persistent homology and the stability theorempersistent homology and the stabilitytheorem ulrich...

137
Persistent Homology and the Stability Theorem Ulrich Bauer TUM February , TAGS – Linking Topology to Algebraic Geometry and Statistics

Upload: others

Post on 01-Jun-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Persistent Homology

and the

Stability Theorem

Ulrich Bauer

TUM

February 19, 2018

TAGS – Linking Topology to Algebraic Geometry and Statistics

Page 2: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

≅ ?

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 1 / 31

Page 3: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

≅ ?

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 1 / 31

Page 4: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 2 / 31

Page 5: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 2 / 31

Page 6: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 2 / 31

Page 7: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 2 / 31

Page 8: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 2 / 31

Page 9: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 2 / 31

Page 10: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 2 / 31

Page 11: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 2 / 31

Page 12: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 2 / 31

Page 13: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 2 / 31

Page 14: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

What is persistent homology?

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 3 / 31

Page 15: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

What is persistent homology?

0.1 0.2 0.4 0.8δ

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 3 / 31

Page 16: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

What is persistent homology?

0.1 0.2 0.4 0.8δ

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 3 / 31

Page 17: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

What is persistent homology?

0.1 0.2 0.4 0.8δ

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 3 / 31

Page 18: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

What is persistent homology?

0.1 0.2 0.4 0.8δ

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 3 / 31

Page 19: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

What is persistent homology?

0.1 0.2 0.4 0.8δ

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 3 / 31

Page 20: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

What is persistent homology?

0.1 0.2 0.4 0.8δ

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 3 / 31

Page 21: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

What is persistent homology?

Persistent homology is the homology of a Bltration

A Bltration is a certain diagram K ∶ R→ Top R is the poset category of (R, ≤) A topological space Kt for each t ∈ R An inclusion map Ks Kt for each s ≤ t ∈ R

Consider homology with coe?cients in a Beld (often Z2)

H∗ ∶ Top→ Vect Persistent homology is a diagram M ∶ R→ Vect

(persistence module)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 4 / 31

Page 22: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

What is persistent homology?

Persistent homology is the homology of a Bltration

A Bltration is a certain diagram K ∶ R→ Top R is the poset category of (R, ≤) A topological space Kt for each t ∈ R An inclusion map Ks Kt for each s ≤ t ∈ R

Consider homology with coe?cients in a Beld (often Z2)

H∗ ∶ Top→ Vect Persistent homology is a diagram M ∶ R→ Vect

(persistence module)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 4 / 31

Page 23: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

What is persistent homology?

Persistent homology is the homology of a Bltration

A Bltration is a certain diagram K ∶ R→ Top R is the poset category of (R, ≤) A topological space Kt for each t ∈ R An inclusion map Ks Kt for each s ≤ t ∈ R

Consider homology with coe?cients in a Beld (often Z2)

H∗ ∶ Top→ Vect Persistent homology is a diagram M ∶ R→ Vect

(persistence module)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 4 / 31

Page 24: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

What is persistent homology?

Persistent homology is the homology of a Bltration

A Bltration is a certain diagram K ∶ R→ Top R is the poset category of (R, ≤) A topological space Kt for each t ∈ R An inclusion map Ks Kt for each s ≤ t ∈ R

Consider homology with coe?cients in a Beld (often Z2)

H∗ ∶ Top→ Vect

Persistent homology is a diagram M ∶ R→ Vect(persistence module)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 4 / 31

Page 25: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

What is persistent homology?

Persistent homology is the homology of a Bltration

A Bltration is a certain diagram K ∶ R→ Top R is the poset category of (R, ≤) A topological space Kt for each t ∈ R An inclusion map Ks Kt for each s ≤ t ∈ R

Consider homology with coe?cients in a Beld (often Z2)

H∗ ∶ Top→ Vect Persistent homology is a diagram M ∶ R→ Vect

(persistence module)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 4 / 31

Page 26: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology inference

Page 27: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology inference

Given: Bnite sample P ⊂ Ω of unknown shape Ω ⊂ Rd

Problem (Homology inference)

Determine the homologyH∗(Ω).

Problem (Homological reconstruction)

Construct a shape X with H∗(X) ≅ H∗(Ω).

Idea:

approximate the shape by a thickening Bδ(P) covering Ω

Requires strong assumptions:

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 5 / 31

Page 28: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology inference

Given: Bnite sample P ⊂ Ω of unknown shape Ω ⊂ Rd

Problem (Homology inference)

Determine the homologyH∗(Ω).

Problem (Homological reconstruction)

Construct a shape X with H∗(X) ≅ H∗(Ω).

Idea:

approximate the shape by a thickening Bδ(P) covering Ω

Requires strong assumptions:

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 5 / 31

Page 29: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology inference

Given: Bnite sample P ⊂ Ω of unknown shape Ω ⊂ Rd

Problem (Homology inference)

Determine the homologyH∗(Ω).

Problem (Homological reconstruction)

Construct a shape X with H∗(X) ≅ H∗(Ω).

Idea:

approximate the shape by a thickening Bδ(P) covering Ω

Requires strong assumptions:

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 5 / 31

Page 30: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology inference

Given: Bnite sample P ⊂ Ω of unknown shape Ω ⊂ Rd

Problem (Homology inference)

Determine the homologyH∗(Ω).

Problem (Homological reconstruction)

Construct a shape X with H∗(X) ≅ H∗(Ω).

Idea:

approximate the shape by a thickening Bδ(P) covering ΩRequires strong assumptions:

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 5 / 31

Page 31: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 32: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 33: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 34: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 35: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 36: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 37: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 38: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 39: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 40: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 41: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 42: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 43: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 44: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 45: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 46: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 47: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 48: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 49: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology reconstruction by thickening

Theorem (Niyogi, Smale,Weinberger 2006)

Let M be a submanifold of Rd. Let P ⊂ M, δ > 0 be such that

Bδ(P) coversΩ, and

δ <√3/20 reach(M).

Then H∗(M) ≅ H∗(B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 6 / 31

Page 50: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homology inference using persistence

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)

LetΩ ⊂ Rd. Let P ⊂ Ω, δ > 0 be such that

Bδ(P) coversΩ, and

the inclusionsΩ Bδ(Ω) B2δ(Ω) preserve homology.

Then H∗(Ω) ≅ imH∗(Bδ(P) B2δ(P)).

0.2 0.4 0.6 0.8 1.0 1.2

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 7 / 31

Page 51: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homological realization

This motivates the homological realization problem:

Problem

Given a simplicial pair L ⊆ K, Bnd X with L ⊆ X ⊆ K such that

H∗(X) = imH∗(L K).

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)

The homological realization problem isNP-hard, even inR3.

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 8 / 31

Page 52: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homological realization

This motivates the homological realization problem:

Problem

Given a simplicial pair L ⊆ K, Bnd X with L ⊆ X ⊆ K such that

H∗(X) = imH∗(L K).

L K

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)

The homological realization problem isNP-hard, even inR3.

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 8 / 31

Page 53: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homological realization

This motivates the homological realization problem:

Problem

Given a simplicial pair L ⊆ K, Bnd X with L ⊆ X ⊆ K such that

H∗(X) = imH∗(L K).

X KL

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)

The homological realization problem isNP-hard, even inR3.

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 8 / 31

Page 54: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homological realization

This motivates the homological realization problem:

Problem

Given a simplicial pair L ⊆ K, Bnd X with L ⊆ X ⊆ K such that

H∗(X) = imH∗(L K).

This is not always possible:

L X? K

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)

The homological realization problem isNP-hard, even inR3.

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 8 / 31

Page 55: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homological realization

This motivates the homological realization problem:

Problem

Given a simplicial pair L ⊆ K, Bnd X with L ⊆ X ⊆ K such that

H∗(X) = imH∗(L K).

This is not always possible:

L X? K

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)

The homological realization problem isNP-hard, even inR3.

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 8 / 31

Page 56: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homological realization

This motivates the homological realization problem:

Problem

Given a simplicial pair L ⊆ K, Bnd X with L ⊆ X ⊆ K such that

H∗(X) = imH∗(L K).

This is not always possible:

L X? K

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)

The homological realization problem isNP-hard, even inR3.

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 8 / 31

Page 57: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homological realization

This motivates the homological realization problem:

Problem

Given a simplicial pair L ⊆ K, Bnd X with L ⊆ X ⊆ K such that

H∗(X) = imH∗(L K).

This is not always possible:

L X? K

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)

The homological realization problem isNP-hard, even inR3.

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 8 / 31

Page 58: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Homological realization

This motivates the homological realization problem:

Problem

Given a simplicial pair L ⊆ K, Bnd X with L ⊆ X ⊆ K such that

H∗(X) = imH∗(L K).

This is not always possible:

L X? K

Theorem (Attali, B, Devillers, Glisse, Lieutier 2013)

The homological realization problem isNP-hard, even inR3.http://ulrich-bauer.org/persistence-talk-leipzig.pdf 8 / 31

Page 59: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability

Page 60: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Persistence and stability: the big picture

Data point cloud P ⊂ Rd

Geometry function f ∶ Rd → R

Topology topological spaces (Bltration) K ∶ R→ Top

Algebra vector spaces (persistence module) M ∶ R→ Vect

Combinatorics intervals (persistence barcode) B ∶ R→Mch

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 9 / 31

Page 61: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Persistence and stability: the big picture

Data point cloud P ⊂ Rd

Geometry function f ∶ Rd → R

Topology topological spaces (Bltration) K ∶ R→ Top

Algebra vector spaces (persistence module) M ∶ R→ Vect

Combinatorics intervals (persistence barcode) B ∶ R→Mch

distance

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 9 / 31

Page 62: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Persistence and stability: the big picture

Data point cloud P ⊂ Rd

Geometry function f ∶ Rd → R

Topology topological spaces (Bltration) K ∶ R→ Top

Algebra vector spaces (persistence module) M ∶ R→ Vect

Combinatorics intervals (persistence barcode) B ∶ R→Mch

distance

sublevel sets

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 9 / 31

Page 63: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Persistence and stability: the big picture

Data point cloud P ⊂ Rd

Geometry function f ∶ Rd → R

Topology topological spaces (Bltration) K ∶ R→ Top

Algebra vector spaces (persistence module) M ∶ R→ Vect

Combinatorics intervals (persistence barcode) B ∶ R→Mch

distance

sublevel sets

homology

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 9 / 31

Page 64: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Persistence and stability: the big picture

Data point cloud P ⊂ Rd

Geometry function f ∶ Rd → R

Topology topological spaces (Bltration) K ∶ R→ Top

Algebra vector spaces (persistence module) M ∶ R→ Vect

Combinatorics intervals (persistence barcode) B ∶ R→Mch

distance

sublevel sets

homology

structure theorem

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 9 / 31

Page 65: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)

Let ∥f − g∥∞ = δ. Then there exists amatching between the

intervals of the persistence barcodes of f and g such that

matched intervals have endpointswithin distance ≤ δ, and

unmatched intervals have length ≤ 2δ.

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 10 / 31

Page 66: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)

Let ∥f − g∥∞ = δ. Then there exists amatching between the

intervals of the persistence barcodes of f and g such that

matched intervals have endpointswithin distance ≤ δ, and

unmatched intervals have length ≤ 2δ.

δ

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 10 / 31

Page 67: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)

Let ∥f − g∥∞ = δ. Then there exists amatching between the

intervals of the persistence barcodes of f and g such that

matched intervals have endpointswithin distance ≤ δ, and

unmatched intervals have length ≤ 2δ.

δ

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 10 / 31

Page 68: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Interleavings

Let δ = ∥f − g∥∞. Write Ft = f −1(−∞, t] and Gt = g−1(−∞, t].

Then the sublevel set Bltrations F,G ∶ R→ Top are

δ-interleaved:

Ft Ft+δ Ft+2δ Ft+3δ

Gt Gt+δ Gt+2δ Gt+3δ

Applying homology (functor) preserves commutativity

persistent homology of f , g yields

δ-interleaved persistence modules R→ Vect

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 11 / 31

Page 69: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Interleavings

Let δ = ∥f − g∥∞. Write Ft = f −1(−∞, t] and Gt = g−1(−∞, t].

Then the sublevel set Bltrations F,G ∶ R→ Top are

δ-interleaved:

Ft Ft+δ Ft+2δ Ft+3δ

Gt Gt+δ Gt+2δ Gt+3δ

Applying homology (functor) preserves commutativity

persistent homology of f , g yields

δ-interleaved persistence modules R→ Vect

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 11 / 31

Page 70: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Interleavings

Let δ = ∥f − g∥∞. Write Ft = f −1(−∞, t] and Gt = g−1(−∞, t].

Then the sublevel set Bltrations F,G ∶ R→ Top are

δ-interleaved:

Ft Ft+δ Ft+2δ Ft+3δ

Gt Gt+δ Gt+2δ Gt+3δ

Applying homology (functor) preserves commutativity

persistent homology of f , g yields

δ-interleaved persistence modules R→ Vect

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 11 / 31

Page 71: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Geometric interleavings

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 12 / 31

Page 72: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Geometric interleavings

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 12 / 31

Page 73: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Geometric interleavings

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 12 / 31

Page 74: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Geometric interleavings

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 12 / 31

Page 75: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Geometric interleavings

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 12 / 31

Page 76: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Geometric interleavings

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 12 / 31

Page 77: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Persistence modules

A persistence module M is a diagram (functor) R→ Vect:

a vector space Mt for each t ∈ R a linear map mt

s ∶ Ms →Mt for each s ≤ t (transition maps)

respecting identity: mtt = idMt

and composition: mts ms

r = mtr

If each dimMt <∞, we say M is pointwise Bnite dimensional.

Amorphism f ∶ M → N is a natural transformation:

a linear map ft ∶ Mt → Nt for each t ∈ R morphism and transition maps commute:

Ms Mt

Ns Nt

mts

fs ft

nts

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 13 / 31

Page 78: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Persistence modules

A persistence module M is a diagram (functor) R→ Vect: a vector space Mt for each t ∈ R

a linear map mts ∶ Ms →Mt for each s ≤ t (transition maps)

respecting identity: mtt = idMt

and composition: mts ms

r = mtr

If each dimMt <∞, we say M is pointwise Bnite dimensional.

Amorphism f ∶ M → N is a natural transformation:

a linear map ft ∶ Mt → Nt for each t ∈ R morphism and transition maps commute:

Ms Mt

Ns Nt

mts

fs ft

nts

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 13 / 31

Page 79: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Persistence modules

A persistence module M is a diagram (functor) R→ Vect: a vector space Mt for each t ∈ R a linear map mt

s ∶ Ms →Mt for each s ≤ t (transition maps)

respecting identity: mtt = idMt

and composition: mts ms

r = mtr

If each dimMt <∞, we say M is pointwise Bnite dimensional.

Amorphism f ∶ M → N is a natural transformation:

a linear map ft ∶ Mt → Nt for each t ∈ R morphism and transition maps commute:

Ms Mt

Ns Nt

mts

fs ft

nts

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 13 / 31

Page 80: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Persistence modules

A persistence module M is a diagram (functor) R→ Vect: a vector space Mt for each t ∈ R a linear map mt

s ∶ Ms →Mt for each s ≤ t (transition maps)

respecting identity: mtt = idMt

and composition: mts ms

r = mtr

If each dimMt <∞, we say M is pointwise Bnite dimensional.

Amorphism f ∶ M → N is a natural transformation:

a linear map ft ∶ Mt → Nt for each t ∈ R morphism and transition maps commute:

Ms Mt

Ns Nt

mts

fs ft

nts

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 13 / 31

Page 81: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Persistence modules

A persistence module M is a diagram (functor) R→ Vect: a vector space Mt for each t ∈ R a linear map mt

s ∶ Ms →Mt for each s ≤ t (transition maps)

respecting identity: mtt = idMt

and composition: mts ms

r = mtr

If each dimMt <∞, we say M is pointwise Bnite dimensional.

Amorphism f ∶ M → N is a natural transformation:

a linear map ft ∶ Mt → Nt for each t ∈ R morphism and transition maps commute:

Ms Mt

Ns Nt

mts

fs ft

nts

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 13 / 31

Page 82: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Persistence modules

A persistence module M is a diagram (functor) R→ Vect: a vector space Mt for each t ∈ R a linear map mt

s ∶ Ms →Mt for each s ≤ t (transition maps)

respecting identity: mtt = idMt

and composition: mts ms

r = mtr

If each dimMt <∞, we say M is pointwise Bnite dimensional.

Amorphism f ∶ M → N is a natural transformation:

a linear map ft ∶ Mt → Nt for each t ∈ R

morphism and transition maps commute:

Ms Mt

Ns Nt

mts

fs ft

nts

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 13 / 31

Page 83: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Persistence modules

A persistence module M is a diagram (functor) R→ Vect: a vector space Mt for each t ∈ R a linear map mt

s ∶ Ms →Mt for each s ≤ t (transition maps)

respecting identity: mtt = idMt

and composition: mts ms

r = mtr

If each dimMt <∞, we say M is pointwise Bnite dimensional.

Amorphism f ∶ M → N is a natural transformation:

a linear map ft ∶ Mt → Nt for each t ∈ R morphism and transition maps commute:

Ms Mt

Ns Nt

mts

fs ft

nts

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 13 / 31

Page 84: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Interval PersistenceModules

Let K be a Beld. For an arbitrary interval I ⊆ R,

deBne the interval persistence module K(I) by

K(I)t =

⎧⎪⎪⎨⎪⎪⎩

K if t ∈ I,0 otherwise,

with transition maps of maximal rank.

Schematic example:

0 0 K K K 0 0

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 14 / 31

Page 85: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Barcodes: the structure of persistence modules

Theorem (Krull–Schmidt; Crawley-Boewey 2015)

Let M be a pointwise Bnite-dimensional persistence module.

Then M is interval-decomposable:

there exists a unique collection of intervals B(M) such that

M ≅ ⊕I∈B(M)

K(I).

B(M) is called the barcode of M.B(M)

The decomposition itself is not unique.

This is why we use homology with coe?cients in a Beld.

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 15 / 31

Page 86: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Barcodes: the structure of persistence modules

Theorem (Krull–Schmidt; Crawley-Boewey 2015)

Let M be a pointwise Bnite-dimensional persistence module.

Then M is interval-decomposable:

there exists a unique collection of intervals B(M) such that

M ≅ ⊕I∈B(M)

K(I).

B(M) is called the barcode of M.B(M)

The decomposition itself is not unique.

This is why we use homology with coe?cients in a Beld.

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 15 / 31

Page 87: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Barcodes: the structure of persistence modules

Theorem (Krull–Schmidt; Crawley-Boewey 2015)

Let M be a pointwise Bnite-dimensional persistence module.

Then M is interval-decomposable:

there exists a unique collection of intervals B(M) such that

M ≅ ⊕I∈B(M)

K(I).

B(M) is called the barcode of M.B(M)

The decomposition itself is not unique.

This is why we use homology with coe?cients in a Beld.

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 15 / 31

Page 88: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Algebraic stability of persistence barcodes

Theorem (Chazal et al. 2009, 2012; B, Lesnick 2015)

If two persistence modules are δ-interleaved,

then there exists a δ-matching of their barcodes:

matched intervals have endpoints within distance ≤ δ,

unmatched intervals have length ≤ 2δ.

Mt Mt+δ Mt+2δ

Nt Nt+δ Nt+2δ

δ

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 16 / 31

Page 89: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Barcodes as diagrams

Page 90: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

The matching category

Amatching σ ∶ S↛ T is a bijection S′ → T′, where S′ ⊆ S, T′ ⊆ T.

Composition of matchings σ ∶ S↛ T and τ ∶ T ↛ U :

Matchings form a categoryMch objects: sets

morphisms: matchings

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 17 / 31

Page 91: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

The matching category

Amatching σ ∶ S↛ T is a bijection S′ → T′, where S′ ⊆ S, T′ ⊆ T.

Composition of matchings σ ∶ S↛ T and τ ∶ T ↛ U :

Matchings form a categoryMch objects: sets

morphisms: matchings

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 17 / 31

Page 92: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

The matching category

Amatching σ ∶ S↛ T is a bijection S′ → T′, where S′ ⊆ S, T′ ⊆ T.

Composition of matchings σ ∶ S↛ T and τ ∶ T ↛ U :

Matchings form a categoryMch objects: sets

morphisms: matchings

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 17 / 31

Page 93: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Barcodes as matching diagrams

We can regard a barcode B as a functor R→Mch:

For each real number t, let Bt be the set of intervals of Bthat contain t, and

for each s ≤ t, deBne the matching Bs ↛ Bt

to be the identity on Bs ∩ Bt .

0.1 0.2 0.4 0.8∆

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 18 / 31

Page 94: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Barcodes as matching diagrams

We can regard a barcode B as a functor R→Mch:

For each real number t, let Bt be the set of intervals of Bthat contain t, and

for each s ≤ t, deBne the matching Bs ↛ Bt

to be the identity on Bs ∩ Bt .

0.1 0.2 0.4 0.8δ

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 18 / 31

Page 95: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Barcodes as matching diagrams

We can regard a barcode B as a functor R→Mch:

For each real number t, let Bt be the set of intervals of Bthat contain t, and

for each s ≤ t, deBne the matching Bs ↛ Bt

to be the identity on Bs ∩ Bt .

0.1 0.2 0.4 0.8δ

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 18 / 31

Page 96: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability via functoriality?

Ft Ft+2δ

Gt+δ Gt+3δ

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 19 / 31

Page 97: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability via functoriality?

H∗(Ft) H∗(Ft+2δ)

H∗(Gt+δ) H∗(Gt+3δ)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 19 / 31

Page 98: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability via functoriality?

B(H∗(Ft)) B(H∗(Ft+2δ))

B(H∗(Gt+δ)) B(H∗(Gt+3δ))

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 19 / 31

Page 99: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability via functoriality?

B(H∗(Ft)) B(H∗(Ft+2δ))

B(H∗(Gt+δ)) B(H∗(Gt+3δ))

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 19 / 31

Page 100: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Non-functoriality of the persistence barcode

Theorem (B, Lesnick 2015)

There exists no functorVectR →MchRsending each persistence

module to its barcode.

Proposition

There exists no functorVect→Mch sending each vector space of

dimension d to a set of cardinality d.

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 20 / 31

Page 101: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Non-functoriality of the persistence barcode

Theorem (B, Lesnick 2015)

There exists no functorVectR →MchRsending each persistence

module to its barcode.

Proposition

There exists no functorVect→Mch sending each vector space of

dimension d to a set of cardinality d.

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 20 / 31

Page 102: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Induced barcode matchings

Page 103: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Structure of persistence submodules / quotients

Proposition

Let f ∶ M → N be amonomorphism of persistence modules:

each ft ∶ Mt → Nt is injective.

Then f induces an injective map B(M)→ B(N)

mapping each I ∈ B(M) to some J ∈ B(N)

with larger or same left and same right endpoint.

Ms Mt

Ns Nt

B(N)

B(M)

Dually for epimorphisms (left and right exchanged).

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 21 / 31

Page 104: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Induced matchings

For a general morphism f ∶ M → N of persistence modules:

consider epi-mono factorization

M ↠ im f N .

im f N induces injection B(im f ) B(N)

M ↠ im f induces injection B(im f ) B(M)

compose to amatching B(M)↛ B(N):

B(M)

B(N)

B(im f )

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 22 / 31

Page 105: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Induced matchings

For a general morphism f ∶ M → N of persistence modules:

consider epi-mono factorization

M ↠ im f N .

im f N induces injection B(im f ) B(N)

M ↠ im f induces injection B(im f ) B(M)

compose to amatching B(M)↛ B(N):

B(M)

B(N)

B(im f )

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 22 / 31

Page 106: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability from interleavings

Consider interleaving ft ∶ Mt → Nt+δ , gt ∶ Nt →Mt+δ (∀t ∈ R):

Mt

Nt−δ Nt+δ

ftgt−δ

nt−δ ,t+δ

imnt−δ,t+δ im ft Nt+δ

Mt ↠ im ft

B(N)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 23 / 31

Page 107: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability from interleavings

Consider interleaving ft ∶ Mt → Nt+δ , gt ∶ Nt →Mt+δ (∀t ∈ R):

Mt

Nt−δ Nt+δ

ftgt−δ

nt−δ ,t+δ

imnt−δ,t+δ im ft Nt+δ

Mt ↠ im ft

B(N)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 23 / 31

Page 108: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability from interleavings

Consider interleaving ft ∶ Mt → Nt+δ , gt ∶ Nt →Mt+δ (∀t ∈ R):

Mt

Nt−δ Nt+δ

ftgt−δ

nt−δ ,t+δ

imnt−δ,t+δ im ft Nt+δ

Mt ↠ im ft

B(N)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 23 / 31

Page 109: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability from interleavings

Consider interleaving ft ∶ Mt → Nt+δ , gt ∶ Nt →Mt+δ (∀t ∈ R):

Mt

Nt−δ Nt+δ

ftgt−δ

nt−δ ,t+δ

imnt−δ,t+δ im ft Nt+δ

Mt ↠ im ft

δ

B(N•+δ)B(N)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 23 / 31

Page 110: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability from interleavings

Consider interleaving ft ∶ Mt → Nt+δ , gt ∶ Nt →Mt+δ (∀t ∈ R):

Mt

Nt−δ Nt+δ

ftgt−δ

nt−δ ,t+δ

imnt−δ,t+δ im ft Nt+δ

Mt ↠ im ft

δ

B(im f )B(N•+δ)

B(N)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 23 / 31

Page 111: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability from interleavings

Consider interleaving ft ∶ Mt → Nt+δ , gt ∶ Nt →Mt+δ (∀t ∈ R):

Mt

Nt−δ Nt+δ

ftgt−δ

nt−δ ,t+δ

imnt−δ,t+δ im ft Nt+δ

Mt ↠ im ft

δ

B(im f )B(im n•–δ,•+δ)

B(N•+δ)B(N)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 23 / 31

Page 112: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability from interleavings

Consider interleaving ft ∶ Mt → Nt+δ , gt ∶ Nt →Mt+δ (∀t ∈ R):

Mt

Nt−δ Nt+δ

ftgt−δ

nt−δ ,t+δ

imnt−δ,t+δ im ft Nt+δ

Mt ↠ im ft

δ

B(im f )B(im n•–δ,•+δ)

B(N•+δ)B(N)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 23 / 31

Page 113: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability from interleavings

Consider interleaving ft ∶ Mt → Nt+δ , gt ∶ Nt →Mt+δ (∀t ∈ R):

Mt

Nt−δ Nt+δ

ftgt−δ

nt−δ ,t+δ

imnt−δ,t+δ im ft Nt+δ

Mt ↠ im ft

δ

B(M)

B(im f )B(im n•–δ,•+δ)

B(N•+δ)B(N)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 23 / 31

Page 114: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Stability from interleavings

Consider interleaving ft ∶ Mt → Nt+δ , gt ∶ Nt →Mt+δ (∀t ∈ R):

Mt

Nt−δ Nt+δ

ftgt−δ

nt−δ ,t+δ

imnt−δ,t+δ im ft Nt+δ

Mt ↠ im ft

δ

B(M)

B(im f )B(im n•–δ,•+δ)

B(N•+δ)B(N)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 23 / 31

Page 115: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Sending persistence into

Hilbert space

Page 116: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Extending the TDA pipeline

Mapping barcodes into a Hilbert space?

desirable for (kernel-based) machine learning methods

and statistics

stability (Lipschitz continuity): important for reliable

predictions

inverse stability (bi-Lipschitz): avoid loss of information

Existing kernels for persistence diagrams:

stability bounds only for 1−Wasserstein distance

Lipschitz constants depend on bound on number and

range of bars

no bi-Lipschitz bounds known

Can we hope for something better?

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 24 / 31

Page 117: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Extending the TDA pipeline

Mapping barcodes into a Hilbert space?

desirable for (kernel-based) machine learning methods

and statistics

stability (Lipschitz continuity): important for reliable

predictions

inverse stability (bi-Lipschitz): avoid loss of information

Existing kernels for persistence diagrams:

stability bounds only for 1−Wasserstein distance

Lipschitz constants depend on bound on number and

range of bars

no bi-Lipschitz bounds known

Can we hope for something better?

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 24 / 31

Page 118: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Extending the TDA pipeline

Mapping barcodes into a Hilbert space?

desirable for (kernel-based) machine learning methods

and statistics

stability (Lipschitz continuity): important for reliable

predictions

inverse stability (bi-Lipschitz): avoid loss of information

Existing kernels for persistence diagrams:

stability bounds only for 1−Wasserstein distance

Lipschitz constants depend on bound on number and

range of bars

no bi-Lipschitz bounds known

Can we hope for something better?

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 24 / 31

Page 119: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

No bi-Lipschitz feature maps for persistence

Theorem (B, Carrière 2018)

There is no bi-Lipschitzmap from the persistence diagrams

(with the interleaving or any p−Wasserstein distance)

into any Bnite-dimensionalHilbert space,

evenwhen restricting to bounded range or number of bars.

Theorem (B, Carrière 2018)

If therewas such a bi-Lipschitzmap into someHilbert space,

the ratio of the Lipschitz constantswould have to go to∞

togetherwith the bounds on number or range of bars.

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 25 / 31

Page 120: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

No bi-Lipschitz feature maps for persistence

Theorem (B, Carrière 2018)

There is no bi-Lipschitzmap from the persistence diagrams

(with the interleaving or any p−Wasserstein distance)

into any Bnite-dimensionalHilbert space,

evenwhen restricting to bounded range or number of bars.

Theorem (B, Carrière 2018)

If therewas such a bi-Lipschitzmap into someHilbert space,

the ratio of the Lipschitz constantswould have to go to∞

togetherwith the bounds on number or range of bars.

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 25 / 31

Page 121: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

History

Page 122: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

When was persistent homology invented?

[Edelsbrunner/Letscher/Zomorodian 2000]

[Robbins 1999]

[Frosini 1990]

[Leray 1946]?

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 26 / 31

Page 123: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

When was persistent homology invented?

[Edelsbrunner/Letscher/Zomorodian 2000]

[Robbins 1999]

[Frosini 1990]

[Leray 1946]?

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 26 / 31

Page 124: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

When was persistent homology invented?

[Edelsbrunner/Letscher/Zomorodian 2000]

[Robbins 1999]

[Frosini 1990]

[Leray 1946]?

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 26 / 31

Page 125: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

When was persistent homology invented?

[Edelsbrunner/Letscher/Zomorodian 2000]

[Robbins 1999]

[Frosini 1990]

[Leray 1946]?

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 26 / 31

Page 126: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

When was persistent homology invented Brst?

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 27 / 31

Page 127: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

When was persistent homology invented Brst?

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 27 / 31

Page 128: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

When was persistent homology invented Brst?Web Images More… Sign in

Scholar 9 results (0.02 sec)

All citations

Articles

Case law

My library

Any time

Since 2016

Since 2015

Since 2012

Custom range...

Sort by relevance

Sort by date

include citations

Create alert

Rank and span in functional topology

About Google Scholar Privacy Terms Provide feedback

Search within citing articles

JL Kelley, E Pitcher ­ Annals of Mathematics, 1947 ­ JSTOR

The developments of this paper stem from the attempts of one of the authors to deduce relations between homology groups of a complex and homology groups of a complex which is its image under a simplicial map. Certain relations were deduced (see [EP 1] and [EP 2] ...

Cited by 46 Related articles All 3 versions Cite Save More

Exact homomorphism sequences in homology theory

R Bott ­ Bulletin of the American Mathematical Society, 1980 ­ ams.org

American Mathematical Society. Thus Morse grew to maturity just at the time when the subject of Analysis Situs was being shaped by such masters2 as Poincaré, Veblen, LEJ Brouwer, GD Birkhoff, Lefschetz and Alexander, and it was Morse's genius and destiny to ...

Cited by 24 Related articles All 4 versions Cite Save More

Marston Morse and his mathematical works

M Morse, CB Tompkins ­ Duke Math. J, 1941 ­ projecteuclid.org

1. Introduction. We are concerned with extending the calculus of variations in the large to multiple integrals. Theproblem of the existenceof minimal surfaces of unstable type contains many of the typical difficulties, especially those ofa topological nature. Having studied this ...

Cited by 19 Related articles All 2 versions Cite Save

Unstable minimal surfaces of higher topological structure

U Bauer ­ 2011 ­ Citeseer

The goal of this thesis is to bring together two different theories about critical points of a scalar function and their relation to topology: Discrete Morse theory and Persistent homology. While the goals and fundamental techniques are different, there are certain ...

Cited by 8 Related articles All 4 versions Cite Save More

[PDF] Persistence in discrete Morse theory

MR Hestenes ­ American Journal of Mathematics, 1945 ­ JSTOR

1. Introduction. Let f (x)=(. z,**, xn) be a function defined on a neighborhood of a closed set S in euclidean n­space. Suppose that the points of S at which f, 0 0 are interior to S and that the determinant I is different from zero at these points. A point at which f, 0 is called a ...

Cited by 3 Related articles All 2 versions Cite Save

A theory of critical points

DG Bourgin ­ Annali di Matematica Pura ed Applicata, 1955 ­ Springer

Summary The properties of direct limits of Cech homology groups for a non cofinal collection of compact pairs are explicitly stated with a view towards applications. The usual axioms including full excision are satisfied under obvious restrictions. Some of the Morse rank and ...

Cited by 2 Related articles All 2 versions Cite Save

Arrays of compact pairs

M Morse, M Heins ­ Annals of Mathematics, 1946 ­ JSTOR

Paper II of this series* starts with a theorem relating the number of logarith­mic poles and essential critical points of a harmonic or pseudo­harmonic function F (x, y). Cf.? 2. II. The function F was defined on the closure G of a finite region bounded by v Jordan curves.

Cited by 2 Related articles All 2 versions Cite Save

Topological Methods in the Theory of Functions of a Single Complex Variable: III. CasualIsomorphisms in the Theory of Pseudo­Harmonic Functions

D Pope ­ Pacific J. Math, 1962 ­ msp.org

Introduction^ A basic feature of most of the methods used for the numerical calculation of a variational problem is the reduction of the infinite dimensional problem to a finite dimensional problem by some kind of approximation. One of the most natural ...

Cited by 1 Related articles All 3 versions Cite Save More

[PDF] On the approximation of function spaces in the calculus of variations

M Ozawa ­ Kodai Mathematical Seminar Reports, 1958 ­ jlc.jst.go.jp

Let W and W be two closed Riemann surfaces of the same genus g Ξ> 2. Let § be a preassigned homotopy classs of topological mappings T: W­+ Wf and ξ)(q) be a subclass of ξ), each member of which carries a given fixed point J) o on W to a point q on W. Let T (qp) ...

Related articles All 4 versions Cite Save

On extremal quasiconformal mappings

Create alert

My Citations

ed.ac.uk [PDF]

ams.org [PDF]

psu.edu [PDF]

msp.org [PDF]

projecteuclid.org [PDF]

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 27 / 31

Page 129: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

When was persistent homology invented Brst?

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 27 / 31

Page 130: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

When was persistent homology invented Brst?

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 27 / 31

Page 131: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Morse’s functional topology

Key aspects:

early precursor of persistence and spectral sequences

uses Vietoris homology with Beld coe?cients

applies to a broad class of functions on metric spaces

(not necessarily continuous)

inclusions of sublevel sets have Bnite rank homology

(q-tame persistent homology)

focus on controlled behavior in pathological cases

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 28 / 31

Page 132: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Motivation and application: minimal surfaces

(from Dierkes et al.: Minimal Surfaces, Springer 2010)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 29 / 31

Page 133: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Motivation and application: minimal surfaces

(from Dierkes et al.: Minimal Surfaces, Springer 2010)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 29 / 31

Page 134: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Motivation and application: minimal surfaces

(from Dierkes et al.: Minimal Surfaces, Springer 2010)

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 29 / 31

Page 135: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Existence of unstable minimal surfaces

Using persistent homology:

Number of є-persistent critical points (minimal surfaces)

is Bnite for any є > 0 Morse inequalities for є-persistent critical points

Theorem (Morse, Tompkins 1939)

There is aC1 curve bounding an unstable minimal surface

(an index 1 critical point of the area functional).

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 30 / 31

Page 136: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Thanks for your attention!

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 31 / 31

Page 137: Persistent Homology and the Stability TheoremPersistent Homology and the StabilityTheorem Ulrich Bauer TUM February¤”, ı¤, TAGS– Linking Topologyto AlgebraicGeometryand Statistics

Thanks for your attention!

http://ulrich-bauer.org/persistence-talk-leipzig.pdf 31 / 31