perturbation theory, linear response, and finite ... - vasp · vasp: dielectric response...

37
VASP: Dielectric response Perturbation theory, linear response, and finite electric fields University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria

Upload: phunglien

Post on 05-Aug-2018

269 views

Category:

Documents


1 download

TRANSCRIPT

  • VASP:DielectricresponsePerturbationtheory,linearresponse,

    andfiniteelectricfields

    UniversityofVienna,FacultyofPhysicsandCenterforComputationalMaterialsScience,

    Vienna,Austria

  • Outline

    Dielectricresponse

    Frequencydependentdielectricproperties

    Thestaticdielectricresponse

    ResponsetoelectricfieldsfromDFPT

    Themacroscopicpolarization

    SCFresponsetofiniteelectricfields

    Ioniccontributionstodielectricproperties

  • Experiment: Staticandfrequencydependentdielectricfunctions:measurementofabsorption,reflectanceandenergylossspectra.(Opticalpropertiesofsemiconductorsandmetals.)

    Thelong-wavelengthlimitofthefrequencydependentmicroscopicpolarizabilityanddielectricmatricesdeterminetheopticalpropertiesintheregimeaccessibletoopticalandelectronicprobes.

    Theory: Thefrequencydependentpolarizabilitymatrixisneededinmanypost-DFTschemes,e.g.:

    GW)frequencydependentmicroscopicdielectricresponseneededtocomputeW.)frequencydependentmacroscopicdielectrictensorrequiredfortheanalyticalintegrationoftheCoulombsingularityintheself-energy.

    Exact-exchangeoptimized-effective-potentialmethod(EXX-OEP). Bethe-Salpeter-Equation(BSE)

    )dielectricscreeningoftheinteractionpotentialneededtoproperlyincludeexcitonic effects.

  • Frequencydependent

    Frequencydependentmicroscopicdielectricmatrix)IntheRPA,andincludingchangesintheDFTxc-potential.

    Frequencydependentmacroscopicdielectrictensor)Imaginaryandrealpartofthedielectricfunction.)In- orexcludinglocalfieldeffects.)IntheRPA,andincludingchangesintheDFTxc-potential:

    Static

    Staticdielectrictensor,Borneffectivecharges,andPiezo-electrictensor,in- orexcludinglocalfieldeffects.)Fromdensity-functional-perturbation-theory(DFPT).LocalfieldeffectsinRPAandDFTxc-potential.)Fromtheself-consistentresponsetoafiniteelectricfield(PEAD).LocalfieldeffectsfromchangesinaHF/DFThybridxc-potential,aswell.

  • Macroscopiccontinuumconsiderations Themacroscopicdielectrictensorcouplestheelectricfieldinamaterialto

    anappliedexternalelectricfield:

    E = 1Eext

    where isa33tensor

    Foralongitudinalfield,i.e.,afieldcausedbystationaryexternalcharges,thiscanbereformulatedas(inmomentumspace,inthelong-wavelengthlimit):

    vtot

    = 1vext

    vtot

    = vext

    + vind

    with

    Theinducedpotentialisgeneratedbytheinducedchangeinthechargedensity#$%.Inthelinearresponseregime(weakexternalfields):

    ind

    = vext

    ind

    = Pvtot

    where isthereducible polarizability

    whereP istheirreducible polarizability

    Itmaybestraightforwardlyshownthat:

    1 = 1 + = 1 P = P + P (aDysoneq.)

    where istheCoulombkernel.Inmomentumspace: = 4e2/q2

  • MacroscopicandmicroscopicquantitiesThemacroscopicdielectricfunctioncanbeformallywrittenas

    E(r,!) =

    Zdr01

    mac

    (r r0,!)Eext

    (r0,!)

    orinmomentumspaceE(q,!) = 1

    mac

    (q,!)Eext

    (q,!)

    Themicroscopicdielectricfunctionentersas

    e(r,!) =

    Zdr01(r, r0,!)E

    ext

    (r0,!)

    andinmomentumspace

    e(q+G,!) =X

    G0

    1G,G0(q,!)Eext(q+G0,!)

    Themicroscopicdielectricfunctionisaccessiblethroughab-initiocalculations.Macroscopicandmicroscopicquantitiesarelinkedthrough:

    E(R,!) =1

    Z

    (R)e(r,!)dr

  • MacroscopicandmicroscopicquantitiesAssumingtheexternalfieldvariesonalengthscalemuchlargerthattheatomicdistances,onemayshowthat

    E(q,!) = 10,0(q,!)Eext(q,!)

    and

    1mac(q,!) = 10,0(q,!)

    mac(q,!) =10,0(q,!)

    1

    Formaterialsthatarehomogeneousonthemicroscopicscale,theoff-diagonalelementsof,*

    +, (, ),(i.e.,for )arezero,and

    mac(q,!) = 0,0(q,!)

    Thiscalledtheneglectoflocalfieldeffects

  • Thelongitudinalmicroscopicdielectricfunction

    Themicroscopic(symmetric)dielectricfunctionthatlinksthelongitudinalcomponentofanexternalfield(i.e.,thepartpolarizedalongthepropagationwavevectorq)tothelongitudinalcomponentofthetotalelectricfield,isgivenby

    1G,G0(q,!) := G,G0 +4e2

    |q+G||q+G0|@

    ind

    (q+G,!)

    @vext

    (q+G0,!)

    G,G0(q,!) := G,G0 4e2

    |q+G||q+G0|@

    ind

    (q+G,!)

    @vtot

    (q+G0,!)

    andwith G,G0(q,!) :=@

    ind

    (q+G,!)

    @vext

    (q+G0,!)PG,G0(q,!) :=

    @ind

    (q+G,!)

    @vtot

    (q+G0,!)

    sG,G0(q) :=4e2

    |q+G||q+G0|and

    oneobtainstheDysonequationlinkingP and

    G,G0(q,!) = PG,G0(q,!) +X

    G1,G2

    PG,G1(q,!)sG1,G2(q)G2,G0(q,!)

  • Approximations

    Problem: WeknowneitherP and

    Problem: ThequantitywecaneasilyaccessinKohn-ShamDFTisthe:irreduciblepolarizabilityintheindependentparticlepicture3 (or45)

    0G,G0(q,!) :=@ind(q+G,!)

    @ve(q+G0,!)

    AdlerandWiserderivedexpressionsfor3 which,intermsofBlochfunctions,canbewrittenas(inreciprocalspace):

    0G,G0(q,!) =1

    X

    nn0k

    2wk(fn0k+q fn0k)

    h n0k+q|ei(q+G)r| nkih nk|ei(q+G

    0)r0 | n0k+qin0k+q nk ! i

  • Approximations(cont.)

    FortheKohn-Shamsystem,thefollowingrelationscanbeshowntohold

    = 0 + 0( + fxc

    )

    P = 0 + 0fxc

    P

    = P + P

    where istheCoulombkerneland89 istheDFTxc-kernel: fxc = @vxc/@ |=0

    1 = 1 + = 1 P

    Random-Phase-Approximation(RPA): P = 0

    G,G0(q,!) := G,G0 4e2

    |q+G||q+G0|0G,G0(q,!)

    IncludingchangesintheDFTxc-potential: P = 0 + 0fxc

    P

  • Calculationofopticalproperties

    Thelong-wavelengthlimit( )ofthedielectricmatrixdeterminestheopticalpropertiesintheregimeaccessibletoopticalprobes.

    Themacroscopicdielectrictensor

  • Frequencydependent(neglectinglocalfieldeffects)

    LOPTICS=.TRUE.q 1(!) q lim

    q!00,0(q,!)

    Theimaginarypartof

  • First-orderchangeintheorbitals

    Expandinguptofirstorderinq

    |unk+qi = |unki+ q |rkunki+ ...

    andusingperturbationtheorywehave

    |rkunki =X

    n 6=n0

    |un0kihun0k|@[H(k)nkS(k)]@k |unkink n0k

    whereH(k)andS(k)aretheHamiltonianandoverlapoperatorforthecell-periodicpartoftheorbitals.

  • ExamplesGajdo etal.,Phys.Rev.B73,045112(2006).

    ThefrequencydependentdielectricfunctioniswrittentotheOUTCAR file.Searchfor

    frequency dependent IMAGINARY DIELECTRIC FUNCTION (independent particle, no local field effects)

    frequency dependent REAL DIELECTRIC FUNCTION (independent particle, no local field effects)

    and

  • Frequencydependent(includinglocalfieldeffects)

    FortheKohn-Shamsystem,thefollowingrelationscanbeshowntohold

    = 0 + 0( + fxc

    )

    P = 0 + 0fxc

    P

    = P + P

    where istheCoulombkerneland89 istheDFTxc-kernel: fxc = @vxc/@ |=0

    1 = 1 + = 1 P

    Random-Phase-Approximation(RPA): P = 0

    G,G0(q,!) := G,G0 4e2

    |q+G||q+G0|0G,G0(q,!)

    IncludingchangesintheDFTxc-potential: P = 0 + 0fxc

    P

  • IrreduciblepolarizabilityintheIPpicture:3

    ThequantitywecaneasilyaccessinKohn-ShamDFTisthe:irreduciblepolarizabilityintheindependentparticlepicture3 (or45)

    0G,G0(q,!) :=@ind(q+G,!)

    @ve(q+G0,!)

    AdlerandWiserderivedexpressionsfor3 which,intermsofBlockfunctions,canbewrittenas

    0G,G0(q,!) =1

    X

    nn0k

    2wk(fn0k+q fn0k)

    h n0k+q|ei(q+G)r| nkih nk|ei(q+G

    0)r0 | n0k+qin0k+q nk ! i

  • AndintermsofBlockfunctions3 canbewrittenas

    0G,G0(q,!) =1

    X

    nn0k

    2wk(fn0k+q fn0k)

    h n0k+q|ei(q+G)r| nkih nk|ei(q+G

    0)r0 | n0k+qin0k+q nk ! i

    TheIP-polarizability:3

    W = + 0 + 00 + 000 + ... = (1 0)1| {z }1

    Oncewehave3 thescreenedCoulombinteraction(intheRPA)iscomputedas:

    1.ThebareCoulombinteractionbetweentwoparticles

    2.Theelectronicenvironmentreactstothefieldgeneratedbyaparticle:inducedchangeinthedensity3,thatgivesrisetoachangeintheHartreepotential:3.

    3.Theelectronsreacttotheinducedchangeinthepotential:additionalchangeinthedensity,33,andcorrespondingchangeintheHartree potential:33.

    andsoon,andsoon

    geometricalseries

    Expensive:computingtheIP-polarizabilityscalesasN4

  • TheOUTPUT

    Informationconcerningthedielectricfunctionintheindependent-particlepictureiswrittenintheOUTCAR file,aftertheline

    HEAD OF MICROSCOPIC DIELECTRIC TENSOR (INDEPENDENT PARTICLE)

    Perdefault,forALGO=CHI,localfieldeffectsareincludedattheleveloftheRPA(LRPA=.TRUE.),i.e.,limitedtoHartree contributionsonly.SeetheinformationintheOUTCAR file,after

    INVERSE MACROSCOPIC DIELECTRIC TENSOR (including local field effects in RPA (Hartree))

    ToincludelocalfieldeffectsbeyondtheRPA,i.e.,contributionsfromDFTexchangeandcorrelation,onhastospecifyLRPA=.FALSE. intheINCAR file.InthiscaselookattheoutputintheOUTCAR file,after

    INVERSE MACROSCOPIC DIELECTRIC TENSOR (test charge-test charge, local field effects in DFT)

  • Virtualorbitals/emptystatesProblem:theiterativematrixdiagonalizationtechniquesconvergerapidlyforthelowesteigenstatesoftheHamiltonian.Highlying(virtual/emptystates)tendtoconvergemuchslower.

    Doagroundstate calculation(i.e.,DFTorhybridfunctional).BydefaultVASPwillincludeonlyaverylimitednumberofemptystates(lookforNBANDS andNELECT intheOUTCAR file).

    Toobtainvirtualorbitals(emptystates)ofsufficientquality,wediagonalizethegroundstate Hamiltonmatrix(intheplanewavebasis: )exactly.FromtheFFG eigenstatesofthisHamiltonian,wethenkeeptheNBANDSlowest.

    YourINCAR fileshouldlooksomethinglike:

    ..ALGO = ExactNBANDS = .. #set to include a larger number of empty states..

  • Typicaljobs:3steps1. Standardgroundstate calculation

    2. RestartfromtheWAVECAR fileofstep1,andtoobtainacertainnumberofvirtualorbitalsspecify:

    inyourINCAR file.

    3. Computefrequencydependentdielectricproperties:restartfromtheWAVECAR ofstep2,withthefollowinginyourINCAR file:

    ..ALGO = ExactNBANDS = .. #set to include a larger number of empty states..

    ALGO = CHI or LOPTICS = .TRUE.

    N.B.:InthecaseofLOPTICS=.TRUE. step2and3canbedoneinthesamerun(simplyaddLOPTICS=.TRUE. toINCAR ofstep2).

  • TheGWpotentials:*_GWPOTCARfiles

  • ThestaticdielectricresponseThefollowingquantities:

    Theion-clampedstaticmacroscopicdielectrictensor< = 0(orsimply

  • ResponsetoelectricfieldfromDFPTLEPSILON=.TRUE.Insteadofusingasumoverstates(perturbationtheory)tocompute|?,onecansolvethelinearSternheimer equation:

    [H(k) nkS(k)] |rkunki = @ [H(k) nkS(k)]

    @k|unki

    for|?.

    Thelinearresponseoftheorbitalstoanexternallyappliedelectricfield|?,canbefoundsolving

    [H(k) nkS(k)] |nki = HSCF(k)|unki q |rkunki

    where5QF() isthemicroscopiccellperiodicchangeintheHamiltonian,duetochangesintheorbitals,i.e.,localfieldeffects(!):thesemaybeincludedattheRPAlevelonly(LRPA=.TRUE.)ormayincludechangesintheDFTxc-potentialaswell

  • ResponsetoelectricfieldsfromDFPT(cont.)

    Thestaticmacroscopicdielectricmatrixisthengivenby

    q 1 q = 18e2

    X

    vk

    2wkhq rkunk|nki

    wherethesumoverv runsoveroccupiedstatesonly.

    TheBorneffectivechargesandpiezo-electrictensormaybeconvenientlycomputedfromthechangeintheHellmann-Feynmanforcesandthemechanicalstresstensor,duetoachangeinthewavefunctionsinafinitedifferencemanner:

    |u(1)nki = |unki+s|nki

  • TheOUTPUT Thedielectrictensorintheindependent-particlepictureisfoundintheOUTCAR

    file,afterthelineHEAD OF MICROSCOPIC STATIC DIELECTRIC TENSOR (INDEPENDENT PARTICLE, excluding Hartree and local field effects)

    ItscounterpartincludinglocalfieldeffectsintheRPA(LRPA=.TRUE.)after:MACROSCOPIC STATIC DIELECTRIC TENSOR (including local field effects in RPA (Hartree))

    MACROSCOPIC STATIC DIELECTRIC TENSOR (including local field effects in DFT)

    andincludinglocalfieldeffectsinDFT(LRPA=.FALSE.)after:

    ThepiezoelectrictensorsarewrittentotheOUTCAR immediatelyfollowing:PIEZOELECTRIC TENSOR for field in x, y, z (e Angst)

    c.q.,PIEZOELECTRIC TENSOR for field in x, y, z (C/m^2)

    TheBorneffectivechargetensorsareprintedafter:BORN EFFECTIVE CHARGES (in e, cummulative output)

    (butonlyforLRPA=.FALSE.).

  • Examples

    Gajdo etal.,Phys.Rev.B73,045112(2006).

  • Moderntheoryofpolarization(Resta,Vanderbilt,etal.)

    Thechangeinthepolarizationinducedbyanadiabaticchangeinthecrystallinepotentialisgivenby

    P =

    Z 2

    1

    @P

    @d = P(2)P(1)

    whereP() = fie

    (2)3

    Z

    k

    dkhu()nk |rk|u()nk i

    Toillustratethis,consideraWannier function

    k(r) = uk(r)eikr|wi = V

    (2)3

    Z

    k

    dk| ki

    withwell-defineddipolemoment

    ehri = eZ

    drhw|r|wi

    =eV 2

    (2)6

    Z

    k

    dk

    Z

    k0

    dk0X

    R

    Z

    Vdruk(r)(R+ r)uk0(r)e

    i(kk0)(R+r)

  • =eV 2

    (2)6

    Z

    k

    dk

    Z

    k0

    dk0X

    R

    Z

    Vdruk(r)uk0(r)(irk0)ei(kk

    0)(R+r)

    = i eV(2)3

    Z

    k

    dkhuk|rk|uki

    whereweusedintegrationbypartstoletR workonR insteadofontheexponent,andthefollowingrelation

    X

    R

    ei(kk0)R =

    (2)3

    V(k k0)

    Thefinalexpression,proposedbyKing-SmithandVanderbilt,toevaluatethepolarizationonadiscretemeshofk-points,reads:

    Bi P() =f |e|V

    AiNk?

    X

    Nk?

    ={lnJ1Y

    j=0

    det|hu()nkj |u()mkj+1

    i|}

    where

    kj = k? + jBiJ

    , j = 1, ..., J and u()nk?+Bi(r) = eiBiru()nk?(r)

  • kj = k? + jBiJ

    , j = 1, ..., J and u()nk?+Bi(r) = eiBiru()nk?(r)

  • Self-consistentresponsetofiniteelectricfields(PEAD)

    Addtheinteractionwithasmallbutfiniteelectricfield totheexpressionforthetotalenergy

    E[{ (E)}, E ] = E0[{ (E)}] E P[{ (E)}]

    where () isthemacroscopicpolarizationasdefinedinthemoderntheoryofpolarization

    P[{ (E)}] = 2ie(2)3

    X

    n

    Z

    BZdkhu(E)nk |rk|u

    (E)nk i

    AddingacorrespondingtermtoHamiltonian

    H| (E)nk i = H0| (E)nk i E

    P[{ (E)}]h (E)nk |

    allowsonetosolvefor () bymeansofadirectoptimizationmethod(iterateintil self-consistencyisachieved).

    R.W.Nunes andX.Gonze,Phys.Rev.B63,155107(2001).R.D.King-SmithandD.Vanderbilt,Phys.Rev.B47,1651(1993).

  • PEAD(cont.)

    Lc

    ZEg

    VB

    CB

    L

    Souzaetal.,Phys.Rev.Lett.89,117602(2002).

    e|Ec Ai| Eg/NiNiAi < LZ

  • PEAD(cont.)Oncetheself-consistentsolution () hasbeenobtained: thestaticmacroscopicdielectricmatrixisgivenby

    (1)ij = ij + 4(P[{ (E)}]P[{ (0)}])i

    Ej andtheBorneffectivechargesandion-clampedpiezo-electrictensormay

    againbeconvenientlycomputedfromthechangeintheHellman-Feynmanforcesandthemechanicalstresstensor.

    ThePEADmethodisabletoincludelocalfieldeffectsinanaturalmanner(the self-consistency).

    INCAR-tags

    LCALPOL =.TRUE. Computemacroscopicpolarization.LCALCEPS=.TRUE. Computestaticmacroscopicdielectric-,Borneffectivecharge-,

    andion-clampedpiezo-electrictensors,includinglocalfieldeffects.EFIELD_PEAD = E_x E_y E_z ElectricfieldusedbythePEADroutines.

    (DefaultifLCALCEPS=.TRUE.:EFIELD_PEAD=0.010.010.01[eV/].)LRPA=.FALSE. Skipthecalculationswithoutlocalfieldeffects(Default).LSKIP_NSCF=.TRUE. idem.LSKIP_SCF=.TRUE. Skipthecalculationswithlocalfieldeffects.

  • Example:ion-clamped< usingtheHSEhybrid

    J.Paier,M.Marsman,andG.Kresse,Phys.Rev.B78,121201(R)(2008).

  • PEAD:Hamiltonianterms

    TheadditionaltermsintheHamiltonian,arisingfromthe V termintheenthalpyareofthefrom

    P

    j ={ln det|S(kj ,kj+1)|}unkj

    =

    i2

    NX

    m=1

    |unkj+1iS1mn(kj ,kj+1) |unkj1iS1mn(kj ,kj1)

    Snm(kj ,kj+1) = hunkj |umkj+1iwhere

    Byanalogywehave

    @|unkj i@k

    12k

    NX

    m=1

    |unkj+1iS1mn(kj ,kj+1) |unkj1iS1mn(kj ,kj1)

    i.e.,afinitedifferenceexpressionfor|?.

  • TheOUTPUT ThedielectrictensorincludinglocalfieldeffectsiswrittentotheOUTCAR

    file,afterthelineMACROSCOPIC STATIC DIELECTRIC TENSOR (including local field effects)

    ThepiezoelectrictensorsarewrittentotheOUTCAR immediatelyfollowing:PIEZOELECTRIC TENSOR (including local field effects) (e Angst)

    c.q.,PIEZOELECTRIC TENSOR (including local field effects) (C/m^2)

    TheBorneffectivechargetensorsarefoundafter:BORN EFFECTIVE CHARGES (including local field effects)

    ForLSKIP_NSCF=.FALSE.onewilladditionallyfinf thecounterpartsoftheabove:

    ... (excluding local field effects)

  • Ioniccontributions

    Fromfinitedifferenceexpressionsw.r.t.theionicpositions(IBRION=5 or6)orfromperturbationtheory(IBRION=7 or8)weobtain

    ss0

    ij = @F si@us

    0j

    sil = @l@usi

    theforce-constantmatricesandinternalstraintensors,respectively.

    TogetherwiththeBorneffectivechargetensors,thesequantitiesallowforthecomputationof theioniccontributiontothedielectrictensor

    ionij =4e2

    X

    ss0

    X

    kl

    Zsik (ss0)1kl Z

    s0lj

    andtothepiezo-electrictensor

    eionil = eX

    ss0

    X

    jk

    Zsij (ss0)1jk

    s0

    kl

  • TheEnd

    Thankyou!