perturbation theory, linear response, and finite electric ...) from...

37
VASP: Dielectric response Perturbation theory, linear response, and finite electric fields University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria

Upload: others

Post on 16-Oct-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

  • VASP:DielectricresponsePerturbationtheory,linearresponse,

    andfiniteelectricfields

    UniversityofVienna,FacultyofPhysicsandCenterforComputationalMaterialsScience,

    Vienna,Austria

  • Outline

    ● Dielectricresponse

    ● Frequencydependentdielectricproperties

    ● Thestaticdielectricresponse

    ● ResponsetoelectricfieldsfromDFPT

    ● Themacroscopicpolarization

    ● SCFresponsetofiniteelectricfields

    ● Ioniccontributionstodielectricproperties

  • Experiment: Staticandfrequencydependentdielectricfunctions:measurementofabsorption,reflectanceandenergylossspectra.(Opticalpropertiesofsemiconductorsandmetals.)

    • Thelong-wavelengthlimitofthefrequencydependentmicroscopicpolarizabilityanddielectricmatricesdeterminetheopticalpropertiesintheregimeaccessibletoopticalandelectronicprobes.

    Theory: Thefrequencydependentpolarizabilitymatrixisneededinmanypost-DFTschemes,e.g.:

    • GW)frequencydependentmicroscopicdielectricresponseneededtocomputeW.)frequencydependentmacroscopicdielectrictensorrequiredfortheanalyticalintegrationoftheCoulombsingularityintheself-energy.

    • Exact-exchangeoptimized-effective-potentialmethod(EXX-OEP).• Bethe-Salpeter-Equation(BSE)

    )dielectricscreeningoftheinteractionpotentialneededtoproperlyincludeexcitonic effects.

  • Frequencydependent

    • Frequencydependentmicroscopicdielectricmatrix)IntheRPA,andincludingchangesintheDFTxc-potential.

    • Frequencydependentmacroscopicdielectrictensor)Imaginaryandrealpartofthedielectricfunction.)In- orexcludinglocalfieldeffects.)IntheRPA,andincludingchangesintheDFTxc-potential:

    Static

    • Staticdielectrictensor,Borneffectivecharges,andPiezo-electrictensor,in- orexcludinglocalfieldeffects.)Fromdensity-functional-perturbation-theory(DFPT).LocalfieldeffectsinRPAandDFTxc-potential.)Fromtheself-consistentresponsetoafiniteelectricfield(PEAD).LocalfieldeffectsfromchangesinaHF/DFThybridxc-potential,aswell.

  • Macroscopiccontinuumconsiderations• Themacroscopicdielectrictensorcouplestheelectricfieldinamaterialto

    anappliedexternalelectricfield:

    E = ✏�1Eext

    where𝜖 isa3⨉3tensor

    • Foralongitudinalfield,i.e.,afieldcausedbystationaryexternalcharges,thiscanbereformulatedas(inmomentumspace,inthelong-wavelengthlimit):

    vtot

    = ✏�1vext

    vtot

    = vext

    + vind

    with

    • Theinducedpotentialisgeneratedbytheinducedchangeinthechargedensity𝜌#$%.Inthelinearresponseregime(weakexternalfields):

    ⇢ind

    = �vext

    ⇢ind

    = Pvtot

    where𝜒 isthereducible polarizability

    whereP istheirreducible polarizability

    • Itmaybestraightforwardlyshownthat:

    ✏�1 = 1 + ⌫� ✏ = 1� ⌫P � = P + P⌫� (aDysoneq.)

    where𝜈 istheCoulombkernel.Inmomentumspace: ⌫ = 4⇡e2/q2

  • MacroscopicandmicroscopicquantitiesThemacroscopicdielectricfunctioncanbeformallywrittenas

    E(r,!) =

    Zdr0✏�1

    mac

    (r� r0,!)Eext

    (r0,!)

    orinmomentumspaceE(q,!) = ✏�1

    mac

    (q,!)Eext

    (q,!)

    Themicroscopicdielectricfunctionentersas

    e(r,!) =

    Zdr0✏�1(r, r0,!)E

    ext

    (r0,!)

    andinmomentumspace

    e(q+G,!) =X

    G0

    ✏�1G,G0(q,!)Eext(q+G0,!)

    Themicroscopicdielectricfunctionisaccessiblethroughab-initiocalculations.Macroscopicandmicroscopicquantitiesarelinkedthrough:

    E(R,!) =1

    Z

    ⌦(R)e(r,!)dr

  • MacroscopicandmicroscopicquantitiesAssumingtheexternalfieldvariesonalengthscalemuchlargerthattheatomicdistances,onemayshowthat

    E(q,!) = ✏�10,0(q,!)Eext(q,!)

    and

    ✏�1mac(q,!) = ✏�10,0(q,!)

    ✏mac(q,!) =�✏�10,0(q,!)

    ��1

    Formaterialsthatarehomogeneousonthemicroscopicscale,theoff-diagonalelementsof𝜖𝐆,𝐆*

    +, (𝐪, 𝜔),(i.e.,for𝐆 ≠ 𝐆′)arezero,and

    ✏mac(q,!) = ✏0,0(q,!)

    Thiscalledthe“neglectoflocalfieldeffects”

  • Thelongitudinalmicroscopicdielectricfunction

    Themicroscopic(symmetric)dielectricfunctionthatlinksthelongitudinalcomponentofanexternalfield(i.e.,thepartpolarizedalongthepropagationwavevectorq)tothelongitudinalcomponentofthetotalelectricfield,isgivenby

    ✏�1G,G0(q,!) := �G,G0 +4⇡e2

    |q+G||q+G0|@⇢

    ind

    (q+G,!)

    @vext

    (q+G0,!)

    ✏G,G0(q,!) := �G,G0 �4⇡e2

    |q+G||q+G0|@⇢

    ind

    (q+G,!)

    @vtot

    (q+G0,!)

    andwith �G,G0(q,!) :=@⇢

    ind

    (q+G,!)

    @vext

    (q+G0,!)PG,G0(q,!) :=

    @⇢ind

    (q+G,!)

    @vtot

    (q+G0,!)

    ⌫sG,G0(q) :=4⇡e2

    |q+G||q+G0|and

    oneobtainstheDysonequationlinkingP and𝜒

    �G,G0(q,!) = PG,G0(q,!) +X

    G1,G2

    PG,G1(q,!)⌫sG1,G2(q)�G2,G0(q,!)

  • Approximations

    Problem: WeknowneitherP and𝜒

    Problem: ThequantitywecaneasilyaccessinKohn-ShamDFTisthe:“irreduciblepolarizabilityintheindependentparticlepicture”𝜒3 (or𝜒45)

    �0G,G0(q,!) :=@⇢ind(q+G,!)

    @ve↵(q+G0,!)

    AdlerandWiserderivedexpressionsfor𝜒3 which,intermsofBlochfunctions,canbewrittenas(inreciprocalspace):

    �0G,G0(q,!) =1

    X

    nn0k

    2wk(fn0k+q � fn0k)

    ⇥ h n0k+q|ei(q+G)r| nkih nk|e�i(q+G

    0)r0 | n0k+qi✏n0k+q � ✏nk � ! � i⌘

  • Approximations(cont.)

    FortheKohn-Shamsystem,thefollowingrelationscanbeshowntohold

    � = �0 + �0(⌫ + fxc

    )�

    P = �0 + �0fxc

    P

    � = P + P⌫�

    where𝜐 istheCoulombkerneland𝑓89 istheDFTxc-kernel: fxc = @vxc/@⇢ |⇢=⇢0

    ✏�1 = 1 + ⌫� ✏ = 1� ⌫P

    Random-Phase-Approximation(RPA): P = �0

    ✏G,G0(q,!) := �G,G0 �4⇡e2

    |q+G||q+G0|�0G,G0(q,!)

    IncludingchangesintheDFTxc-potential: P = �0 + �0fxc

    P

  • Calculationofopticalproperties

    Thelong-wavelengthlimit(𝐪 ⟶ 𝟎)ofthedielectricmatrixdeterminestheopticalpropertiesintheregimeaccessibletoopticalprobes.

    Themacroscopicdielectrictensor𝜖

  • Frequencydependent(neglectinglocalfieldeffects)

    LOPTICS=.TRUE.q̂ · ✏1(!) · q̂ ⇡ lim

    q!0✏0,0(q,!)

    Theimaginarypartof 𝜖

  • First-orderchangeintheorbitals

    Expandinguptofirstorderinq

    |unk+qi = |unki+ q · |rkunki+ ...

    andusingperturbationtheorywehave

    |rkunki =X

    n 6=n0

    |un0kihun0k|@[H(k)�✏nkS(k)]@k |unki✏nk � ✏n0k

    whereH(k)andS(k)aretheHamiltonianandoverlapoperatorforthecell-periodicpartoftheorbitals.

  • ExamplesGajdoš etal.,Phys.Rev.B73,045112(2006).

    ThefrequencydependentdielectricfunctioniswrittentotheOUTCAR file.Searchfor

    frequency dependent IMAGINARY DIELECTRIC FUNCTION (independent particle, no local field effects)

    frequency dependent REAL DIELECTRIC FUNCTION (independent particle, no local field effects)

    and

  • Frequencydependent(includinglocalfieldeffects)

    FortheKohn-Shamsystem,thefollowingrelationscanbeshowntohold

    � = �0 + �0(⌫ + fxc

    )�

    P = �0 + �0fxc

    P

    � = P + P⌫�

    where𝜐 istheCoulombkerneland𝑓89 istheDFTxc-kernel: fxc = @vxc/@⇢ |⇢=⇢0

    ✏�1 = 1 + ⌫� ✏ = 1� ⌫P

    Random-Phase-Approximation(RPA): P = �0

    ✏G,G0(q,!) := �G,G0 �4⇡e2

    |q+G||q+G0|�0G,G0(q,!)

    IncludingchangesintheDFTxc-potential: P = �0 + �0fxc

    P

  • IrreduciblepolarizabilityintheIPpicture:𝜒3

    ThequantitywecaneasilyaccessinKohn-ShamDFTisthe:“irreduciblepolarizabilityintheindependentparticlepicture”𝜒3 (or𝜒45)

    �0G,G0(q,!) :=@⇢ind(q+G,!)

    @ve↵(q+G0,!)

    AdlerandWiserderivedexpressionsfor𝜒3 which,intermsofBlockfunctions,canbewrittenas

    �0G,G0(q,!) =1

    X

    nn0k

    2wk(fn0k+q � fn0k)

    ⇥ h n0k+q|ei(q+G)r| nkih nk|e�i(q+G

    0)r0 | n0k+qi✏n0k+q � ✏nk � ! � i⌘

  • AndintermsofBlockfunctions𝜒3 canbewrittenas

    �0G,G0(q,!) =1

    X

    nn0k

    2wk(fn0k+q � fn0k)

    ⇥ h n0k+q|ei(q+G)r| nkih nk|e�i(q+G

    0)r0 | n0k+qi✏n0k+q � ✏nk � ! � i⌘

    TheIP-polarizability:𝜒3

    W = ⌫ + ⌫�0⌫ + ⌫�0⌫�0⌫ + ⌫�0⌫�0⌫�0⌫ + ... = ⌫ (1� �0⌫)�1| {z }✏�1

    Oncewehave𝜒3 thescreenedCoulombinteraction(intheRPA)iscomputedas:

    1.ThebareCoulombinteractionbetweentwoparticles

    2.Theelectronicenvironmentreactstothefieldgeneratedbyaparticle:inducedchangeinthedensity𝜒3𝜐,thatgivesrisetoachangeintheHartreepotential:𝜐𝜒3𝜐.

    3.Theelectronsreacttotheinducedchangeinthepotential:additionalchangeinthedensity,𝜒3𝜐𝜒3𝜐,andcorrespondingchangeintheHartree potential:𝜐𝜒3𝜐𝜒3𝜐.

    andsoon,andsoon…

    geometricalseries

    Expensive:computingtheIP-polarizabilityscalesasN4

  • TheOUTPUT

    • Informationconcerningthedielectricfunctionintheindependent-particlepictureiswrittenintheOUTCAR file,aftertheline

    HEAD OF MICROSCOPIC DIELECTRIC TENSOR (INDEPENDENT PARTICLE)

    • Perdefault,forALGO=CHI,localfieldeffectsareincludedattheleveloftheRPA(LRPA=.TRUE.),i.e.,limitedtoHartree contributionsonly.SeetheinformationintheOUTCAR file,after

    INVERSE MACROSCOPIC DIELECTRIC TENSOR (including local field effects in RPA (Hartree))

    • ToincludelocalfieldeffectsbeyondtheRPA,i.e.,contributionsfromDFTexchangeandcorrelation,onhastospecifyLRPA=.FALSE. intheINCAR file.InthiscaselookattheoutputintheOUTCAR file,after

    INVERSE MACROSCOPIC DIELECTRIC TENSOR (test charge-test charge, local field effects in DFT)

  • Virtualorbitals/emptystatesProblem:theiterativematrixdiagonalizationtechniquesconvergerapidlyforthelowesteigenstatesoftheHamiltonian.Highlying(virtual/emptystates)tendtoconvergemuchslower.

    • Doagroundstate calculation(i.e.,DFTorhybridfunctional).BydefaultVASPwillincludeonlyaverylimitednumberofemptystates(lookforNBANDS andNELECT intheOUTCAR file).

    • Toobtainvirtualorbitals(emptystates)ofsufficientquality,wediagonalizethegroundstate Hamiltonmatrix(intheplanewavebasis: 𝐆 𝐻 𝐆′ )exactly.Fromthe𝑁FFG eigenstatesofthisHamiltonian,wethenkeeptheNBANDSlowest.

    YourINCAR fileshouldlooksomethinglike:

    ..ALGO = ExactNBANDS = .. #set to include a larger number of empty states..

  • Typicaljobs:3steps1. Standardgroundstate calculation

    2. RestartfromtheWAVECAR fileofstep1,andtoobtainacertainnumberofvirtualorbitalsspecify:

    inyourINCAR file.

    3. Computefrequencydependentdielectricproperties:restartfromtheWAVECAR ofstep2,withthefollowinginyourINCAR file:

    ..ALGO = ExactNBANDS = .. #set to include a larger number of empty states..

    ALGO = CHI or LOPTICS = .TRUE.

    N.B.:InthecaseofLOPTICS=.TRUE. step2and3canbedoneinthesamerun(simplyaddLOPTICS=.TRUE. toINCAR ofstep2).

  • TheGWpotentials:*_GWPOTCARfiles

  • ThestaticdielectricresponseThefollowingquantities:

    • Theion-clampedstaticmacroscopicdielectrictensor𝜖< 𝜔 = 0(orsimply𝜖

  • ResponsetoelectricfieldfromDFPTLEPSILON=.TRUE.Insteadofusingasumoverstates(perturbationtheory)tocompute|𝛻𝐤𝑢?𝐤⟩,onecansolvethelinearSternheimer equation:

    [H(k)� ✏nkS(k)] |rkunki = �@ [H(k)� ✏nkS(k)]

    @k|unki

    for|𝛻𝐤𝑢?𝐤⟩.

    Thelinearresponseoftheorbitalstoanexternallyappliedelectricfield|𝜉?𝐤⟩,canbefoundsolving

    [H(k)� ✏nkS(k)] |⇠nki = ��HSCF(k)|unki � q̂ · |rkunki

    where∆𝐻5QF(𝐤) isthemicroscopiccellperiodicchangeintheHamiltonian,duetochangesintheorbitals,i.e.,localfieldeffects(!):thesemaybeincludedattheRPAlevelonly(LRPA=.TRUE.)ormayincludechangesintheDFTxc-potentialaswell

  • ResponsetoelectricfieldsfromDFPT(cont.)

    • Thestaticmacroscopicdielectricmatrixisthengivenby

    q̂ · ✏1 · q̂ = 1�8⇡e2

    X

    vk

    2wkhq̂ ·rkunk|⇠nki

    wherethesumoverv runsoveroccupiedstatesonly.

    • TheBorneffectivechargesandpiezo-electrictensormaybeconvenientlycomputedfromthechangeintheHellmann-Feynmanforcesandthemechanicalstresstensor,duetoachangeinthewavefunctionsinafinitedifferencemanner:

    |u(1)nki = |unki+�s|⇠nki

  • TheOUTPUT• Thedielectrictensorintheindependent-particlepictureisfoundintheOUTCAR

    file,afterthelineHEAD OF MICROSCOPIC STATIC DIELECTRIC TENSOR (INDEPENDENT PARTICLE, excluding Hartree and local field effects)

    ItscounterpartincludinglocalfieldeffectsintheRPA(LRPA=.TRUE.)after:MACROSCOPIC STATIC DIELECTRIC TENSOR (including local field effects in RPA (Hartree))

    MACROSCOPIC STATIC DIELECTRIC TENSOR (including local field effects in DFT)

    andincludinglocalfieldeffectsinDFT(LRPA=.FALSE.)after:

    • ThepiezoelectrictensorsarewrittentotheOUTCAR immediatelyfollowing:PIEZOELECTRIC TENSOR for field in x, y, z (e Angst)

    c.q.,PIEZOELECTRIC TENSOR for field in x, y, z (C/m^2)

    • TheBorneffectivechargetensorsareprintedafter:BORN EFFECTIVE CHARGES (in e, cummulative output)

    (butonlyforLRPA=.FALSE.).

  • Examples

    Gajdoš etal.,Phys.Rev.B73,045112(2006).

  • “Moderntheoryofpolarization”(Resta,Vanderbilt,etal.)

    Thechangeinthepolarizationinducedbyanadiabaticchangeinthecrystallinepotentialisgivenby

    �P =

    Z �2

    �1

    @P

    @�d� = P(�2)�P(�1)

    whereP(�) = � fie

    (2⇡)3

    Z

    ⌦k

    dkhu(�)nk |rk|u(�)nk i

    Toillustratethis,consideraWannier function

    k(r) = uk(r)eik·r|wi = V

    (2⇡)3

    Z

    ⌦k

    dk| ki

    withwell-defineddipolemoment

    ehri = eZ

    drhw|r|wi

    =eV 2

    (2⇡)6

    Z

    ⌦k

    dk

    Z

    ⌦k0

    dk0X

    R

    Z

    Vdru⇤k(r)(R+ r)uk0(r)e

    �i(k�k0)·(R+r)

  • =eV 2

    (2⇡)6

    Z

    ⌦k

    dk

    Z

    ⌦k0

    dk0X

    R

    Z

    Vdru⇤k(r)uk0(r)(�irk0)e�i(k�k

    0)·(R+r)

    = �i eV(2⇡)3

    Z

    ⌦k

    dkhuk|rk|uki

    whereweusedintegrationbypartstolet𝛻𝐤R workon𝑢𝐤R insteadofontheexponent,andthefollowingrelation

    X

    R

    e�i(k�k0)·R =

    (2⇡)3

    V�(k� k0)

    Thefinalexpression,proposedbyKing-SmithandVanderbilt,toevaluatethepolarizationonadiscretemeshofk-points,reads:

    Bi ·P(�) =f |e|V

    AiNk?

    X

    Nk?

    ={lnJ�1Y

    j=0

    det|hu(�)nkj |u(�)mkj+1

    i|}

    where

    kj = k? + jBiJ

    , j = 1, ..., J and u(�)nk?+Bi(r) = e�iBi·ru(�)nk?(r)

  • kj = k? + jBiJ

    , j = 1, ..., J and u(�)nk?+Bi(r) = e�iBi·ru(�)nk?(r)

  • Self-consistentresponsetofiniteelectricfields(PEAD)†

    Addtheinteractionwithasmallbutfiniteelectricfieldℇ totheexpressionforthetotalenergy

    E[{ (E)}, E ] = E0[{ (E)}]� ⌦E ·P[{ (E)}]

    where𝑃 𝜓(ℇ) isthemacroscopicpolarizationasdefinedinthe“moderntheoryofpolarization”‡

    P[{ (E)}] = � 2ie(2⇡)3

    X

    n

    Z

    BZdkhu(E)nk |rk|u

    (E)nk i

    AddingacorrespondingtermtoHamiltonian

    H| (E)nk i = H0| (E)nk i � ⌦E ·

    �P[{ (E)}]�h (E)nk |

    allowsonetosolvefor 𝜓(ℇ) bymeansofadirectoptimizationmethod(iterateintil self-consistencyisachieved).

    †R.W.Nunes andX.Gonze,Phys.Rev.B63,155107(2001).‡R.D.King-SmithandD.Vanderbilt,Phys.Rev.B47,1651(1993).

  • PEAD(cont.)

    Lc

    ZEg

    VB

    CB

    L

    Souzaetal.,Phys.Rev.Lett.89,117602(2002).

    e|Ec ·Ai| ⇡ Eg/NiNiAi < LZ

  • PEAD(cont.)Oncetheself-consistentsolution 𝜓(ℇ) hasbeenobtained:• thestaticmacroscopicdielectricmatrixisgivenby

    (✏1)ij = �ij + 4⇡(P[{ (E)}]�P[{ (0)}])i

    Ej• andtheBorneffectivechargesandion-clampedpiezo-electrictensormay

    againbeconvenientlycomputedfromthechangeintheHellman-Feynmanforcesandthemechanicalstresstensor.

    ThePEADmethodisabletoincludelocalfieldeffectsinanaturalmanner(the self-consistency).

    INCAR-tags

    LCALPOL =.TRUE. Computemacroscopicpolarization.LCALCEPS=.TRUE. Computestaticmacroscopicdielectric-,Borneffectivecharge-,

    andion-clampedpiezo-electrictensors,includinglocalfieldeffects.EFIELD_PEAD = E_x E_y E_z ElectricfieldusedbythePEADroutines.

    (DefaultifLCALCEPS=.TRUE.:EFIELD_PEAD=0.010.010.01[eV/Å].)LRPA=.FALSE. Skipthecalculationswithoutlocalfieldeffects(Default).LSKIP_NSCF=.TRUE. idem.LSKIP_SCF=.TRUE. Skipthecalculationswithlocalfieldeffects.

  • Example:ion-clamped𝜖< usingtheHSEhybrid

    J.Paier,M.Marsman,andG.Kresse,Phys.Rev.B78,121201(R)(2008).

  • PEAD:Hamiltonianterms

    TheadditionaltermsintheHamiltonian,arisingfromtheΩℇ V 𝐏 𝜓 ℇ termintheenthalpyareofthefrom

    �P

    j ={ln det|S(kj ,kj+1)|}�u⇤nkj

    =

    � i2

    NX

    m=1

    ⇥|unkj+1iS�1mn(kj ,kj+1)� |unkj�1iS�1mn(kj ,kj�1)

    Snm(kj ,kj+1) = hunkj |umkj+1iwhere

    Byanalogywehave

    @|unkj i@k

    ⇡ 12�k

    NX

    m=1

    ⇥|unkj+1iS�1mn(kj ,kj+1)� |unkj�1iS�1mn(kj ,kj�1)

    i.e.,afinitedifferenceexpressionfor|𝛻𝐤𝑢?𝐤⟩.

  • TheOUTPUT• ThedielectrictensorincludinglocalfieldeffectsiswrittentotheOUTCAR

    file,afterthelineMACROSCOPIC STATIC DIELECTRIC TENSOR (including local field effects)

    • ThepiezoelectrictensorsarewrittentotheOUTCAR immediatelyfollowing:PIEZOELECTRIC TENSOR (including local field effects) (e Angst)

    c.q.,PIEZOELECTRIC TENSOR (including local field effects) (C/m^2)

    • TheBorneffectivechargetensorsarefoundafter:BORN EFFECTIVE CHARGES (including local field effects)

    ForLSKIP_NSCF=.FALSE.onewilladditionallyfinf thecounterpartsoftheabove:

    ... (excluding local field effects)

  • Ioniccontributions

    Fromfinitedifferenceexpressionsw.r.t.theionicpositions(IBRION=5 or6)orfromperturbationtheory(IBRION=7 or8)weobtain

    �ss0

    ij = �@F si@us

    0j

    ⌅sil = �@�l@usi

    theforce-constantmatricesandinternalstraintensors,respectively.

    TogetherwiththeBorneffectivechargetensors,thesequantitiesallowforthecomputationof theioniccontributiontothedielectrictensor

    ✏ionij =4⇡e2

    X

    ss0

    X

    kl

    Z⇤sik (�ss0)�1kl Z

    ⇤s0lj

    andtothepiezo-electrictensor

    eionil = eX

    ss0

    X

    jk

    Z⇤sij (�ss0)�1jk ⌅

    s0

    kl

  • TheEnd

    Thankyou!