perturbative qcd at four and five loops - nikheftueda/hpp_45loops.pdfspace-time z chetyrkin, tkachov...

66
Perturbative QCD at four and ve loops Takahiro Ueda Nikhef Theory Group Based on J. Davies, A. Vogt, B. Ruijl, TU, J.A.M. Vermaseren, NPB () [arXiv:.] F. Herzog, B. Ruijl, TU, J.A.M. Vermaseren, A. Vogt, JHEP () [arXiv:.] B. Ruijl, TU, J.A.M. Vermaseren, A. Vogt, JHEP () [arXiv:.] B. Ruijl, TU, J.A.M. Vermaseren, arXiv:. F. Herzog, B. Ruijl, TU, J.A.M. Vermaseren, A. Vogt, JHEP () [arXiv:.] S. Moch, B. Ruijl, TU, J.A.M. Vermaseren, A. Vogt, to appear in JHEP [arXiv:.] September , Nikhef, HPP meeting /

Upload: others

Post on 18-Mar-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Perturbative QCDat four and �ve loops

Takahiro Ueda

Nikhef Theory Group

Based onJ. Davies, A. Vogt, B. Ruijl, TU, J.A.M. Vermaseren, NPB915 (2017) 335 [arXiv:1610.07477]F. Herzog, B. Ruijl, TU, J.A.M. Vermaseren, A. Vogt, JHEP 1702 (2017) 090 [arXiv:1701.01404]B. Ruijl, TU, J.A.M. Vermaseren, A. Vogt, JHEP 1706 (2017) 040 [arXiv:1703.08532]B. Ruijl, TU, J.A.M. Vermaseren, arXiv:1704.06650F. Herzog, B. Ruijl, TU, J.A.M. Vermaseren, A. Vogt, JHEP 1708 (2017) 113 [arXiv:1707.01044]S. Moch, B. Ruijl, TU, J.A.M. Vermaseren, A. Vogt, to appear in JHEP [arXiv:1707.08315]

4L5L

4L 5L4L5L4L

29 September 2017, Nikhef, HPP meeting1/27

Page 2: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Perturbative QCDat four and �ve loops

Takahiro Ueda

Nikhef Theory Group

Based onJ. Davies, A. Vogt, B. Ruijl, TU, J.A.M. Vermaseren, NPB915 (2017) 335 [arXiv:1610.07477]F. Herzog, B. Ruijl, TU, J.A.M. Vermaseren, A. Vogt, JHEP 1702 (2017) 090 [arXiv:1701.01404]B. Ruijl, TU, J.A.M. Vermaseren, A. Vogt, JHEP 1706 (2017) 040 [arXiv:1703.08532]B. Ruijl, TU, J.A.M. Vermaseren, arXiv:1704.06650F. Herzog, B. Ruijl, TU, J.A.M. Vermaseren, A. Vogt, JHEP 1708 (2017) 113 [arXiv:1707.01044]S. Moch, B. Ruijl, TU, J.A.M. Vermaseren, A. Vogt, to appear in JHEP [arXiv:1707.08315]

4L5L

4L 5L4L5L4L

29 September 2017, Nikhef, HPP meeting1/27

Page 3: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Outline

The basic building block in this talk is computing4-loop massless propagator diagrams

2/27

Page 4: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Outline

(phenomenological) Motivation

Forcer program (4-loops)and applications

5-loop calculations(theoretical/math fun)

3/27

Page 5: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Precision physics at the LHC

No signals beyond the SMBreakthrough would come from precision physics(?)

NNLO QCD corrections calculated for many processes

Even N3LO, e.g., inclusive gg→ HAnastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger ’16

N3LO inclusive DIS: Moch, Vermaseren, Vogt ’05; for F3 ’08N3LO inclusive VBF Higgs: Dreyer, Karlberg ’16

4/27

Page 6: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Precision physics at the LHC

No signals beyond the SMBreakthrough would come from precision physics(?)

NNLO QCD corrections calculated for many processes

Even N3LO, e.g., inclusive gg→ HAnastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger ’16

N3LO inclusive DIS: Moch, Vermaseren, Vogt ’05; for F3 ’08N3LO inclusive VBF Higgs: Dreyer, Karlberg ’16

4/27

Page 7: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Precision physics at the LHC

No signals beyond the SMBreakthrough would come from precision physics(?)

NNLO QCD corrections calculated for many processes

Even N3LO, e.g., inclusive gg→ HAnastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger ’16

N3LO inclusive DIS: Moch, Vermaseren, Vogt ’05; for F3 ’08N3LO inclusive VBF Higgs: Dreyer, Karlberg ’16

4/27

Page 8: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Missing N3LO PDFsN3LO gg→ H computed with NNLO PDFs

δ(scale) δ(trunc) δ(PDF-TH) δ(EW) δ(t,b, c) δ(1/mt)

+0.10 pb−1.15 pb ±0.18 pb ±0.56 pb ±0.49 pb ±0.40 pb ±0.49 pb+0.21%−2.37% ±0.37% ±1.16% ±1% ±0.83% ±1%

Anastasiou et al. ’16

missingN3LO PDFs

Ideally N3LO analyses must be performedwith N3LO PDFs

4-loop splitting functions?

5/27

Page 9: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Missing N3LO PDFsN3LO gg→ H computed with NNLO PDFs

δ(scale) δ(trunc) δ(PDF-TH) δ(EW) δ(t,b, c) δ(1/mt)

+0.10 pb−1.15 pb ±0.18 pb ±0.56 pb ±0.49 pb ±0.40 pb ±0.49 pb+0.21%−2.37% ±0.37% ±1.16% ±1% ±0.83% ±1%

Anastasiou et al. ’16

missingN3LO PDFs

Ideally N3LO analyses must be performedwith N3LO PDFs

4-loop splitting functions?

5/27

Page 10: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Missing N3LO PDFsN3LO gg→ H computed with NNLO PDFs

δ(scale) δ(trunc) δ(PDF-TH) δ(EW) δ(t,b, c) δ(1/mt)

+0.10 pb−1.15 pb ±0.18 pb ±0.56 pb ±0.49 pb ±0.40 pb ±0.49 pb+0.21%−2.37% ±0.37% ±1.16% ±1% ±0.83% ±1%

Anastasiou et al. ’16

missingN3LO PDFs

Ideally N3LO analyses must be performedwith N3LO PDFs

4-loop splitting functions?

5/27

Page 11: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Computing splitting functionsN-th Mellin moment of splitting function Pab(x)

γab(N) = −∫ 1

0dx xN−1Pab(x)

(i) Matrix elements of (leading-twist) DIS operatorsψ̄γ{µ1Dµ2 ...DµN}ψ

Q Q(ii) Partonic forward scattering

Gorishnii, Larin, Tkachev ’83;Gorishnii, Larin ’87

Q{µ1 ...QµN}

N!

∂N

∂Pµ1 ... ∂PµN

P P

Q Q

∣∣∣∣∣P=0

In the both cases, compute (poles of) masslesspropagator-type diagrams with N-dependence ∑ Q N

3-loop full-N (hence full-x): Moch, Vermaseren, Vogt ’04; for polarized ’146/27

Page 12: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Computing splitting functionsN-th Mellin moment of splitting function Pab(x)

γab(N) = −∫ 1

0dx xN−1Pab(x)

(i) Matrix elements of (leading-twist) DIS operatorsψ̄γ{µ1Dµ2 ...DµN}ψ

Q Q(ii) Partonic forward scattering

Gorishnii, Larin, Tkachev ’83;Gorishnii, Larin ’87

Q{µ1 ...QµN}

N!

∂N

∂Pµ1 ... ∂PµN

P P

Q Q

∣∣∣∣∣P=0

In the both cases, compute (poles of) masslesspropagator-type diagrams with N-dependence ∑ Q N

3-loop full-N (hence full-x): Moch, Vermaseren, Vogt ’04; for polarized ’146/27

Page 13: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Computing splitting functionsN-th Mellin moment of splitting function Pab(x)

γab(N) = −∫ 1

0dx xN−1Pab(x)

(i) Matrix elements of (leading-twist) DIS operatorsψ̄γ{µ1Dµ2 ...DµN}ψ

Q Q(ii) Partonic forward scattering

Gorishnii, Larin, Tkachev ’83;Gorishnii, Larin ’87

Q{µ1 ...QµN}

N!

∂N

∂Pµ1 ... ∂PµN

P P

Q Q

∣∣∣∣∣P=0

In the both cases, compute (poles of) masslesspropagator-type diagrams with N-dependence ∑ Q N

3-loop full-N (hence full-x): Moch, Vermaseren, Vogt ’04; for polarized ’146/27

Page 14: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Computing splitting functionsN-th Mellin moment of splitting function Pab(x)

γab(N) = −∫ 1

0dx xN−1Pab(x)

(i) Matrix elements of (leading-twist) DIS operatorsψ̄γ{µ1Dµ2 ...DµN}ψ

Q Q(ii) Partonic forward scattering

Gorishnii, Larin, Tkachev ’83;Gorishnii, Larin ’87

Q{µ1 ...QµN}

N!

∂N

∂Pµ1 ... ∂PµN

P P

Q Q

∣∣∣∣∣P=0

In the both cases, compute (poles of) masslesspropagator-type diagrams with N-dependence ∑ Q N

3-loop full-N (hence full-x): Moch, Vermaseren, Vogt ’04; for polarized ’146/27

Page 15: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Approximation from �xed-N results

images/pns2pf0-eps-converted-to.pdf

3-loop: exact vs. approx.(non-singlet, nf -independent part)from Moch, Vermaseren, Vogt, NPB 688 (2004) 101

[arXiv:hep-ph/0403192]

Full N-dependence in 4-loops:out of reach

Approximation from�xed N = 2, 4, 6, ... results:promissingThe more N the more accurate

Very time-comsuming for high NRequires e�ciency

7/27

Page 16: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Approximation from �xed-N results

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1

x

(1−x) P (2)

(x)+,0

exact

N = 2...12

x

(1−x) P (2)

(x)+,0

exact

Lx

NLx

N2Lx

N3Lx

-10000

0

10000

20000

10-5

10-4

10-3

10-2

10-1

1

3-loop: exact vs. approx.(non-singlet, nf -independent part)from Moch, Vermaseren, Vogt, NPB 688 (2004) 101

[arXiv:hep-ph/0403192]

Full N-dependence in 4-loops:out of reach

Approximation from�xed N = 2, 4, 6, ... results:promissingThe more N the more accurate

Very time-comsuming for high NRequires e�ciency

7/27

Page 17: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Approximation from �xed-N results

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1

x

(1−x) P (2)

(x)+,0

exact

N = 2...12

x

(1−x) P (2)

(x)+,0

exact

Lx

NLx

N2Lx

N3Lx

-10000

0

10000

20000

10-5

10-4

10-3

10-2

10-1

1

3-loop: exact vs. approx.(non-singlet, nf -independent part)from Moch, Vermaseren, Vogt, NPB 688 (2004) 101

[arXiv:hep-ph/0403192]

Full N-dependence in 4-loops:out of reach

Approximation from�xed N = 2, 4, 6, ... results:promissingThe more N the more accurate

Very time-comsuming for high NRequires e�ciency

7/27

Page 18: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Outline

(phenomenological) Motivation: 4-loop splitting functions

Forcer program (4-loops)and applications to splitting functions

5-loop calculations(theoretical/math fun)

8/27

Page 19: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Feynman integral calculus

(1) Generate Feynman diagrams

(2) Apply Feynman rules

(3) Multiply projection operator to scalarize integrals

At this point, a bunch of (scalar) Feynman integralsThe standard way to proceed is:

(4) Reduce many integrals toa small set of master integrals

(5) Evaluate the master integrals

4-loop massless propagator master integrals are known:Baikov, Chetyrkin ’10; Lee, Smirnov, Smirnov ’11

9/27

Page 20: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Feynman integral calculus

(1) Generate Feynman diagrams

(2) Apply Feynman rules

(3) Multiply projection operator to scalarize integrals

At this point, a bunch of (scalar) Feynman integralsThe standard way to proceed is:

(4) Reduce many integrals toa small set of master integrals

(5) Evaluate the master integrals

4-loop massless propagator master integrals are known:Baikov, Chetyrkin ’10; Lee, Smirnov, Smirnov ’11

9/27

Page 21: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Feynman integral calculus

(1) Generate Feynman diagrams

(2) Apply Feynman rules

(3) Multiply projection operator to scalarize integrals

At this point, a bunch of (scalar) Feynman integralsThe standard way to proceed is:

(4) Reduce many integrals toa small set of master integrals

(5) Evaluate the master integrals

4-loop massless propagator master integrals are known:Baikov, Chetyrkin ’10; Lee, Smirnov, Smirnov ’11

Problem!!!

9/27

Page 22: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Integration-by-parts identities (IBPs)The divergence theorem in the D-dimensionalspace-time Chetyrkin, Tkachov ’81∫

dDk ∂

∂kµ fµ = 0

(We work in D = 4− 2ε space-time)

Give linear relations among Feynman integralsExample:

F(n1,n2) =

∫dDp 1

(p2)n1[(Q− p)2]n2 QQ

n1

n2Q2 = 1

(D− 2n1 − n2)F(n1,n2)− n2F(n1 − 1,n2 + 1) + n2F(n1,n2 + 1) = 0

(D− n1 − 2n2)F(n1,n2)− n1F(n1 + 1,n2 − 1) + n1F(n1 + 1,n2) = 0

10/27

Page 23: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Integration-by-parts identities (IBPs)The divergence theorem in the D-dimensionalspace-time Chetyrkin, Tkachov ’81∫

dDk ∂

∂kµ fµ = 0

(We work in D = 4− 2ε space-time)

Give linear relations among Feynman integralsExample:

F(n1,n2) =

∫dDp 1

(p2)n1[(Q− p)2]n2 QQ

n1

n2Q2 = 1

(D− 2n1 − n2)F(n1,n2)− n2F(n1 − 1,n2 + 1) + n2F(n1,n2 + 1) = 0

(D− n1 − 2n2)F(n1,n2)− n1F(n1 + 1,n2 − 1) + n1F(n1 + 1,n2) = 0

10/27

Page 24: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Parametric reduction rules

One can “solve” the IBPs (by hand) as

F(n1,n2) = −(D− n1 − n2)(D− 2n1 − 2n2 + 2)

(n1 − 1)(D− 2n1)F(n1 − 1,n2)

F(n1,n2) = −(D− n1 − n2)(D− 2n1 − 2n2 + 2)

(n2 − 1)(D− 2n2)F(n1,n2 − 1)

Recursively apply these rules

F(3, 3) =14(D− 3)(D− 5)(D− 8)(D− 10)F(1, 1)

11/27

Page 25: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Parametric reduction rules

One can “solve” the IBPs (by hand) as

F(n1,n2) = −(D− n1 − n2)(D− 2n1 − 2n2 + 2)

(n1 − 1)(D− 2n1)F(n1 − 1,n2)

F(n1,n2) = −(D− n1 − n2)(D− 2n1 − 2n2 + 2)

(n2 − 1)(D− 2n2)F(n1,n2 − 1)

Recursively apply these rules

F(3, 3) =14(D− 3)(D− 5)(D− 8)(D− 10)F(1, 1)

11/27

Page 26: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

The Laporta’s algorithmAutomatic IBP reduction by Gaussian eliminationwith ordering of integrals Laporta ’00; many public programs in the market

(1) Generate enough equations by setting n1, n2(n1 , n2) = (3, 2): −2F(2, 3) + 2F(3, 3) + (D− 8)F(3, 2) = 0 −3F(4, 1) + 3F(4, 2) + (D− 7)F(3, 2) = 0

(n1 , n2) = (3, 1): −F(2, 2) + F(3, 2) + (D− 7)F(3, 1) = 0 −3F(4, 0) + 3F(4, 1) + (D− 5)F(3, 1) = 0

(n1 , n2) = (2, 2): −2F(1, 3) + 2F(2, 3) + (D− 6)F(2, 2) = 0 −2F(3, 1) + 2F(3, 2) + (D− 6)F(2, 2) = 0

(n1 , n2) = (2, 1): −F(1, 2) + F(2, 2) + (D− 5)F(2, 1) = 0 −2F(3, 0) + 2F(3, 1) + (D− 4)F(2, 1) = 0

(n1 , n2) = (1, 2): −2F(0, 3) + 2F(1, 3) + (D− 4)F(1, 2) = 0 −F(2, 1) + F(2, 2) + (D− 5)F(1, 2) = 0

(n1 , n2) = (1, 1): −F(0, 2) + F(1, 2) + (D− 3)F(1, 1) = 0 −F(2, 0) + F(2, 1) + (D− 3)F(1, 1) = 0

(n1 , n2) = (0, 3): −3F(−1, 4) + 3F(0, 4) + (D− 3)F(0, 3) = 0 (D− 6)F(0, 3) = 0

(n1 , n2) = (0, 2): −2F(−1, 3) + 2F(0, 3) + (D− 2)F(0, 2) = 0 (D− 4)F(0, 2) = 0

(2) Solve for/eliminate “di�cult” integrals

F(3, 3) =14(D− 3)(D− 5)(D− 8)(D− 10)F(1, 1)

12/27

Page 27: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

The Laporta’s algorithmAutomatic IBP reduction by Gaussian eliminationwith ordering of integrals Laporta ’00; many public programs in the market

(1) Generate enough equations by setting n1, n2(n1 , n2) = (3, 2): −2F(2, 3) + 2F(3, 3) + (D− 8)F(3, 2) = 0 −3F(4, 1) + 3F(4, 2) + (D− 7)F(3, 2) = 0

(n1 , n2) = (3, 1): −F(2, 2) + F(3, 2) + (D− 7)F(3, 1) = 0 −3F(4, 0) + 3F(4, 1) + (D− 5)F(3, 1) = 0

(n1 , n2) = (2, 2): −2F(1, 3) + 2F(2, 3) + (D− 6)F(2, 2) = 0 −2F(3, 1) + 2F(3, 2) + (D− 6)F(2, 2) = 0

(n1 , n2) = (2, 1): −F(1, 2) + F(2, 2) + (D− 5)F(2, 1) = 0 −2F(3, 0) + 2F(3, 1) + (D− 4)F(2, 1) = 0

(n1 , n2) = (1, 2): −2F(0, 3) + 2F(1, 3) + (D− 4)F(1, 2) = 0 −F(2, 1) + F(2, 2) + (D− 5)F(1, 2) = 0

(n1 , n2) = (1, 1): −F(0, 2) + F(1, 2) + (D− 3)F(1, 1) = 0 −F(2, 0) + F(2, 1) + (D− 3)F(1, 1) = 0

(n1 , n2) = (0, 3): −3F(−1, 4) + 3F(0, 4) + (D− 3)F(0, 3) = 0 (D− 6)F(0, 3) = 0

(n1 , n2) = (0, 2): −2F(−1, 3) + 2F(0, 3) + (D− 2)F(0, 2) = 0 (D− 4)F(0, 2) = 0

(2) Solve for/eliminate “di�cult” integrals

F(3, 3) =14(D− 3)(D− 5)(D− 8)(D− 10)F(1, 1)

12/27

Page 28: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

The Laporta’s algorithmAutomatic IBP reduction by Gaussian eliminationwith ordering of integrals Laporta ’00; many public programs in the market

(1) Generate enough equations by setting n1, n2(n1 , n2) = (3, 2): −2F(2, 3) + 2F(3, 3) + (D− 8)F(3, 2) = 0 −3F(4, 1) + 3F(4, 2) + (D− 7)F(3, 2) = 0

(n1 , n2) = (3, 1): −F(2, 2) + F(3, 2) + (D− 7)F(3, 1) = 0 −3F(4, 0) + 3F(4, 1) + (D− 5)F(3, 1) = 0

(n1 , n2) = (2, 2): −2F(1, 3) + 2F(2, 3) + (D− 6)F(2, 2) = 0 −2F(3, 1) + 2F(3, 2) + (D− 6)F(2, 2) = 0

(n1 , n2) = (2, 1): −F(1, 2) + F(2, 2) + (D− 5)F(2, 1) = 0 −2F(3, 0) + 2F(3, 1) + (D− 4)F(2, 1) = 0

(n1 , n2) = (1, 2): −2F(0, 3) + 2F(1, 3) + (D− 4)F(1, 2) = 0 −F(2, 1) + F(2, 2) + (D− 5)F(1, 2) = 0

(n1 , n2) = (1, 1): −F(0, 2) + F(1, 2) + (D− 3)F(1, 1) = 0 −F(2, 0) + F(2, 1) + (D− 3)F(1, 1) = 0

(n1 , n2) = (0, 3): −3F(−1, 4) + 3F(0, 4) + (D− 3)F(0, 3) = 0 (D− 6)F(0, 3) = 0

(n1 , n2) = (0, 2): −2F(−1, 3) + 2F(0, 3) + (D− 2)F(0, 2) = 0 (D− 4)F(0, 2) = 0

(2) Solve for/eliminate “di�cult” integrals

F(3, 3) =14(D− 3)(D− 5)(D− 8)(D− 10)F(1, 1)

12/27

Page 29: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

4-loop IBP reduction?(D − n1 − n4 − 2n8 − n9 − n11)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14)

+ (−n1)F(n1 + 1, n2 , n3 , n4 , n5 , n6 , n7 , n8 − 1, n9 , n10 , n11 , n12 , n13 , n14) + (−n3)F(n1 , n2 , n3 + 1, n4 , n5 , n6 , n7 , n8 − 1, n9 , n10 , n11 , n12 , n13 , n14)

+ (−n3)F(n1 , n2 , n3 + 1, n4 , n5 , n6 , n7 , n8 , n9 − 1, n10 , n11 , n12 , n13 , n14) + (−n3)F(n1 , n2 , n3 + 1, n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 − 1, n12 , n13 , n14)

+ (−n3)F(n1 , n2 , n3 + 1, n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 − 1, n14) + (−n4)F(n1 , n2 , n3 , n4 + 1, n5 , n6 , n7 , n8 − 1, n9 , n10 , n11 , n12 , n13 , n14)

+ (−n4)F(n1 , n2 , n3 , n4 + 1, n5 , n6 , n7 , n8 , n9 , n10 , n11 − 1, n12 , n13 , n14) + (−n4)F(n1 , n2 , n3 , n4 + 1, n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 − 1, n14)

+ (−n5)F(n1 , n2 , n3 , n4 − 1, n5 + 1, n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14) + (−n5)F(n1 , n2 , n3 , n4 , n5 + 1, n6 , n7 , n8 , n9 , n10 , n11 − 1, n12 , n13 , n14)

+ (−n5)F(n1 , n2 , n3 , n4 , n5 + 1, n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 − 1, n14) + (−n9)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 − 1, n9 + 1, n10 , n11 , n12 , n13 , n14)

+ (−n11)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 − 1, n9 , n10 , n11 + 1, n12 , n13 , n14) + (−n11)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 + 1, n12 , n13 − 1, n14)

+ (−n12)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 − 1, n12 + 1, n13 , n14) + (−n12)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 + 1, n13 − 1, n14)

+ (−n14)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 − 1, n9 , n10 , n11 , n12 , n13 , n14 + 1) + (−n14)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14 + 1)+ (n1)F(n1 + 1, n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14) + (n3)F(n1 − 1, n2 , n3 + 1, n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14)

+ (n3)F(n1 , n2 − 1, n3 + 1, n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14) + (n3)F(n1 , n2 , n3 + 1, n4 , n5 , n6 , n7 − 1, n8 , n9 , n10 , n11 , n12 , n13 , n14)

+ (n4)F(n1 − 1, n2 , n3 , n4 + 1, n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14) + (n4)F(n1 , n2 , n3 , n4 + 1, n5 , n6 − 1, n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14)

+ (n4)F(n1 , n2 , n3 , n4 + 1, n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 − 1, n13 , n14) + (n5)F(n1 , n2 , n3 , n4 , n5 + 1, n6 − 1, n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14)

+ (n5)F(n1 , n2 , n3 , n4 , n5 + 1, n6 , n7 , n8 , n9 , n10 , n11 , n12 − 1, n13 , n14) + (n5)F(n1 , n2 , n3 , n4 , n5 + 1, n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14)

+ (n9)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 − 1, n8 , n9 + 1, n10 , n11 , n12 , n13 , n14) + (n11)F(n1 , n2 − 1, n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 + 1, n12 , n13 , n14)

+ (n11)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 + 1, n12 , n13 , n14) + (n12)F(n1 − 1, n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 + 1, n13 , n14)

+ (n12)F(n1 , n2 − 1, n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 + 1, n13 , n14) + (n14)F(n1 − 1, n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14 + 1) = 0

+ other 19 IBPs

Parametric reduction rules by hand: no wayLaporta or other generic algorithms: very slow

13/27

Page 30: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

4-loop IBP reduction?(D − n1 − n4 − 2n8 − n9 − n11)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14)

+ (−n1)F(n1 + 1, n2 , n3 , n4 , n5 , n6 , n7 , n8 − 1, n9 , n10 , n11 , n12 , n13 , n14) + (−n3)F(n1 , n2 , n3 + 1, n4 , n5 , n6 , n7 , n8 − 1, n9 , n10 , n11 , n12 , n13 , n14)

+ (−n3)F(n1 , n2 , n3 + 1, n4 , n5 , n6 , n7 , n8 , n9 − 1, n10 , n11 , n12 , n13 , n14) + (−n3)F(n1 , n2 , n3 + 1, n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 − 1, n12 , n13 , n14)

+ (−n3)F(n1 , n2 , n3 + 1, n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 − 1, n14) + (−n4)F(n1 , n2 , n3 , n4 + 1, n5 , n6 , n7 , n8 − 1, n9 , n10 , n11 , n12 , n13 , n14)

+ (−n4)F(n1 , n2 , n3 , n4 + 1, n5 , n6 , n7 , n8 , n9 , n10 , n11 − 1, n12 , n13 , n14) + (−n4)F(n1 , n2 , n3 , n4 + 1, n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 − 1, n14)

+ (−n5)F(n1 , n2 , n3 , n4 − 1, n5 + 1, n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14) + (−n5)F(n1 , n2 , n3 , n4 , n5 + 1, n6 , n7 , n8 , n9 , n10 , n11 − 1, n12 , n13 , n14)

+ (−n5)F(n1 , n2 , n3 , n4 , n5 + 1, n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 − 1, n14) + (−n9)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 − 1, n9 + 1, n10 , n11 , n12 , n13 , n14)

+ (−n11)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 − 1, n9 , n10 , n11 + 1, n12 , n13 , n14) + (−n11)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 + 1, n12 , n13 − 1, n14)

+ (−n12)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 − 1, n12 + 1, n13 , n14) + (−n12)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 + 1, n13 − 1, n14)

+ (−n14)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 − 1, n9 , n10 , n11 , n12 , n13 , n14 + 1) + (−n14)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14 + 1)+ (n1)F(n1 + 1, n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14) + (n3)F(n1 − 1, n2 , n3 + 1, n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14)

+ (n3)F(n1 , n2 − 1, n3 + 1, n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14) + (n3)F(n1 , n2 , n3 + 1, n4 , n5 , n6 , n7 − 1, n8 , n9 , n10 , n11 , n12 , n13 , n14)

+ (n4)F(n1 − 1, n2 , n3 , n4 + 1, n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14) + (n4)F(n1 , n2 , n3 , n4 + 1, n5 , n6 − 1, n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14)

+ (n4)F(n1 , n2 , n3 , n4 + 1, n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 − 1, n13 , n14) + (n5)F(n1 , n2 , n3 , n4 , n5 + 1, n6 − 1, n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14)

+ (n5)F(n1 , n2 , n3 , n4 , n5 + 1, n6 , n7 , n8 , n9 , n10 , n11 , n12 − 1, n13 , n14) + (n5)F(n1 , n2 , n3 , n4 , n5 + 1, n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14)

+ (n9)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 − 1, n8 , n9 + 1, n10 , n11 , n12 , n13 , n14) + (n11)F(n1 , n2 − 1, n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 + 1, n12 , n13 , n14)

+ (n11)F(n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 + 1, n12 , n13 , n14) + (n12)F(n1 − 1, n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 + 1, n13 , n14)

+ (n12)F(n1 , n2 − 1, n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 + 1, n13 , n14) + (n14)F(n1 − 1, n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14 + 1) = 0

+ other 19 IBPs

Parametric reduction rules by hand: no wayLaporta or other generic algorithms: very slow

13/27

Page 31: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

The Forcer programFORM program for 4-loop massless propagator-type(scalar) Feynman integrals

Ruijl, TU, Vermaseren ’17; https://github.com/benruijl/forcerWorks with FORM 4.2

Extends the Mincer approach to 4-loopsChetyrkin, Tkachov ’81;Schoonschip version: Gorishny, Larin, Surguladze, Tkachov ’89;FORM version: Larin, Tkachov, Vermaseren ’91

When possible (determined by the topology),one-loop integration/triangle rule

:Chetyrkin, Kataev, Tkachov ’80;Chetyrkin, Tkachov ’81

: and/or

Chetyrkin, Tkachov ’81;Diamond extension: Ruijl, TU, Vermaseren ’15 14/27

Page 32: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

The Forcer programFORM program for 4-loop massless propagator-type(scalar) Feynman integrals

Ruijl, TU, Vermaseren ’17; https://github.com/benruijl/forcerWorks with FORM 4.2

Extends the Mincer approach to 4-loopsChetyrkin, Tkachov ’81;Schoonschip version: Gorishny, Larin, Surguladze, Tkachov ’89;FORM version: Larin, Tkachov, Vermaseren ’91

When possible (determined by the topology),one-loop integration/triangle rule

:Chetyrkin, Kataev, Tkachov ’80;Chetyrkin, Tkachov ’81

: and/or

Chetyrkin, Tkachov ’81;Diamond extension: Ruijl, TU, Vermaseren ’15 14/27

Page 33: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

4-loop reduction �owchartAll possible topoloties automatically classi�ed

no2

d387d394 d420d424

no1

no6 d391 d399d406d416

haha la4

d401 d425 d426 d427

j1

d392 d396d417d421d422 d423

j6

d386d418d419

j2

d388d397 d411d412d413d414 d415

j5

d402d403 d404d405 d407d408d409 d410

j11

d398 d400

no3

d393

j4

d389 d390

bubud306 d378d308 lala

d207 d220d234 d235d222

nono

bebed217 d218cross

d181d159 d160 d184d176d167 d185

d212 d206d209 d213 lastar5

fastar2 d114d115 d119

nostar0

d118 d137

nostar5

bustar5 d135d128

nostar6

fastar3d136 d127d144

d83 d89 d103d104d58 d57 d98 d110d93 d76 d73d75 d69

t1star05

d15

t1star24

d18 d25

t1star34

d16

t1star45

d19

t1star55

d20

d5d8

d1

d2

d10

d4

d6d11

d7

d51 d36d35 d42d52

d22 d24

d3 d9

d27

d34d38 d45d49

d12 d23

d41 d39d30

d17d14 d13

d86 d70d72 d64 d74

d47

d21d29

d94 d71d66

d43

d26

d77 d81d60 d87 d92 d79

d33d50 d32d37

d28

d91d90 d88d111d113

d112

d170d166 d171d163 d153

d102 d101 d95d100d96 d97

d53

d99

d155d156 d172 d180d178d187 d186d173 d189

d281 d280 d215 d221d208d270 d271

d165 d157 d168d140d175

d65d59d63

d336 d381 d339d327d334 d332 d333d328d324 d326d305 d325d310 d385d321 d345d353 d349d354 d356d311 d344d316 d379

d285d284 d257 d211d197 d236d263d205d239d229

d121

d216

d162 d161d158

d62d68

d164 d146

d80d78

d124

d108

d190 d191

d219 d266d256 d232 d244

d174 d179

d260d250d259d273 d243

d142d130

d254 d262d275 d264d252 d246

d141 d143

d196

d338d337 d383d384 d314d315d320 d323 d347 d352

d272d282 d278 d267d279 d276

d133

d194d287

d145 d134d147d154 d169

d61 d109

d283 d198

d357 d300 d303d342 d370 d366 d296d299 d302 d295 d293d377d375

d231 d248d258d253 d255d233 d241d247d225

d116

d193 d289

d150d122 d125 d117 d152d183 d182 d151d188

d56d105d84 d82 d85

d223 d249d261 d251d224 d242d245d201

d123 d120

d358d362 d367d372d341 d376 d359d363 d368d360d364 d369d373d343 d361d365 d371

d199

d126d131

d240d265 d230d226

d177

d67

d238d228 d237d227

d340

d192

d346d350 d355d322 d348d351d317d318 d312

d277d274

d148 d149

d55d106d107 d54

d268d269

d309

d195

d331 d335d329d330

d286

d138

d307d313d319 d292d298d301 d304 d294d297

d290d288 d291

416 out of 437 topologies have good struturesCan be simpli�ed by 1-loop integration/triangle rule etc.

Python program with 2794 lines automatically generatesFORM code with 39406 lines

The rest (21 topologies) require special rulesConstructed manually from IBPs, but considerablycomputer-assisted, heuristics/brute-force search,optimized by trial and error

15/27

Page 34: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

4-loop reduction �owchartAll possible topoloties automatically classi�ed

no2

d387d394 d420d424

no1

no6 d391 d399d406d416

haha la4

d401 d425 d426 d427

j1

d392 d396d417d421d422 d423

j6

d386d418d419

j2

d388d397 d411d412d413d414 d415

j5

d402d403 d404d405 d407d408d409 d410

j11

d398 d400

no3

d393

j4

d389 d390

bubud306 d378d308 lala

d207 d220d234 d235d222

nono

bebed217 d218cross

d181d159 d160 d184d176d167 d185

d212 d206d209 d213 lastar5

fastar2 d114d115 d119

nostar0

d118 d137

nostar5

bustar5 d135d128

nostar6

fastar3d136 d127d144

d83 d89 d103d104d58 d57 d98 d110d93 d76 d73d75 d69

t1star05

d15

t1star24

d18 d25

t1star34

d16

t1star45

d19

t1star55

d20

d5d8

d1

d2

d10

d4

d6d11

d7

d51 d36d35 d42d52

d22 d24

d3 d9

d27

d34d38 d45d49

d12 d23

d41 d39d30

d17d14 d13

d86 d70d72 d64 d74

d47

d21d29

d94 d71d66

d43

d26

d77 d81d60 d87 d92 d79

d33d50 d32d37

d28

d91d90 d88d111d113

d112

d170d166 d171d163 d153

d102 d101 d95d100d96 d97

d53

d99

d155d156 d172 d180d178d187 d186d173 d189

d281 d280 d215 d221d208d270 d271

d165 d157 d168d140d175

d65d59d63

d336 d381 d339d327d334 d332 d333d328d324 d326d305 d325d310 d385d321 d345d353 d349d354 d356d311 d344d316 d379

d285d284 d257 d211d197 d236d263d205d239d229

d121

d216

d162 d161d158

d62d68

d164 d146

d80d78

d124

d108

d190 d191

d219 d266d256 d232 d244

d174 d179

d260d250d259d273 d243

d142d130

d254 d262d275 d264d252 d246

d141 d143

d196

d338d337 d383d384 d314d315d320 d323 d347 d352

d272d282 d278 d267d279 d276

d133

d194d287

d145 d134d147d154 d169

d61 d109

d283 d198

d357 d300 d303d342 d370 d366 d296d299 d302 d295 d293d377d375

d231 d248d258d253 d255d233 d241d247d225

d116

d193 d289

d150d122 d125 d117 d152d183 d182 d151d188

d56d105d84 d82 d85

d223 d249d261 d251d224 d242d245d201

d123 d120

d358d362 d367d372d341 d376 d359d363 d368d360d364 d369d373d343 d361d365 d371

d199

d126d131

d240d265 d230d226

d177

d67

d238d228 d237d227

d340

d192

d346d350 d355d322 d348d351d317d318 d312

d277d274

d148 d149

d55d106d107 d54

d268d269

d309

d195

d331 d335d329d330

d286

d138

d307d313d319 d292d298d301 d304 d294d297

d290d288 d291

416 out of 437 topologies have good struturesCan be simpli�ed by 1-loop integration/triangle rule etc.

Python program with 2794 lines automatically generatesFORM code with 39406 lines

The rest (21 topologies) require special rulesConstructed manually from IBPs, but considerablycomputer-assisted, heuristics/brute-force search,optimized by trial and error

no2

d387d394 d420d424

no1

no6 d391 d399d406d416

haha la4

d401 d425 d426 d427

j1

d392 d396d417d421d422 d423

j6

d386d418d419

j2

d388d397 d411d412d413d414 d415

j5

d402d403 d404d405 d407d408d409 d410

j11

d398 d400

no3

d393

j4

d389 d390

bubud306 d378d308 lala

d207 d220d234 d235d222

nono

bebed217 d218cross

d181d159 d160 d184d176d167 d185

d212 d206d209 d213 lastar5

fastar2 d114d115 d119

nostar0

d118 d137

nostar5

bustar5 d135d128

nostar6

fastar3d136 d127d144

d83 d89 d103d104d58 d57 d98 d110d93 d76 d73d75 d69

t1star05

d15

t1star24

d18 d25

t1star34

d16

t1star45

d19

t1star55

d20

d5d8

d1

d2

d10

d4

d6d11

d7

d51 d36d35 d42d52

d22 d24

d3 d9

d27

d34d38 d45d49

d12 d23

d41 d39d30

d17d14 d13

d86 d70d72 d64 d74

d47

d21d29

d94 d71d66

d43

d26

d77 d81d60 d87 d92 d79

d33d50 d32d37

d28

d91d90 d88d111d113

d112

d170d166 d171d163 d153

d102 d101 d95d100d96 d97

d53

d99

d155d156 d172 d180d178d187 d186d173 d189

d281 d280 d215 d221d208d270 d271

d165 d157 d168d140d175

d65d59d63

d336 d381 d339d327d334 d332 d333d328d324 d326d305 d325d310 d385d321 d345d353 d349d354 d356d311 d344d316 d379

d285d284 d257 d211d197 d236d263d205d239d229

d121

d216

d162 d161d158

d62d68

d164 d146

d80d78

d124

d108

d190 d191

d219 d266d256 d232 d244

d174 d179

d260d250d259d273 d243

d142d130

d254 d262d275 d264d252 d246

d141 d143

d196

d338d337 d383d384 d314d315d320 d323 d347 d352

d272d282 d278 d267d279 d276

d133

d194d287

d145 d134d147d154 d169

d61 d109

d283 d198

d357 d300 d303d342 d370 d366 d296d299 d302 d295 d293d377d375

d231 d248d258d253 d255d233 d241d247d225

d116

d193 d289

d150d122 d125 d117 d152d183 d182 d151d188

d56d105d84 d82 d85

d223 d249d261 d251d224 d242d245d201

d123 d120

d358d362 d367d372d341 d376 d359d363 d368d360d364 d369d373d343 d361d365 d371

d199

d126d131

d240d265 d230d226

d177

d67

d238d228 d237d227

d340

d192

d346d350 d355d322 d348d351d317d318 d312

d277d274

d148 d149

d55d106d107 d54

d268d269

d309

d195

d331 d335d329d330

d286

d138

d307d313d319 d292d298d301 d304 d294d297

d290d288 d291

15/27

Page 35: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

4-loop reduction �owchartAll possible topoloties automatically classi�ed

no2

d387d394 d420d424

no1

no6 d391 d399d406d416

haha la4

d401 d425 d426 d427

j1

d392 d396d417d421d422 d423

j6

d386d418d419

j2

d388d397 d411d412d413d414 d415

j5

d402d403 d404d405 d407d408d409 d410

j11

d398 d400

no3

d393

j4

d389 d390

bubud306 d378d308 lala

d207 d220d234 d235d222

nono

bebed217 d218cross

d181d159 d160 d184d176d167 d185

d212 d206d209 d213 lastar5

fastar2 d114d115 d119

nostar0

d118 d137

nostar5

bustar5 d135d128

nostar6

fastar3d136 d127d144

d83 d89 d103d104d58 d57 d98 d110d93 d76 d73d75 d69

t1star05

d15

t1star24

d18 d25

t1star34

d16

t1star45

d19

t1star55

d20

d5d8

d1

d2

d10

d4

d6d11

d7

d51 d36d35 d42d52

d22 d24

d3 d9

d27

d34d38 d45d49

d12 d23

d41 d39d30

d17d14 d13

d86 d70d72 d64 d74

d47

d21d29

d94 d71d66

d43

d26

d77 d81d60 d87 d92 d79

d33d50 d32d37

d28

d91d90 d88d111d113

d112

d170d166 d171d163 d153

d102 d101 d95d100d96 d97

d53

d99

d155d156 d172 d180d178d187 d186d173 d189

d281 d280 d215 d221d208d270 d271

d165 d157 d168d140d175

d65d59d63

d336 d381 d339d327d334 d332 d333d328d324 d326d305 d325d310 d385d321 d345d353 d349d354 d356d311 d344d316 d379

d285d284 d257 d211d197 d236d263d205d239d229

d121

d216

d162 d161d158

d62d68

d164 d146

d80d78

d124

d108

d190 d191

d219 d266d256 d232 d244

d174 d179

d260d250d259d273 d243

d142d130

d254 d262d275 d264d252 d246

d141 d143

d196

d338d337 d383d384 d314d315d320 d323 d347 d352

d272d282 d278 d267d279 d276

d133

d194d287

d145 d134d147d154 d169

d61 d109

d283 d198

d357 d300 d303d342 d370 d366 d296d299 d302 d295 d293d377d375

d231 d248d258d253 d255d233 d241d247d225

d116

d193 d289

d150d122 d125 d117 d152d183 d182 d151d188

d56d105d84 d82 d85

d223 d249d261 d251d224 d242d245d201

d123 d120

d358d362 d367d372d341 d376 d359d363 d368d360d364 d369d373d343 d361d365 d371

d199

d126d131

d240d265 d230d226

d177

d67

d238d228 d237d227

d340

d192

d346d350 d355d322 d348d351d317d318 d312

d277d274

d148 d149

d55d106d107 d54

d268d269

d309

d195

d331 d335d329d330

d286

d138

d307d313d319 d292d298d301 d304 d294d297

d290d288 d291

416 out of 437 topologies have good struturesCan be simpli�ed by 1-loop integration/triangle rule etc.

Python program with 2794 lines automatically generatesFORM code with 39406 lines

The rest (21 topologies) require special rulesConstructed manually from IBPs, but considerablycomputer-assisted, heuristics/brute-force search,optimized by trial and error

15/27

Page 36: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

4-loop reduction �owchartAll possible topoloties automatically classi�ed

no2

d387d394 d420d424

no1

no6 d391 d399d406d416

haha la4

d401 d425 d426 d427

j1

d392 d396d417d421d422 d423

j6

d386d418d419

j2

d388d397 d411d412d413d414 d415

j5

d402d403 d404d405 d407d408d409 d410

j11

d398 d400

no3

d393

j4

d389 d390

bubud306 d378d308 lala

d207 d220d234 d235d222

nono

bebed217 d218cross

d181d159 d160 d184d176d167 d185

d212 d206d209 d213 lastar5

fastar2 d114d115 d119

nostar0

d118 d137

nostar5

bustar5 d135d128

nostar6

fastar3d136 d127d144

d83 d89 d103d104d58 d57 d98 d110d93 d76 d73d75 d69

t1star05

d15

t1star24

d18 d25

t1star34

d16

t1star45

d19

t1star55

d20

d5d8

d1

d2

d10

d4

d6d11

d7

d51 d36d35 d42d52

d22 d24

d3 d9

d27

d34d38 d45d49

d12 d23

d41 d39d30

d17d14 d13

d86 d70d72 d64 d74

d47

d21d29

d94 d71d66

d43

d26

d77 d81d60 d87 d92 d79

d33d50 d32d37

d28

d91d90 d88d111d113

d112

d170d166 d171d163 d153

d102 d101 d95d100d96 d97

d53

d99

d155d156 d172 d180d178d187 d186d173 d189

d281 d280 d215 d221d208d270 d271

d165 d157 d168d140d175

d65d59d63

d336 d381 d339d327d334 d332 d333d328d324 d326d305 d325d310 d385d321 d345d353 d349d354 d356d311 d344d316 d379

d285d284 d257 d211d197 d236d263d205d239d229

d121

d216

d162 d161d158

d62d68

d164 d146

d80d78

d124

d108

d190 d191

d219 d266d256 d232 d244

d174 d179

d260d250d259d273 d243

d142d130

d254 d262d275 d264d252 d246

d141 d143

d196

d338d337 d383d384 d314d315d320 d323 d347 d352

d272d282 d278 d267d279 d276

d133

d194d287

d145 d134d147d154 d169

d61 d109

d283 d198

d357 d300 d303d342 d370 d366 d296d299 d302 d295 d293d377d375

d231 d248d258d253 d255d233 d241d247d225

d116

d193 d289

d150d122 d125 d117 d152d183 d182 d151d188

d56d105d84 d82 d85

d223 d249d261 d251d224 d242d245d201

d123 d120

d358d362 d367d372d341 d376 d359d363 d368d360d364 d369d373d343 d361d365 d371

d199

d126d131

d240d265 d230d226

d177

d67

d238d228 d237d227

d340

d192

d346d350 d355d322 d348d351d317d318 d312

d277d274

d148 d149

d55d106d107 d54

d268d269

d309

d195

d331 d335d329d330

d286

d138

d307d313d319 d292d298d301 d304 d294d297

d290d288 d291

416 out of 437 topologies have good struturesCan be simpli�ed by 1-loop integration/triangle rule etc.

Python program with 2794 lines automatically generatesFORM code with 39406 lines

The rest (21 topologies) require special rulesConstructed manually from IBPs, but considerablycomputer-assisted, heuristics/brute-force search,optimized by trial and error

15/27

Page 37: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

4-loop reduction �owchartAll possible topoloties automatically classi�ed

no2

d387d394 d420d424

no1

no6 d391 d399d406d416

haha la4

d401 d425 d426 d427

j1

d392 d396d417d421d422 d423

j6

d386d418d419

j2

d388d397 d411d412d413d414 d415

j5

d402d403 d404d405 d407d408d409 d410

j11

d398 d400

no3

d393

j4

d389 d390

bubud306 d378d308 lala

d207 d220d234 d235d222

nono

bebed217 d218cross

d181d159 d160 d184d176d167 d185

d212 d206d209 d213 lastar5

fastar2 d114d115 d119

nostar0

d118 d137

nostar5

bustar5 d135d128

nostar6

fastar3d136 d127d144

d83 d89 d103d104d58 d57 d98 d110d93 d76 d73d75 d69

t1star05

d15

t1star24

d18 d25

t1star34

d16

t1star45

d19

t1star55

d20

d5d8

d1

d2

d10

d4

d6d11

d7

d51 d36d35 d42d52

d22 d24

d3 d9

d27

d34d38 d45d49

d12 d23

d41 d39d30

d17d14 d13

d86 d70d72 d64 d74

d47

d21d29

d94 d71d66

d43

d26

d77 d81d60 d87 d92 d79

d33d50 d32d37

d28

d91d90 d88d111d113

d112

d170d166 d171d163 d153

d102 d101 d95d100d96 d97

d53

d99

d155d156 d172 d180d178d187 d186d173 d189

d281 d280 d215 d221d208d270 d271

d165 d157 d168d140d175

d65d59d63

d336 d381 d339d327d334 d332 d333d328d324 d326d305 d325d310 d385d321 d345d353 d349d354 d356d311 d344d316 d379

d285d284 d257 d211d197 d236d263d205d239d229

d121

d216

d162 d161d158

d62d68

d164 d146

d80d78

d124

d108

d190 d191

d219 d266d256 d232 d244

d174 d179

d260d250d259d273 d243

d142d130

d254 d262d275 d264d252 d246

d141 d143

d196

d338d337 d383d384 d314d315d320 d323 d347 d352

d272d282 d278 d267d279 d276

d133

d194d287

d145 d134d147d154 d169

d61 d109

d283 d198

d357 d300 d303d342 d370 d366 d296d299 d302 d295 d293d377d375

d231 d248d258d253 d255d233 d241d247d225

d116

d193 d289

d150d122 d125 d117 d152d183 d182 d151d188

d56d105d84 d82 d85

d223 d249d261 d251d224 d242d245d201

d123 d120

d358d362 d367d372d341 d376 d359d363 d368d360d364 d369d373d343 d361d365 d371

d199

d126d131

d240d265 d230d226

d177

d67

d238d228 d237d227

d340

d192

d346d350 d355d322 d348d351d317d318 d312

d277d274

d148 d149

d55d106d107 d54

d268d269

d309

d195

d331 d335d329d330

d286

d138

d307d313d319 d292d298d301 d304 d294d297

d290d288 d291

416 out of 437 topologies have good struturesCan be simpli�ed by 1-loop integration/triangle rule etc.

Python program with 2794 lines automatically generatesFORM code with 39406 lines

The rest (21 topologies) require special rulesConstructed manually from IBPs, but considerablycomputer-assisted, heuristics/brute-force search,optimized by trial and error

15/27

Page 38: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Parton evolutionsDGLAP equation

dd lnµ2f

fa(x,µ2f ) =∑b

[Pab(αs(µ

2f ))⊗ fb(µ2f )

](x)

2 nf (anti-)quark distributions decomposed as• q±ns,ik = (qi ± q̄i)− (qk ± q̄k),�avor non-singlet, 2(nf − 1) components,evolving with P±ns

• qvns =∑nf

i=1(qi − q̄i): �avor non-singlet (“valence”),evolving with Pvns = P−ns +O(α3s)

• qs =∑nf

i=1(qi + q̄i): �avor singlet,mixing with gluons. Pqq = P+

ns +O(α2s)

dd lnµ2f

(qsg

)=

(Pqq PqgPgq Pgg

)⊗(qsg

)16/27

Page 39: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Parton evolutionsDGLAP equation

dd lnµ2f

fa(x,µ2f ) =∑b

[Pab(αs(µ

2f ))⊗ fb(µ2f )

](x)

2 nf (anti-)quark distributions decomposed as• q±ns,ik = (qi ± q̄i)− (qk ± q̄k),�avor non-singlet, 2(nf − 1) components,evolving with P±ns

• qvns =∑nf

i=1(qi − q̄i): �avor non-singlet (“valence”),evolving with Pvns = P−ns +O(α3s)

• qs =∑nf

i=1(qi + q̄i): �avor singlet,mixing with gluons. Pqq = P+

ns +O(α2s)

dd lnµ2f

(qsg

)=

(Pqq PqgPgq Pgg

)⊗(qsg

)16/27

Page 40: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

4-loop splitting functions by Forcer (I)

Computation via Q{µ1 ...QµN}

N!

∂N

∂Pµ1 ... ∂PµN

P P

Q Q

∣∣∣∣∣P=0

Davies, Vogt, Ruijl, TU, Vermaseren ’16

Con�rmed known low-N momentsup to N = 4 for NS Baikov, Chetyrkin, Kühn, Rittinger; Velizhanin ’11; ’14

New results: up to N = 6 for NS, up to N = 4 for S

P±ns, Pvns(Pqq PqgPgq Pgg

)Up to N > 40 for high-nf parts:enough to reconstruct full-N results

17/27

Page 41: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

4-loop splitting functions by Forcer (I)

Computation via Q{µ1 ...QµN}

N!

∂N

∂Pµ1 ... ∂PµN

P P

Q Q

∣∣∣∣∣P=0

Davies, Vogt, Ruijl, TU, Vermaseren ’16

Con�rmed known low-N momentsup to N = 4 for NS Baikov, Chetyrkin, Kühn, Rittinger; Velizhanin ’11; ’14

New results: up to N = 6 for NS, up to N = 4 for S

P±ns, Pvns(Pqq PqgPgq Pgg

)Up to N > 40 for high-nf parts:enough to reconstruct full-N results

17/27

Page 42: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

4-loop splitting functions by Forcer (I)

Computation via Q{µ1 ...QµN}

N!

∂N

∂Pµ1 ... ∂PµN

P P

Q Q

∣∣∣∣∣P=0

Davies, Vogt, Ruijl, TU, Vermaseren ’16

Con�rmed known low-N momentsup to N = 4 for NS Baikov, Chetyrkin, Kühn, Rittinger; Velizhanin ’11; ’14

New results: up to N = 6 for NS, up to N = 4 for S

P±ns, Pvns(Pqq PqgPgq Pgg

)Up to N > 40 for high-nf parts:enough to reconstruct full-N results

17/27

Page 43: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

4-loop splitting functions by Forcer (II)

Computation viaONns = ψ̄λαγ{µ1Dµ2 ...DµN}ψ

Q QMoch, Ruijl, TU, Vermaseren, Vogt ’17

Easier: done up to N = 16 for NS(for S conceptually more involved; in progress)

Up to N = 20 for the large-nc limitFull-N (large-nc) result reconstructed

18/27

Page 44: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

4-loop splitting functions by Forcer (II)

Computation viaONns = ψ̄λαγ{µ1Dµ2 ...DµN}ψ

Q QMoch, Ruijl, TU, Vermaseren, Vogt ’17

Easier: done up to N = 16 for NS(for S conceptually more involved; in progress)

Up to N = 20 for the large-nc limitFull-N (large-nc) result reconstructed

18/27

Page 45: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

4-loop splitting functions by Forcer (II)

Computation viaONns = ψ̄λαγ{µ1Dµ2 ...DµN}ψ

Q QMoch, Ruijl, TU, Vermaseren, Vogt ’17

Easier: done up to N = 16 for NS(for S conceptually more involved; in progress)

Up to N = 20 for the large-nc limitFull-N (large-nc) result reconstructed

18/27

Page 46: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Moments for NS splitting functions

γ±ns(N) = αsγ(0)±ns (N) + α2sγ

(1)±ns (N) + α3sγ

(2)±ns (N) + α4sγ

(3)±ns (N) + ...

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

large nc

N

γ ns

γ (3)±

(N)

nf = 3

nf = 4

points: ± at even/odd N

N

γ ns

γ (3)±

(N)

expansion in αS

nf = 5

nf = 6

-0.3

-0.2

-0.1

0

0.1

0 5 10 15 20 25

even for +, odd for −19/27

Page 47: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Approximated NS splitting functions

P±ns(x) = αsP(0)±ns (x) + α2sP

(1)±ns (x) + α3sP

(2)±ns (x) + α4sP

(3)±ns (x) + ...

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1x

(1-x) P

ns(1-x)

P

(3)± (x)

appr. +

appr. −

large nc

x

(1-x) P

ns(1-x)

P

(3)± (x)

exp. in αS

, nf = 4

-6

-4

-2

0

2

4

6

8

10

10-4

10-3

10-2

10-1

1

20/27

Page 48: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Outline

(phenomenological) Motivation: 4-loop splitting functions

Forcer program (4-loops)and applications to splitting functions

: Approximation for NS

5-loop calculations(theoretical/math fun)

21/27

Page 49: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Infrared rearrangementSuper�cial (or overall) UV divergence: coming fromthe region where all loop momenta go to∞All mass scales (internal massess and externalmomenta) can be ignored

sup.UV div.

[ ]= sup.UV div.

[ ]

= sup.UV div.

[ ]

= sup.UV div.

[M

]Log-divergences are mass-independentin dimensional regularization. Rearrange diagrams

22/27

Page 50: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Computing 5-loop pole parts

Div.

[ ]= sup.UV div.

[ ]+(UV/IR subdivergences

)L-loops L-loops lower loops

= sup.UV div.

[ ]

= sup.UV div.

[ ] integrate1-loop

R∗

(local) R∗-operation:generaization of the BPHZ R-operation,diagrammatically identifying/subtracting both UV and IR

Chetyrkin, Tkachov ’82; Chetyrkin, Smirnov ’83, ’84;Extension for arvitrary numerator structure: Herzog, Ruijl ’17

Poles of 5-loop diagrams can be computedas 4-loop massless propagator diagrams

23/27

Page 51: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Computing 5-loop pole parts

Div.

[ ]= sup.UV div.

[ ]+(UV/IR subdivergences

)L-loops e�ectively (L− 1)-loops lower loops

= sup.UV div.

[ ]

= sup.UV div.

[ ] integrate1-loop

R∗

(local) R∗-operation:generaization of the BPHZ R-operation,diagrammatically identifying/subtracting both UV and IR

Chetyrkin, Tkachov ’82; Chetyrkin, Smirnov ’83, ’84;Extension for arvitrary numerator structure: Herzog, Ruijl ’17

Poles of 5-loop diagrams can be computedas 4-loop massless propagator diagrams

23/27

Page 52: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Computing 5-loop pole parts

Div.

[ ]= sup.UV div.

[ ]+(UV/IR subdivergences

)L-loops e�ectively (L− 1)-loops lower loops

= sup.UV div.

[ ]

= sup.UV div.

[ ] integrate1-loop

R∗

(local) R∗-operation:generaization of the BPHZ R-operation,diagrammatically identifying/subtracting both UV and IR

Chetyrkin, Tkachov ’82; Chetyrkin, Smirnov ’83, ’84;Extension for arvitrary numerator structure: Herzog, Ruijl ’17

Poles of 5-loop diagrams can be computedas 4-loop massless propagator diagrams

23/27

Page 53: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Computing 5-loop pole parts

Div.

[ ]= sup.UV div.

[ ]+(UV/IR subdivergences

)L-loops e�ectively (L− 1)-loops lower loops

= sup.UV div.

[ ]

= sup.UV div.

[ ] integrate1-loop

R∗

(local) R∗-operation:generaization of the BPHZ R-operation,diagrammatically identifying/subtracting both UV and IR

Chetyrkin, Tkachov ’82; Chetyrkin, Smirnov ’83, ’84;Extension for arvitrary numerator structure: Herzog, Ruijl ’17

Poles of 5-loop diagrams can be computedas 4-loop massless propagator diagrams

23/27

Page 54: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

5-loop QCD beta functionBackground �eld method + local R∗ + Forcer

Generic color groupHerzog, Ruijl, TU, Vermaseren, Vogt Jan-’17

3 day computations with more than 500 cores (total CPU time ∼ 1.2 years)Later improved: the current record is 6 days on a (fast) 32 core machine

βMS4 = C 5A(82962353888 − 1630

81 ζ3 +1216 ζ4 −

10459 ζ5

)+d abcdA d abcdA

NACA(−5143 +

187163 ζ3 − 968ζ4 −

154003 ζ5

)+ C 4A TFnf

(−5048959972 +

1050581 ζ3 −

5833 ζ4 + 1230ζ5

)+ C 3A CFTFnf

(81419951944 + 146ζ3 +

9023 ζ4 −

87203 ζ5

)+ C 2A C 2F TFnf

(−54873281 − 50581

27 ζ3 −4843 ζ4 +

128203 ζ5

)+ CAC 3F TFnf

(3717+

56963 ζ3 −

74803 ζ5

)− C 4F TFnf

(41576 + 128ζ3

)+d abcdA d abcdA

NATFnf

(9049 −

207529 ζ3 + 352ζ4 +

40009 ζ5

)+d abcdF d abcdA

NACAnf

(113129 − 127736

9 ζ3 + 2288ζ4 +675209 ζ5

)+d abcdF d abcdA

NACFnf

(−320+

12803 ζ3 +

64003 ζ5

)+ C 3A T 2F n 2f

(843067486 +

1844627 ζ3 −

1043 ζ4 −

22003 ζ5

)+ C 2A CFT 2F n 2f

(5701162 +

2645227 ζ3 −

9443 ζ4 +

16003 ζ5

)+ C 2F CAT 2F n 2f

(3158318 − 28628

27 ζ3 +11443 ζ4 −

44003 ζ5

)+ C 3F T 2F n 2f

(−50189 − 2144

3 ζ3 +46403 ζ5

)+d abcdF d abcdA

NATFn 2f

(−36809 +

401609 ζ3 − 832ζ4 −

12809 ζ5

)+d abcdF d abcdF

NACAn 2f

(−71843 +

403369 ζ3 − 704ζ4 +

22409 ζ5

)+d abcdF d abcdF

NACFn 2f

(41603 +

51203 ζ3 −

128003 ζ5

)+ C 2A T 3F n

3f

(−207727 −

973681 ζ3 +

1123 ζ4 +

3209 ζ5

)+ CACFT 3F n

3f

(−73681 −

568027 ζ3 +

2243 ζ4

)+ C 2F T 3F n

3f

(−992281 +

761627 ζ3 −

3523 ζ4

)+d abcdF d abcdF

NATFn 3f

(35209 − 2624

3 ζ3 + 256ζ4 +12803 ζ5

)+ CAT 4F n 4f

(916243 −

64081 ζ3

)− CFT 4F n 4f

(856243 +

12827 ζ3

)24/27

Page 55: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

5-loop QCD beta functionBackground �eld method + local R∗ + Forcer

Generic color groupHerzog, Ruijl, TU, Vermaseren, Vogt Jan-’17

3 day computations with more than 500 cores (total CPU time ∼ 1.2 years)Later improved: the current record is 6 days on a (fast) 32 core machine

βMS4 = C 5A(82962353888 − 1630

81 ζ3 +1216 ζ4 −

10459 ζ5

)+d abcdA d abcdA

NACA(−5143 +

187163 ζ3 − 968ζ4 −

154003 ζ5

)+ C 4A TFnf

(−5048959972 +

1050581 ζ3 −

5833 ζ4 + 1230ζ5

)+ C 3A CFTFnf

(81419951944 + 146ζ3 +

9023 ζ4 −

87203 ζ5

)+ C 2A C 2F TFnf

(−54873281 − 50581

27 ζ3 −4843 ζ4 +

128203 ζ5

)+ CAC 3F TFnf

(3717+

56963 ζ3 −

74803 ζ5

)− C 4F TFnf

(41576 + 128ζ3

)+d abcdA d abcdA

NATFnf

(9049 −

207529 ζ3 + 352ζ4 +

40009 ζ5

)+d abcdF d abcdA

NACAnf

(113129 − 127736

9 ζ3 + 2288ζ4 +675209 ζ5

)+d abcdF d abcdA

NACFnf

(−320+

12803 ζ3 +

64003 ζ5

)+ C 3A T 2F n 2f

(843067486 +

1844627 ζ3 −

1043 ζ4 −

22003 ζ5

)+ C 2A CFT 2F n 2f

(5701162 +

2645227 ζ3 −

9443 ζ4 +

16003 ζ5

)+ C 2F CAT 2F n 2f

(3158318 − 28628

27 ζ3 +11443 ζ4 −

44003 ζ5

)+ C 3F T 2F n 2f

(−50189 − 2144

3 ζ3 +46403 ζ5

)+d abcdF d abcdA

NATFn 2f

(−36809 +

401609 ζ3 − 832ζ4 −

12809 ζ5

)+d abcdF d abcdF

NACAn 2f

(−71843 +

403369 ζ3 − 704ζ4 +

22409 ζ5

)+d abcdF d abcdF

NACFn 2f

(41603 +

51203 ζ3 −

128003 ζ5

)+ C 2A T 3F n

3f

(−207727 −

973681 ζ3 +

1123 ζ4 +

3209 ζ5

)+ CACFT 3F n

3f

(−73681 −

568027 ζ3 +

2243 ζ4

)+ C 2F T 3F n

3f

(−992281 +

761627 ζ3 −

3523 ζ4

)+d abcdF d abcdF

NATFn 3f

(35209 − 2624

3 ζ3 + 256ζ4 +12803 ζ5

)+ CAT 4F n 4f

(916243 −

64081 ζ3

)− CFT 4F n 4f

(856243 +

12827 ζ3

)24/27

Page 56: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

5-loop QCD beta functionBackground �eld method + local R∗ + Forcer

Generic color groupHerzog, Ruijl, TU, Vermaseren, Vogt Jan-’17

3 day computations with more than 500 cores (total CPU time ∼ 1.2 years)Later improved: the current record is 6 days on a (fast) 32 core machine

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

0 0.1 0.2 0.3 0.4 0.5α

s

βN LO

/ βNLO

n

n = 2

n = 3

n = 4

nf = 4

µ2

αs,N LO

/ αs,NLO

n

n = 2

n = 3

n = 4

nf = 4, fixed value at 40 GeV

2

1

1.02

1.04

1.06

1 10 102

103

104

24/27

Page 57: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

5-loop QCD beta functionBackground �eld method + local R∗ + Forcer

Generic color groupHerzog, Ruijl, TU, Vermaseren, Vogt Jan-’17

3 day computations with more than 500 cores (total CPU time ∼ 1.2 years)Later improved: the current record is 6 days on a (fast) 32 core machine

Con�rmed and extended SU(3) resultsBaikov, Chetyrkin, Kühn Jun-’16Leading/subleading nf -terms (generic group): Gracey ’06;

Luthe, Maier, Marquard, Schröder Jun-’16

Now by another team. EstablishedLuthe, Maier, Marquard, Schröder Sep-’17

Renormalization of QCD at 5-loop �nishedLuthe, Maier, Marquard, Schröder Dec-’16; Jan-’17;Baikov, Chetyrkin, Kühn Feb-’17;Chetyrkin, Falcioni, Herzog, Vermaseren Sep-’17;β4 in MiniMOM also known: Ruijl, TU, Vermaseren, Vogt Mar-’17

24/27

Page 58: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

5-loop QCD beta functionBackground �eld method + local R∗ + Forcer

Generic color groupHerzog, Ruijl, TU, Vermaseren, Vogt Jan-’17

3 day computations with more than 500 cores (total CPU time ∼ 1.2 years)Later improved: the current record is 6 days on a (fast) 32 core machine

Con�rmed and extended SU(3) resultsBaikov, Chetyrkin, Kühn Jun-’16Leading/subleading nf -terms (generic group): Gracey ’06;

Luthe, Maier, Marquard, Schröder Jun-’16

Now by another team. EstablishedLuthe, Maier, Marquard, Schröder Sep-’17

Renormalization of QCD at 5-loop �nishedLuthe, Maier, Marquard, Schröder Dec-’16; Jan-’17;Baikov, Chetyrkin, Kühn Feb-’17;Chetyrkin, Falcioni, Herzog, Vermaseren Sep-’17;β4 in MiniMOM also known: Ruijl, TU, Vermaseren, Vogt Mar-’17

24/27

Page 59: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

5-loop QCD beta functionBackground �eld method + local R∗ + Forcer

Generic color groupHerzog, Ruijl, TU, Vermaseren, Vogt Jan-’17

3 day computations with more than 500 cores (total CPU time ∼ 1.2 years)Later improved: the current record is 6 days on a (fast) 32 core machine

Con�rmed and extended SU(3) resultsBaikov, Chetyrkin, Kühn Jun-’16Leading/subleading nf -terms (generic group): Gracey ’06;

Luthe, Maier, Marquard, Schröder Jun-’16

Now by another team. EstablishedLuthe, Maier, Marquard, Schröder Sep-’17

Renormalization of QCD at 5-loop �nishedLuthe, Maier, Marquard, Schröder Dec-’16; Jan-’17;Baikov, Chetyrkin, Kühn Feb-’17;Chetyrkin, Falcioni, Herzog, Vermaseren Sep-’17;β4 in MiniMOM also known: Ruijl, TU, Vermaseren, Vogt Mar-’17

24/27

Page 60: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

N4LO Higgs decay to gluons

E�ective Hgg ... -coupling in Mt →∞N4LO Wilson coe�cient: Baikov, Chetyrkin, Kühn ’16

The optical theorem leads to

ΓH→gg ∼ ImΠGG(−M2H − iδ) = Im

{eiπεLΠGG(M2

H)}

= Lπε [1+O(ε2)] ΠGG(M2H)

H H

Only the pole terms contribute to the �nite result

25/27

Page 61: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

N4LO Higgs decay to gluonsComputed by local R∗ + Forcer Herzog, Ruijl, TU, Vermaseren, Vogt ’17

1.2

1.4

1.6

1.8

2

100 200 300µ

/ GeV

G∼

(M

H ) / G∼

0G∼

(M

2

N LO2

NLO

N LO4

N LO3

µ / GeV

Γ (H

gg)

/ Γ

0

SI

N LO2

NLO

N LO4

N LO3

1.2

1.4

1.6

1.8

2

100 200 300

Renormalization-scale dependence of K-factor(αs(M2Z) =0.118, MH =125GeV, µt =164GeV)

Computationally challenging:Took 2 monthscf. ΓH→bb̄ and R-ratio (known):much easier, few hours

N4LO correction < 1%(-0.6% at µ = MH)Slightly smaller than 1/mtop e�ectsat NNLO

Uncertainty due to the truncationof the perturbation series (±0.6%)is much smaller than that due touncertainty of αs(MZ)

26/27

Page 62: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Summary

Forcer: program for analytically computing masslesspropagator-type Feynman integrals up to 4-loops

Moments of 4-loop splitting functions computedUp to N = 16 for non-singlet. Approximated x-resultSinglet in progress

5-loop pole parts by Forcer + local R∗

• QCD beta function• Higgs decay

27/27

Page 63: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Summary

Forcer: program for analytically computing masslesspropagator-type Feynman integrals up to 4-loops

Moments of 4-loop splitting functions computedUp to N = 16 for non-singlet. Approximated x-resultSinglet in progress

5-loop pole parts by Forcer + local R∗

• QCD beta function• Higgs decay

27/27

Page 64: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Summary

Forcer: program for analytically computing masslesspropagator-type Feynman integrals up to 4-loops

Moments of 4-loop splitting functions computedUp to N = 16 for non-singlet. Approximated x-resultSinglet in progress

5-loop pole parts by Forcer + local R∗

• QCD beta function• Higgs decay

27/27

Page 65: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Backup

1/2

Page 66: Perturbative QCD at four and five loops - Nikheftueda/hpp_45loops.pdfspace-time Z Chetyrkin, Tkachov ’81 dDk @ @k f = 0 (We work in D = 4 2 space-time) Give linear relations among

Self-energy benchmark @ 4-loops

0 1 2 3 4 5 6 7 8Maximum number of powers of

1

10

100

1000El

apse

d tim

e (m

)

ghost

quark

gluon

background

Our setup with Forcer on a 32-core machine with SSD(8 × “tform -w4” jobs): 4-loop beta in 3 minutes by BFM

2/2