performance of simulated annealing, simulated quantum ...performance of simulated annealing,...

43
| | Matthias Troyer Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1

Upload: others

Post on 03-Feb-2020

34 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances

1

Page 2: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ Troels Rønnow (ETH) ▪ Sergei Isakov (ETH → Google) ▪ Sergio Boixo (USC → Google) ▪ Joshua Job (USC) ▪ Zhihui Wang (USC) ▪ Bettina Heim (ETH, BSc student) ▪ Damian Steiger (ETH) ▪ Ilia Zintchenko (ETH) ▪ Dave Wecker (Microsoft Research) ▪ John Martinis (UCSB) ▪ Daniel Lidar (USC)

2

Collaborators

Page 3: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer 3

!Spin glasses on the D-Wave chimera graph

Page 4: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ NP-hard for non-planar lattices (Barahona 1982) ▪ No spin glass phase in finite-D lattices in a magnetic field (Young et al, 2004)

4

Worst-case complexity and spin glass physics

no magnetic field with magnetic field

2D planar polynomial spin glass phase at T=0

NP-hard no spin glass phase

2D non-planar NP-hard spin glass phase at T=0

NP-hard no spin glass phase

3D or higher dimensions

NP-hard spin glass phase with

NP-hard no spin glass phase

Infinite dimensions NP-hard spin glass phase with

NP-hard spin glass phase with

H = Jijij∑ sis j + hi

i∑ si + const. with si = ±1

Page 5: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ In the absence of a spin glass phase correlations are short-ranged. Can we thus solve typical spin glass problems locally?

▪ Spin glass Tc=0 in 2D. Is a 2D lattice the wrong system for realizing hard problems? see following talk by Helmut Katzgraber Katzgraber, Hamze, Andrist, Phys. Rev. X (2014)

5

Average case complexity

We observe average case polynomial scaling for a new algorithm see tomorrow’s talk by Ilia Zintchenko

Page 6: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer 6

!Annealing Simulated annealing !Adiabatic quantum optimization Quantum annealing Simulated quantum annealing

Page 7: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

Image credit ANFF NSW node, University of New South Wales

Annealing A neolithic technology

Slowly cool metal or glass to improve its properties and get closer to the ground state

7

Long history of annealing

Simulated annealingKirkpatrick, Gelatt and Vecchi, Science (1983)

A classical optimization algorithm

Slowly cool a model in a Monte Carlo simulation to find the solution to an optimization problem

Page 8: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

Quantum annealing for a transverse field Ising modelKadowaki and Nishimori (1998) Farhi, Goldstone, Gutmann and Sipser (2000)

8

Add a transverse magnetic field to induce quantum fluctuations

Initial time t=0: all spins aligned with the transverse field

Final time t=tf: ground state of the Ising spin glass

8

H (t) = B(t) Jijσ izσ j

z

i< j∑ − A(t) σ i

x

i∑

� ��� ��� ��� ��� ��

��

��

��

��

�� ���������

�����

�����

Page 9: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ Quantum annealing not necessarily stays adiabatic Kadowaki and Nishimori (1998)

▪ Adiabatic quantum optimization is the special case of perfectly coherent adiabatic evolution in the ground state Farhi, Goldstone, Gutmann and Sipser (2000)

▪ Experimental quantum annealing (QA) Quantum mechanical evolution in a material or device, potentially at finite temperatures Brooke, Bitko, Rosenbaum, Aeppli, Science (1999)

9

Quantum annealing

Page 10: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ “Schrödinger” dynamics (unitary) ▪ Exponential complexity on classical hardware

▪ Simulates the time evolution of a quantum system

▪ Unitary evolution in the ground state: U-QAKadowaki and Nishimori (1998)

▪ Open systems dynamics using master equations: OS-QA

▪ Quantum Monte Carlo dynamics (stochastic) ▪ Classical algorithms with polynomial complexity

▪ QMC samples the equilibrium thermal state of a quantum system

▪ Typically based on path integral Monte Carlo simulations: QMC-QAApolloni et al (1988), Santoro at al (2002)

▪ Mean-field MC version using coherence but no entanglement: MC-QAShin, Smolin, Smith, Vazirani, arXiv:1401.7087

10

Simulated quantum annealing

Page 11: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ Many quantum systems have effective semi-classical (mean-field) descriptions.

▪ “Quantum annealing” describes a process performed on a quantum system.

▪ “Quantum annealing” is not necessarily a statement about large-scale entanglement being important for the performance or it outperforming classical approximations.

11

Is quantum annealing quantum or classical?

Page 12: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer 12

Are the D-Wave devices quantum annealers?

Page 13: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

Find hard test problems for the machine to solve

random couplings on all bonds of the chimera graph

13

Our experiments

hundred million experiments on D-Wave One

billions of simulations classical and quantum Monte Carlo

1000s of choices of couplings 1000-10000 repetitions of the annealing

10s of problem sizes vary the annealing time and schedule

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

1

S. Boixo et al, Nature Physics (2014)

Page 14: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

1. Pick a specific instance of the couplings Jij and fields hi

2. Perform N = 1000 or more annealing runs and measure the final energy ▪ count the number of times S that we find a ground state ▪ calculate the success probability s = S/N of finding a ground state in

one run

3. Repeat for many instances of the couplings Jij and fields hi

4. Make a histogram of the success probabilities s

14

Success probability histograms

Num

ber o

f ins

tanc

es

S. Boixo et al, Nature Physics (2014)

Page 15: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

Num

ber o

f ins

tanc

es

▪ Bimodal histogram for D-Wave One and the simulated quantum annealer ▪ D-Wave One is inconsistent with a classical annealer ▪ D-Wave One is consistent with a simulated quantum annealer ▪ D-Wave One does not look too similar to mean field spin dynamics

15

Comparing the histograms

Simulatedclassical annealer

Simulated quantum annealerD-Wave One

Mean field spin dynamics

Num

ber o

f ins

tanc

es

S. Boixo et al, Nature Physics (2014)

Page 16: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

D-Wave One, gauge transformed

D-W

ave

One

16

Correlations

The correlation between a simulated quantum annealer and D-Wave is as good as the correlation of D-Wave with itself

16

Simulated quantum annealer

but 5% outliers:

calibration problems?

excellent correlations

H = Jiji, j∑ σ iσ j

σ i ← aiσ i with ai = ±1Jij ← aiajJij

Investigate calibration issues by using a gauge transformation

si = +1 si = -1

si = +1si = -1

or

D-W

ave

One

S. Boixo et al, Nature Physics (2014)

Page 17: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

The same instances are hard and easy on D-Wave and the simulated quantum annealer

but not on D-Wave and mean-field spin dynamics or classical annealing17

D-Wave One

classical annealerclassical

spin dynamics

QMC-QA

Comparing the performance characteristicsby correlating success probabilities for N=108

Page 18: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

Shin et al’s model

Sim

ulat

ed q

uant

um a

nnea

ler

▪ …QMC-QA correlates well with a finely tuned mean field version Shin et al., arXiv:1401.7087 !!!!!!!!!!!!

▪ My conclusion from this work: a quantum annealer at the temperatures where D-Wave operates might not profit much from quantum effects

18

D-Wave performs like a quantum annealer, but …

Page 19: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

1. Does adiabatic quantum computing for the Ising spin glass have any speedup over classical algorithms?

2. Does finite-temperature quantum annealing have any speedup over classical algorithms?

3. Does the implementation in the D-Wave devices have any speedup over classical algorithms?

19

Three open questions about quantum annealing for typical (not worst case) problems

Page 20: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer 20

! the ultimate and only important test is quantum speedup

Scaling to larger problem sizes

Page 21: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ The hope that a quantum annealer outperforms a classical one is based on experiences with QMC-QA

▪ Simulated quantum annealing by QMC gives lower residual energies than simulated thermal annealing, but not for all models

21

Simulated classical versus quantum annealing

Santoro et al (2002), similar results by

Matsuda, Nishimori, Katzgraber (2009)

Spin glass Topical Review R419

10

100

100 1000 10000 100000 1e+06

ε res

(τ)

τ (inverse annealing rate)

CAQA (P=50)

QA+G (P=50)Field Cycling

Gardner Energy

35

40

45

50

10 100 1000P

Figure 9. Comparison between optimal linear-schedule classical (CA) and path-integral MonteCarlo quantum annealing (PIMC-QA) for a 3-SAT problem with N = 104 and α = M/N = 4.24.CA always performs better than PIMC-QA simulated with P = 50 Trotter replicas. The averageperformance of linear PIMC-QA is worse than that of CA, even if an improvement in the resultscan be obtained by introducing global moves (G) and by increasing P (in the inset the final averageenergy found by PIMC-QA after 2000 iterations for increasing P is plotted and compared with theaverage result of a CA of the same length, dashed line). The solid triangles are the data obtainedby the field cycling PIMC-QA hybrid strategy described in [39].

same experiment; in the case of QA, a second average was performed among the energiesof the P replicas, which are in general different. It can be seen that the linear-schedule CAalways performs better than the linear-schedule QA. No further improvement can be obtainedfor P ! 100, see inset of figure 9—a much larger value than in the case of the Ising spinglass and the TSP instance—but we chose P = 50 in order to extend the simulation time asmuch as possible. The asymptotic slope of the linear-schedule QA curves seems indeed to bedefinitely less steep than that of CA, independently of the number of replicas involved in thesimulation and of the use of global moves.

The sobering message converged by this failure is that superiority of QA over CA isnot universal, and is only achieved when we can use some understanding of the problem,especially when building the kinetic energy operator.

4.3. PIMC-QA of a double-well: lessons from a simple case

We would like to finish our discussion about path-integral Monte Carlo -based QA bymentioning recent results on a very simple case from which one can learn much about thelimitations of the method [42]. Suppose we want to perform a QA optimization of the simpledouble-well potential which was investigated in section 2.2 using PIMC. One is then lead tosimulate the behaviour of a closed polymer made up of P Trotter replicas {xk}(k = 1, . . . , P )

of the original particle, held at temperature β/P and moving in the potential Vasym with anearest-neighbour spring coupling, as shown in equation (37). One can actually be moresophisticated than that, and perform a higher order Trotter break-up, correct to O(β/P )4

instead of O(β/P )2, using, for instance, the Takahashi–Imada approximation [75]. Moreover,instead of performing single-bead moves, i.e., moves involving a single xk at a time, one canreconstruct, during the move, entire sections of the polymer, using the bisection method [29].We have applied this rather sophisticated PIMC to our textbook double-well problem, working

3SAT

Battaglia, Santoro, Tossati (2005)

Page 22: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ Split the total annealing time t into R faster repetitions with time ta = t / R ▪ escape a local minimum by a fresh attempt ▪ optimize ta for a class of problems to get the best algorithm

▪ Simulated annealing now shows better scaling with problem size

22

A different approach: many fast annealing attempts

!

!

!!

!!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!!

!!

!

!

!

Median SAMedian MFMedian SQA

32 72 128 200 288 392 512101

102

103

104

105

106

107

108

spins

meannumberofsweeps We need to carefully revisit the

evidence showing advantage of QA

Page 23: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

We see different results if we extrapolate in the Trotter number

23

Preliminary new results: Trotter error dependenceB. Heim , T.F. Rønnow et al, unpublished

Page 24: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

Multiply the effort with the Trotter number to compare computational cost

24

Performance as a classical optimization algorithmB. Heim , T.F. Rønnow et al, unpublished

Page 25: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ Quantum annealing has a bias towards a subset of the ground states ▪ Classical annealing better for exploring states uniformly

25

Differences in the ground states found

Matsuda, Nishimori, Katzgraber (2009)

Simulated thermal annealing nearly equal distribution

QMC-quantum annealing very uneven distribution

Page 26: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ Time to solution varies hugely between instances ▪ Simulated quantum annealing seems to have problems for high

quantiles (hard instances)

26

Look at more than the median (typical) scaling

!

!!

!!

!!

!

!!

!!

!!

!

!!

!!

!!

!

!!

!!

!!

!

!!

!!

!!

!

!!

!!

!!

!

!

!!

!!

!

!

!

!!

!!

!

!

!

!!

!!

!

!

!

!!

!!

!

!

!

!

!

!!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

32 72 128 200 288 392 512101

102

103

104

105

106

107

108

spins

meannumberofsweeps

quantiles

0.010.050.100.250.500.750.900.950.99

Simulated thermal annealing

!!

!!

!!

!

!!

!!

!!

!

!!

!!

!!

!

!!

!!

!!

!

!!

!!

!!

!

!!

!!

!!

!

!!

!!

!

!

!

!!

!!

!!

!

!

!!

!

!

!

!

!!

!!

!

!

!

!

!

!!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

32 72 128 200 288 392 512101

102

103

104

105

106

107

108

spins

meannumberofsweeps

quantiles

0.010.050.100.250.500.750.900.950.99

QMC-quantum annealing

Page 27: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ Distribution of time to find a ground state has fat (power law) tails ▪ Tails are fatter for QMC-QA and D-Wave than for thermal annealing

!▪ see tomorrow’s talk by Damian Steiger

27

Fat tails

100 101 102 103 104 105 106 107 108 109

100

101

102

103

104

mean number of repetitions t

instances

SQA 288 spins

100 101 102 103 104 105 106 107 108 109

100

101

102

103

104

mean number of repetitions t

instances

SA 288 spins

D. Steiger, T.F. Rønnow et al, unpublished

Page 28: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ D-Wave shows the same very fat tails as QMC-QA

28

Compare to D-Wave

Thermal annealing

QMC-QA (SQA)

D-Wave Two

Page 29: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer 29

!!! …. a non-trivial endeavor

Detecting and defining quantum speedup

Page 30: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

Quantum speedup exists if grows asymptotically with the problem size N !!

30

Defining quantum speedup

S(N ) = TC (N )TQ (N )

Seems easy and trivial to define, but … !

one can easily get fooled into believing there is speedup

T.F. Rønnow et al, Science (2014)

Page 31: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ Provable quantum speedup ▪ when we can prove a separation between TQ and TC ▪ example: Grover search

▪ Strong quantum speedup (Traub et al, 2013) ▪ speedup compared to bound for best classical algorithm,

whether that algorithm is known or not

▪ Quantum speedup ▪ speedup compared to best known classical algorithm ▪ example: Shor’s algorithm

▪ Potential (quantum) speedup ▪ speedup compared to a (selection of) classical algorithms

▪ Limited quantum speedup ▪ speedup compared to a “classical version” of the quantum algorithm

31

Five types of quantum speedupT.F. Rønnow et al, Science (2014)

Page 32: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ Initially too flat slope when running at a fixed annealing time ▪ To determine asymptotic scaling we have to find the optimal annealing

time for each problem size

32

Performance at fixed annealing timeT.F. Rønnow et al, Science (2014)

Page 33: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ Compare simulated quantum annealing at fixed (suboptimal) annealing time to classical annealing at optimal annealing time.

▪ What is a slowdown suddenly looks like speedup

33

“Fake” speedup due to suboptimal performanceT.F. Rønnow et al, Science (2014)

Page 34: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ On DW2 the optimal annealing time is much shorter than 20 µs. ▪ The annealing times are far longer than is needed ▪ The machine could be much faster ▪ We cannot demonstrate quantum speedup without doubt

34

Optimizing the total effortT.F. Rønnow et al, Science (2014)

Page 35: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ D-Wave Two is a parallel machine acting on all spins simultaneously

▪ We need to compare to a (hypothetical) classical machine with same hardware layout performing simulated annealing in parallel

▪ One could build such a classical machine in an FPGA or ASIC if there is interest

35

Parallel speedup

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

1

TC(N )∝1NTSA(N )

S(N ) = TC(N )TDW(N )

∝ TSA(N )TDW

1N

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

1

T.F. Rønnow et al, Science (2014)

Page 36: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer 36

Two types of speedup benchmarks

Page 37: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ Since we don’t know a-priori whether an instance is hard or easy we have to assume that it may be hard and look at the high quantiles

▪ Focus just on annealing time to get the intrinsic scaling

37

The device as an optimizer: solve almost all instancesT.F. Rønnow et al, Science (2014)

Page 38: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ Focus on high quantiles

38

Benchmark 1: ratio of quantilesT.F. Rønnow et al, Science (2014)

Page 39: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ Scientifically is the question whether for a subset of problems we there is at least limited quantum speedup compared to SA

▪ Look at the instance-by-instance comparison and search for problems that are faster on D-Wave

39

Is there quantum speedup for a subset of problems?T.F. Rønnow et al, Science (2014)

Page 40: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer

▪ Compare quantiles of individual instance ratios

40

Benchmark 2: quantiles of ratios

potentially there is speedup here for a subblass of problems with ±1 couplings

but we cannot know since annealing times are not optimal

No speedup for problems with couplings ±1/7, ±2/7, …. ±6/7, ±1

is this due to calibration errors or intrinsic?

T.F. Rønnow et al, Science (2014)

Page 41: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer 41

Instance by instance comparisons: wallclock time

Faster on D-Wave

Faster classically

N=503

T.F. Rønnow et al, Science (2014)

Page 42: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer 42

Wallclock time for harder problemsN=503

Couplings are ±1/7, ±2/7, …. ±6/7, ±1

T.F. Rønnow et al, Science (2014)

Page 43: Performance of simulated annealing, simulated quantum ...Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances 1. Matthias Troyer

||Matthias Troyer ||Matthias Troyer

Classical algorithms: QMC-QA versus classical annealing ▪ Evidence for advantage of QMC-QA needs to be revisited and checked ▪ QMC-QA shows much fatter tails in the distribution of time to solution ▪ QMC-QA visits state space selectively and can be trapped in the wrong

neighborhood ▪ Classical annealing has much better “hard case” behavior

Performance of the D-Wave device ▪ Behavior is consistent with quantum annealing: D-Wave built what they claim ▪ The Shin et al paper shows that entanglement may not play a big role in the

performance of the device for spin glass instances ▪ Ultimate test for quantum-supremacy is scaling, but we have not found evidence for

quantum speedup in our tests so far ▪ The device has the same very fat tails and bad hard-case performance

as QMC-QA (and the Shin et al model) 43

ConclusionsS. Boixo et al, Nature Physics (2014)

T.F. Rønnow et al, Science (in press, 2014)