2 2

    1

    e A B

    t

    u u A B

    t

     A B Bt

    t

    t d

    dt t d

    ut = − +

    + + − +−

    + − +

    −ξω

    ω

    ξ

    ω

    ω

    ωξω

    ξ

    ω

    ξ

    ωω

    ωξ

    ω ω

    { [u ] cos

    [ &( )

    ] sin }

    [ ]

    1 2 3

    1 1

    2

    2

    2 3 2

    2

    1 2 1

    2

    DAMPED RESPONSE

    SDOF DAMPED RESPONSE

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    51/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    SDOF DAMPED RESPONSE

    RESPONSE SPECTRUM GENERATION

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    52/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    RESPONSE SPECTRUM GENERATION

    -0.40

    -0.20

    0.00

    0.20

    0.40

    0.00 1.00 2.00 3.00 4.00 5.00 6.00

    TIME, SECONDS

       G   R   O

       U   N   D

       A   C   C ,  g

    Earthquake Record

    Displacement

    Response Spectrum5% damping

    -4.00

    -2.00

    0.002.00

    4.00

    0.00 1.00 2.00 3.00 4.00 5.00 6.00

       D   I   S   P   L ,

       i  n .

    -8.00

    -4.00

    0.00

    4.00

    8.00

    0.00 1.00 2.00 3.00 4.00 5.00 6.00

       D   I   S   P

       L ,   i  n .

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 2 4 6 8 10

    PERIOD, Seconds

       D   I   S   P   L   A   C   E   M   E   N   T ,

       i  n  c   h  e  s

    T= 0.6 sec

    T= 2.0 sec

    SPECTRAL PARAMETERS

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    53/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    0

    4

    8

    12

    16

    0 2 4 6 8 10

    PERIOD, sec

       D   I   S   P   L

       A   C   E   M   E   N   T ,   i  n .

    0

    10

    20

    30

    40

    0 2 4 6 8 10

    PERIOD, sec

       V

       E   L   O   C   I   T   Y ,   i  n   /  s  e  c

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    0 2 4 6 8 10

    PERIOD, sec

       A   C   C   E   L   E   R   A   T   I   O   N ,  g

    dV SPS   ω

    va PSPS   ω

    SPECTRAL PARAMETERS

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    54/86

  • 8/17/2019 performance based design by Ashraf H.

    55/86

     ASCE 7 RESPONSE SPECTRUM

  • 8/17/2019 performance based design by Ashraf H.

    56/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    PUSHOVER

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    57/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    THE LINEAR PUSHOVER

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    58/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    EQUIVALENT LINEARIZATION

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    59/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    How far to push? The Target Point!

    DISPLACEMENT MODIFICATION

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    60/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    DISPLACEMENT MODIFICATION

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    61/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    Calculating the Target Displacement

    C0 

    Relates spectral to roof  displacement

    C1 Modifier for inelastic displacement

    C2 Modifier for hysteresis loop shape

    δ = C 0C 

    1C 

    2S

    aT 

    e

    2/ (4π 

    2)

    LOAD CONTROL AND DISPLACEMENT CONTROL

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    62/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    P-DELTA ANALYSIS

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    63/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    P-DELTA DEGRADES STRENGTH

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    64/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    P-DELTA EFFECTS ON F-D CURVES

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    65/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    STRUCTURESTRENGTH

    The "over-ductility" is reduced,and is more uncertain.

    P- e ects may reduce the dri t at which the"worst" component reaches its ductile limit.Δ

    P- effects will reduce the drift atwhich the structure loses strength.Δ

    DRIFT

    THE FAST NONLINEAR ANALYSIS METHOD (FNA)

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    66/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    NON LINEAR FRAME AND SHEAR WALL HINGES

    BASE ISOLATORS (RUBBER & FRICTION)

    STRUCTURAL DAMPERS

    STRUCTURAL UPLIFT

    STRUCTURAL POUNDINGBUCKLING RESTRAINED BRACES

    RITZ VECTORS

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    67/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    FNA KEY POINT

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    68/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    The Ritz modes generated by the 

    nonlinear 

    deformation 

    loads 

    are 

    used 

    to modify the basic structural modes 

    whenever the nonlinear elements go 

    nonlinear.

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    69/86

  • 8/17/2019 performance based design by Ashraf H.

    70/86

    MESH REFINEMENT

  • 8/17/2019 performance based design by Ashraf H.

    71/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design71

     APPROXIMATING BENDING BEHAVIOR

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    72/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design72

    This is for a coupling beam. A slender pier is similar.

     ACCURACY OF MESH REFINEMENT

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    73/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design73

    PIER / SPANDREL MODELS

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    74/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design74

    STRAIN & ROTATION MEASURES

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    75/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design75

    STRAIN CONCENTRATION STUDY

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    76/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    76

    Compare calculated strains and rotations for the 3 cases.

    STRAIN CONCENTRATION STUDY

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    77/86

    Nonlinear Analysis

     &

     Performance

     Based

     Design

    77

    The strain over the story height is insensitive to the number of  elements. 

    Also, the rotation over the story height is insensitive to the number of  elements. 

    Therefore these are good choices for D/C measures.

    No. of

    elems

    Roof

    drift

    Strain in bottom

    element

    Strain over story

    height

    Rotation over

    story height

    1 2.32% 2.39% 2.39% 1.99%

    2 2.32% 3.66% 2.36% 1.97%

    3 2.32% 4.17% 2.35% 1.96%

    DISCONTINUOUS SHEAR WALLS

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    78/86

    Nonlinear 

    Analysis 

    Performance 

    Based 

    Design

    PIER AND SPANDREL FIBER MODELS

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    79/86

    Nonlinear 

    Analysis 

    Performance 

    Based 

    Design79

    Vertical and horizontal fiber models

    RAYLEIGH DAMPING

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    80/86

    Nonlinear 

    Analysis 

    Performance 

    Based 

    Design  80

    •   The αM dampers

     connect

     the

     masses

     to

     the

     ground.

     They

     exert

     

    external damping forces. Units of  α are 1/T.

    •   The βK dampers act in parallel with the elements. They exert internal damping forces. Units of  β are T.

    •   The 

    damping 

    matrix 

    is 

    C = 

    αM + 

    βK.

    RAYLEIGH DAMPING

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    81/86

    Nonlinear 

    Analysis 

    Performance 

    Based 

    Design  81

    •   For linear

     analysis,

     the

     coefficients

     α and

     β can

     be

     chosen

     to

     give

     essentially

     constant damping over a range of  mode periods, as shown.

    •   A possible method is as follows :

    Choose TB = 0.9 times the first mode period.

    Choose TA = 0.2 times the first mode period.

    Calculate α and

     β to

     give

     5%

     damping

     at

     these

     two

     values.

    •   The damping ratio is essentially constant in the first few modes.

    •   The damping  ratio is higher for the higher modes.

    RAYLEIGH DAMPING

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    82/86

    Nonlinear 

    Analysis 

    Performance 

    Based 

    Design

    KuuC &tuM &&  = 0

    Kuu& + = 0 

    M + 

    u&& +

    C

    Mu&

    MuK = 0

    2uu&  =

    2   0  ω2 M

      = C

    ω2= 

    +

     

    ω

    2

    ω2=CM 2

    =

    C

    MMK  =

    2

    C

    MK   2 MK

      M+

      K=

    tuM &&

    u&&

    ;

    2 MK

    RAYLEIGH DAMPING

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    83/86

    Nonlinear 

    Analysis 

    Performance 

    Based 

    Design

    Higher Modes

     (high

     ω) = β 

    Lower Modes (low ω) = α 

    To get

     ζ from

     α  &

      β  for

     any

     ω M

    K=

    To get α  &  β   from two values of   ζ1

    & ζ2

    ; Τ 2πω

    =

    ζ1

    = α 2ω

    1

    +

     β ω1

    2

    ζ2 = α 2ω2

    +

     β ω22

    Solve for α  &  β 

    DAMPING COEFFICIENT FROM HYSTERESIS

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    84/86

    Nonlinear 

    Analysis 

    Performance 

    Based 

    Design

    http://www.civil808.com/

  • 8/17/2019 performance based design by Ashraf H.

    85/86

     A BIG THANK YOU!!!

  • 8/17/2019 performance based design by Ashraf H.

    86/86

    Nonlinear 

    Analysis 

    Performance 

    Based 

    Design

    http://www.civil808.com/