petij)0192 · pdf file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ......

210
PE RFCm.l"'vI AKCE PGTESTl:-\L or HYDROGE.;\ F CE LED, AIHERE CnL1SE AIHCHAFT FINAL REPORT \'OLD!YIE 2 - PHASE I SlTDIES REPOHT Prepared for NATIONAL AERONAUTICS & SPACE ADMI0iiSTRATIO:\ MISSION ANALYSIS DIVISION MOFFETT FIE LD, CAUFORN1A Project Leader by CJENERAL DYNAMICS CONVAIR DIviSION SAN DIEGO, CALJFOHNIA CONTRACT NAS 2-3180 6 M:\ Y 1966 ----- ------ .' ·PEtiJ)0192 ; \

Upload: doanlien

Post on 20-Mar-2018

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

PE RFCm.l"'vI AKCE PGTESTl:-\L or

HYDROGE.;\ F CE LED, AIHERE :\THI~C

CnL1SE AIHCHAFT

FINAL REPORT

\'OLD!YIE 2 - PHASE I SlTDIES

REPOHT ~O. GD/C-DCBGG-n().L'~

Prepared for

NATIONAL AERONAUTICS & SPACE ADMI0iiSTRATIO:\

MISSION ANALYSIS DIVISION

MOFFETT FIE LD, CAUFORN1A

Project Leader

by

CJENERAL DYNAMICS

CONVAIR DIviSION SAN DIEGO, CALJFOHNIA

CONTRACT NAS 2-3180

6 M:\ Y 1966

-----------

.' ·PEtiJ)0192 ; ~.-

\

Page 2: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

... ; FOREWORD

This volume shows the accomplishments during Phase I (through the first quarterl, (Ica I prcsent3tion) of Contract NAS2-3180. The propulsion sccti()J1S of this \'olul11l'

;tt'l: l,!:tssified CONFIDENTIAL and are included under separate CO\'cr ~lS fkpor: ;\(1.

GD' C-DCB-G6-004/2A.

\

Page 3: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

\ I

)

ACKNOWLEDGMENTS

The following contributed significantly to the contents of this volume:

C. J. Cohan G. Place B. W. Prior J. E. Butsko K. S. Coward R. W. Woodrey C. J. Tait A. M. Goldman C. R. Bernick M. L. French

Performance and Aerodynamics Synthesis Program and Performance Propulsion Aerodynamics Sonic Boom Sonic Boom Configuration Design and Evaluation Mission Analysis Economics Weights

ii

Page 4: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

SUl\IlV1ARY

The purpose of Contract NAS2-3180 was to study the performance potential of a liquid

hydrogen fueled, commercial transport operating in the 1985-2000 time period. The contract was organized in two phases. Phase I (through the first quarterly oral pre­

sentation) was a broad parametric study, the purpose of which was to select two con­figurations on which to perform more detailed studies in Phase II. This volume sho~\'s

the Phase I studies.

The main areas of study during Phase I were configuration shape, pr 9pulsion

for cruise at Mach numbers up to 12, mission analysis, sonic boom and cost.. The

main conclusions were:

1. A design range of 5,000 nautical miles and a passenger capacity of 200 passengers

are good compromises between. take-off weight, cost, projected paE'senger traffic

) and sonic boom considerations.

2. The most promising configurations for Phase II are: (a) a 70° delta \ving/circul:1r

body with integral tanks, and (b) a double delta (80c

'65) blended bod\ configur­

ation. A third configuration, variable sweep "'ingicircular bod\, is retained ror

ilmIted study during Phase II.

3. The best cruise Mach number is 6-7. The best propulsion system is a turboia:l­

ramjet. lvIainly because of engine cooling requirements, scramjets, at their

best cruise Mach number of 8 are not competitive with the turbofanramjet. Be­cause of subsonic loiter requirements, liquid ox\gen burning propulsion S\'stems \". ~ - ~

(e. g., ejector ramjets) are not competitive. Propulsion data are included in a

separate volume (Report GDIC-DCB-66-004/2A).

4. For fairly small penalties in take-off weight, vehicle shaping and transonic i1":l­

jectory can be chosen so that a maximum over-pressure of about 2.0 psf nee':]'''

at 1Iach 1...1 and less than 1. 0 psf during cruise.

iii

Page 5: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

TABLE OF CONTENTS

1.0 INTRODUCTION......... .... . . . . .. .. . . . . .. .. . . . . . . .. . . . 1

1.1 OBJECTIVES ........ iii ••••••••••••••• I........................ 1 1.2 GROUND RULES ............... t • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 1.3 APPROACH TO PliA.SE II .... 1.. ................................. 2 1.4 ORGANIZATION OF THIS REPORT. . . • • • • • . • . . . . . . • . • . . • . • . • • • . . . 4

2.0 DELTA WING BASELINE CONFIGURATION. • . • • • . • . • • . • . • • • • • ... 6

2.1 GROUND RULES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 DE SIGN REQUffiE MENTS. . . . . • . • . • • • . . . • • . . . • . . • • • . • . . • . . . . • • . . 6 2.3 CONFIGURATION CONCEPTS................................... 7 2.4 CONFIGURATION EVALUATION AND SELECTION ................. 7 2.5 SELECTED CONFIGURA TION ARRANGEMENT.................... 9 2.6 AERODyNAMICS............................................... 11 2.7 PROPULSION ..........•.....•............•................ ' •... 14 2.8 WEIGHTS ..............•.....•........•.•...................... 14

3.0 SYNTHESIS PROGRAM. . . . . • • . . . • . . . • . . . . . . . . . . • . . . . . . . .. 19

3 . 1 DE SCRIPTION. . . . . . • . . . • . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . .. 19 3.2 COMPUTATIONAL TECHNIQUES. . . . . . . . . . • . . . . . . . . . . . . . . . . . . . .. 21

3.2.1 WEIGHT/SIZING SUBROUTINE ........................... 21 3.2.2 AERODYNAMIC SUBROUTINE. . . . . . • . . . . . . . . . . . • . . . . . • . .. 22 3. 2. 3 PROfULSION SUBROUTINE. . . • . . • . . • • . • . . . . . . . . . . . . . . . •. 23 3.2.4 PERFORMANCE SUBROUTINE .....•.......•............. 24

4.0 TRAJECTORY EVALUATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25

4.1 TRAJECTORY EVALUATION GROUND RULES .............•...... 25 4.2 SONIC BOOM VARIA TIONS. . . . • • . . . . . . • •. . • . . . .. . . . . . . . . . . . . . . .. 27 4.3 DYNAMIC PRESSURE VARIATIONS ....•.............•........... 27 4.4 INLET PRESSURE VARIATIONS ..................•.. : .•.•....•.. 30 4.5 CRUISE ALTITUDE VARIATIONS........... ......••....•.•...... 30 4.6 DESCENT TRAJECTORy.................................... .•. 35 4. 7 SUBSONIC LOITER AND CRUISE VARIA TIONS. . . . . . . . . . . . . . . . • . .. 35 4.8 SELECTED TRAJECTORY. .... .•... ..•.•. . ... ... ...... .. .... ... 38

5.0 PROPULSION EVALUATION, CRUISE MACH < 8 .................. 41-76 (See GD/C-DCB-66-004/2A)

iv

Page 6: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

TABLE OF CONTE~'TS (cont'd)

6.0 DELTA WING CONFIGURATION VARIATIONS ...................... . 81

6. 1 GROUND RULES .....•........ '" . . . ... ..... . .. .. . . . . ... . ... 81 6.2 WING GEOMETRY VARIATIONS......... .......•... .. ........ 81 6.3 BODY GEOMETRY VARIATIONS.................... .......... 87 6.4 INTEGRAL TANKS .......•..•.............•............•. .'.. 87 6. S FINAL DELTA WING CONFIGURATION. . • . . . . . . . . . . . . . . . . . . .. 87

7.0 VARIABLE SWEEP CONFIGURATION....... ......... . .............. 98

7. 1 CONFIGURATION EVALUATION. . . . • . . . . . . . . . . . . . . . . . . . . . . . .. 98 7.2 SELECTED CONFIGURATION ARRANGEMENT................. 99 7.3 AERODYNAWCS. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99

7.4 WEIGHTS ...................•..........•............•....... 106 7. S WING GEOMETRY VARIATIONS ....•......................... 106 7.6 FINAL VARIABLE SWEEP CONFIGURATION ................... 110

8.0 BLENDED BODY CONFIGURA TION. . . . . . . . . . . . . . . . . . . . . . . . .. 123

8.1 BACKGROUND................................................ 123 8.2 GROUNDRULES ..•...•....•..............•................... 123 8.3. CONFIGURATION CONCEPTS ............•...................... 124

8.4 DOUBLE DELTA CONFIGURATION .............................. 124 ~ 8.5 VARIABLE SWEEP, OVERLAPPING WING CONFIGURATION ....... 127

8.6 AERODYNAlVIICS .........•........•.•.............•............ 127

8. 7 WEIGHTS ...............•..............•...................... 129

8.8 DOUBLE DELTA - GEOMETRY VARIATIONS ..................... 129 8.9 FINAL DOUBLE DELTA CONFIGURATION ....................... 129 8.10 VARIABLE SWEEP WING GEOMETRY VARIA TIONS ............... 129 8.11 FIKAL VARIABLE SWEEP CONFIGURATION ...................... 130

9.0 PROPULSION EVALUATION, CRUISE ]'vIACH >8 (SCRAMJET) ........ .l62-187 (See GD/C-DCB-66-004/2A)

10.0 COMPARISON OF CONFIGURATIONS .......................... 199

11. 0 MISSION ANALYSIS ....................•................. 202

11.1 SELECTION OF DESIGN RANGE ................................ 202 11. 1. 1 PASSENGER TRAFFIC 1985-2000 ....................... 202 11.1. 2 GEOGRA..PHIC DISTRIBUTION OF PASSENGERS .......... 204

11.1.3 RECOl\IMENDED DESIGN RANGE ....................... 209

Page 7: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

11.2 CRUISE MACH NUMBER .............•..... ~ ................... 214

11.2.1 BLOCK TITvIE ...............•......................... 214

11.2.2 EFFECTS OF LOCAL TIME ............................ 217

11. 2.3 UTILIZATION .....•...........••.•..••................ 217

11. 2. 4 BEST CRUISE MACH NUMBER. ................•....... 223

11.3 PASSENGER CAPACITY ••........•..•...................•..... 223

11.4 CONCLUSIONS ................................................ 226

12. 0 SONIC BOOM ......................•..............••... 229

12. 1 INTRODUCTION.............................................. 229

12.2 METHOD OF ANALYSIS - FAR FIELD .......................... 230

12.3 METHOD OF ANALYSIS - NEAR FIELD ........•................ 231

12.4 DISCUSSION AND RESULTS .................................... 232

12.4.1 DELTA WING CONFIGURATION ........................ 233

12.4.2 VARIABLE SWEEP CONFIGURATION. . . . . . . . . . . . . . . . .. 233

12.4.3 BLENDED BODY CONFIGURATION.................... 233

12.4.4 SCRAMJET CONFIGURATION...................... ... 233

12.4.5 SUPERSONIC TRANSPORT ......•.................•... 243 12.4.6 COMPARISON OF CONFIGURATIONS ................... 243

12.4. 7 CON FIGURA TION VARIA TIONS. . . . . . . . . . . . . . . . . . . . • . .. 243

12.5 MISSION SONIC BOOM CHARACTERISTICS ................. 252

12.6 CONCLUSIONS .........................•..•...•......•........ 252

12.7 NOMENCL.A TURE 255

13.0 COST .............................•................. 257

13.1 COMPUTER PROGRAM ..................................•..... 257

13.2 ASSUl\IPTIONS .........•...•................................•. 259

13.3 TYPICAL COST ..•.........•.............................•.... 260 13.4 COST SENSITIVITY ............................................ 260

14.0 SE LECTION OF PHASE II CONFIGURATIONS ......•.....•.....•....... 266

14.1 PASSENGER CAPACITy •...•..............•..........•...•.... 266 14.2 DESIGN RANGE ..................•..•..............•.......... 266 14.3 CO:r-.,TFIGURATION SELECTION ....•....••...•.....•........•.... 268

15.0 LIST OF REFERENCES .....•....•...•........•.........•............ 271

vi

/

Page 8: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

LIST OF FIGURES

Page No.

1. APPROACH TO PHASE I 3

2. DELTA WING CONFIGURATION CONCEPTS 8

3. BASELINE DELTA WING CONFIGURATION 10

-1. DELTA "'lING CONFIGURATION - AERODYNAl\IIC CHAHACTERISTICS 12

;). DELTA \\>1NG CONFIGUR~TION - DRAG BREAKDOWN 13

6. DELTA \\1NG CONFIGURATION - AERODYNAMIC CENTER 13

7. SYNTHESIS PROGRAM FLOW 20

8. TYPICAL TRAJECTORY 2 G

9. TRAJECTORY VARIATIONS 28

10. EFFECT OF SOl\TIC BOOM ON TAKE-OFF WEIGHT 29

11. EFFECT OF DYNAMIC PRESSURE ON TAKE-OFF WEIGHT 29

1 '). EFFECT OF RAM,JET AND TITRBQTET SIZE ON TAKE OFF WEIGHT 31

13. EFFECT OF INLET PRESSURE ON TAKE-OFF WEIGHT 32

14. EFFECT OF CRUISE ALTITVDE ON ASCENT MASS RATIO 33

15. EFFECT OF CRLHSE ALTITUDE ON TAKE-OFF WEIGHT 34

'16. EFFECT OF TURBOJET AND RAMJET THROTTLING 01\ TAKE-OFF 3(i WEIGHT

17. EFFECT OF DESCENT TRAJECTORY ON TAKE-OFF WEIGHT 3G

18. EFFECT OF SUBSOmC LOITER ALTITVDE AND l\IACH NO. 37 ON RA..."1\GE PARAMETERS

19. J;:FFECT OF SUBSONIC LOITER ALTITUDE AND MACH NO. 37 ON FUEL FLOW

20. SE LECTED TRAJECTORY -10

vii

Page 9: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

'\ I

LIST OF FIGURES (Cont'd) Page No.

21 - SEE GD/C-DCB-66-004/2A 53.

54. TAKE-OFF WEIGHT VS, LEADING EDGE SWEEP 83

55. TAKE-OFF WEIGHT VS, THICKNESS RATIO 84

56. TAKE-OFF WEIGHT VS. ASPECT RATIO 85

57. TAKE-OFF WEIGHT VS, WING LOADING 86

58. TAKE-OFF WEIGHT VS, BODY FINENESS RATIO 88

59. VARIABLE SWEEP WING CONFIGURATION 100

60. VARIABLE SWEEP CONFIGURATION - SWEEP SCHEDULE 101

61. VARIABLE SWEEP CONFIGURATION - AERODYNAMIC 102 CHARACTE ruSTICS

" 62. )

VARIABLE SWEEP CONFIGURATION - DRAG BREAKDOWN 103

63. VARIABLE SWEEP CONFIGURATION - TRIM: AT MACH 0.5 104

64. VARIABLE SWEEP CONFIGURATION - TRIM AT MACH 4.5 105

65. TAKE-OFF WEIGHT VS, LEADING EDGE SWEEP 109

66. TAKE-OFF WEIGHT VS, THICKNESS RATIO 109

67. TAKE-OFF WEIGHT VS, ASPECT RATIO

68, TAKE-OFF WEIGHT VS, WING LOADING

69. BLENDED BODY CONFIGURATION CONCEPTS 125

70. BLENDED BODY DOUBLE DELTA CONFIGURATION 126

71. BLENDED BODY VARIABLE SWEEP CONFIGURATION 128

72. DOUBLE DELTA AERODYNAMIC CHARACTERISTICS 131

73. DOUBLE DELTA DRAG BREAKDOWN 132

74, VARIABLE SWEEP AERODYNAMIC CHARACTERISTICS 133

75. VARIABLE SWEEP DRAG BREAKDOWN 134

) viii

Page 10: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

LIST OF FIGURES ICont'd)

76. DOL'BLE DELTA LONGITUDINAL STABILITY

77. DOUBLE DELTA PLA...NFORM LOADING EFFECTS

78. VARIABLE SVlEEP WING LOADING EFFECTS

7;') - SEE GD/C-DCB-66-004/2A

9;') •

Page No.

135

142

96. WORLD TOTAL ANNUAL TWO WAY TRAFFIC 203

97. GEOGRAPHIC DISTRIB"CTION OF PASSENGERS 206

98. DISTRIBVTION OF PASSENGER TRAFFIC 207

~)~). PASSENGER TRAFFIC VS. RANGE 208

lOO. CUTvIT.::LATIVE TRAFFIC VS. RANGE 21()

101. ROUTE STRUCTURE 213

102. TRIP TlliIE VS. RANGE 216

103. TRIP TThI E 222

10-1. lTTILIZA TION 224

lOS. PASSE:'\GERS LEA VTNG NEW YORK/DAY 22;:;

lOti. PASSENGERS LEAviNG NEW YORK VS. NO. OF SEATS REQ'D. 228

107. SONIC BOOM CHARACTERISTICS - DELTA WING 234

CONFIGDRATION

108, F (T) FrNCTION - DELTA WIKG CONFIGDRA TION 235

109. SONIC BOO:i\I CHARACTERISTICS - VARIABLE SWEEP 236

CONFIGU RATION

110. F (T) FUNCTION VARIABLE SWEEP CONFIGURATION

111. SO:\1:C BOO:;\I CHARACTERISTICS BLENDED BODY

CONFIGl~RATION, SINGLE DELTA

112. SONIC BOOl\l CHARACTERISTICS BLENDED BODY

CONFIGl~RATION, DOUBLE DELTA

237

238

239

113. FIT) FrNCTION BLENDED BODY CONFIGL'RATION, 240

SINGLE DELTA

114. F (T) I-TNCTION BLENDED BODY CONFIGFHATION, 241

DOCBLE DELTA

ll;,). SO~lC BOO:vr CHARACTERISTICS SCRA::\lJET CONFICrRATIO::';- 242

ix

Page 11: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

LIST OF FIGURES (Contrd) Page No.

116. F (T) FUNCTION SCRAMJET CONFIGURATION 244

117. SONIC BOOM CHARACTERISTICS - SUPERSONIC TRANSPORT 245

118. SONIC BOOM CHARACTERISTICS - CONFIGURATION 246 COMPARISON

119. EFFECT OF BODY FINENESS RATIO ON SONIC BOOM 248

120. EFFECT OF BODY SHAPE ON TAKE-OFF WEIGHT 249

122. EFFECT OF WING LOADING ON SONIC BOOM 250

123. EFFECT OF ASPECT RATIO ON SONIC BOOM 251

124. EFFECT OF TAKE-OFF WEIGHT ON SONIC BOOM 253

125. MISSION SONIC BOOM CHARACTERISTICS 254

126. COST MODEL SCHEMATIC 258

127. COST SENSITIVITY 265

x

Page 12: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

LIST OF TABLES

1. STCDY OBJECTIVES 1

2. STUDY GROVND RCLES 2

3. DELTA WING CONFIGURATION GROU:-iD RULES 6

4. BASELINE DELTA WING CONFIGURATION - WEIGHT & SIZLNG DATA 15

5-8. (SEE REPORT GD/C-DCB-66-004/2A)

9.

10.

11.

12.

13.

DATA FOR INTEGRAL VS NON INTEGRAL TANKS

FINA L DE L TA WING CONFIGURA TION DATA

VARIABLE SWEEP CONFIGURA. TION BASELINE WEIGHT & SIZING DATA

FI~AL VARIABLE SWEEP CONFIGURA. TION DATA

BLENDED BODY CONFIGURATION GROUND RULES

14. BLENDED BODY, DOGBLE DELTA, BASELINE WEIGHT & SIZING

15.

16.

1 .., or i.

DATA

BLENDED BODY, VARLA.BLE SWEEP, BASELINE WEIGHT & SIZING DATA

BLE~DED BODY, DOUBLE DELTA FINAL DATA

BLENDED BODY, VARIr\BLE SWEEP FINAL DATA

18-23 (SEE REPORT GD/ C-DCB-66-004/2A)

22.

23.

24.

25.

26.

?-, -I.

28.

29.

30.

COl\IPARISON OF CONFIGURATIONS, CRUISE MACH 3-8

FII'\AL CONFIGURATION DATA

GLOBAL TRANSPORT AIR TERMINALS

POSSIBLE ROUTE WITH A 5,500 N. MI. RANGE

OTHER POSSIBLE ROUTES WITH A 5,500 N. l'vII. RIl..NGE

DEFINITION OF TYPICA.L TIMES

LOGA. L TIMES

LOCAL TIl\IES

TYPICAL SCHEDULE LAX/NY/ROl\IE

xi

89

90

107

114

123

13 ~)

143

153

200

201

205

211

212

215

218

219

220

Page 13: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

LIST OF TABLES (Continued) ~

Page

31. TYPICAL SCHEDULE LAX/TOKYO 221

32. COST PRINTOUT 261

33. SELECTION OF PASSENGER CAPACITY 267

34. SELECTION OF DESIGN RANGE 267

35. SELECTION OF PHASE II CONFIGURA TIONS 269

36. PHASE II STUDY AREAS AND SELECTED CONFIGURATION 270

xii

Page 14: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

,

1. 0 Il\"TRODCCTION

Starting 7 Septem her 1%5, the Mission Analysis DiYision, :Moffett Field, awarded contract NAS 2-3180 to General Dynamics Convair, San Diego. This contract was to study the "Perfonnance Potential of Liquid Hydrogen Fueled, Airbreathing, Cruise Aircraft'·. The contract was for 74 man months of effort over the nine month duration of the contract. Additional background to the study and to this report is as follows:

1. 1" OBJECTIVES

The objectives of the study, as defined in RFP A-I05n (WEB 32), are shown in Table 1. Items 1 and 2 were defined as Phase I and Items 3 through 6 as Phase II. Phase 1,

which is the subject matter of this volume, was completed during the first three months of the study.

l. TO INVESTIGATE A WIDE VARIETY OF I.J-L) Fl'ELED, '- -

1 A1RBRE ATHING, CRUISE AIRCRAFT.

PHASE I

2. TO SELECT TWO PR01\IISING CONFIGt"R_A nONS.

3. TO EXAMINE, IN DETAIL, THE PROBLE1\l AREAS OF THE SE LECTED CONFIGl:RATIO:\S.

4. TO PROVIDE A DETAILED DEFINITIO?\ OF THE FINAL PHASE II CONFIGl:RA TIONS.

5. TO PERFORlIvl SENSITI\;1TY STCDIES.

6. TO DEFI:\E CRITICAL RESEARCH AREAS. ...

TABLE 1. STl'DY OBJECTIVES

1. 2 GROlJND Rl'LES

The ground rules for the study are shown in Table 2. These ground rules \vere originally specified in RFP A-I0597, but were modified as recorded in Reference 3-principally i:1 extending the upper limit of cruise ;\I2ch number from 8 to 12.

1

Page 15: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

FUEL: LIQUID HYDROGEN

PROPULSION: AIRBRE ATHING

MISSION: COMMERCIAL TRANSPORT

OPERATIONAL: 1985-2000 TThIE PERIOD

CRUISE MACH: 3 TO 12

SONIC BOOM: ~ 2 PSF DURING CLIMB 1. 5 PSF DURING CRUISE

TAKE-OFF: 160 KNOTS & ~ 10,500 FT.

LANDING: 135 KNOTS &~ 8,000 FT.

TABLE 2. GROUND RULES FOR STUDY

1. 3 APPROACH TO PHASE I

As shown in Tables 1 and 2, Phase I was a broad parametric study of the overall characteristiC$ of a liquid hydrogen fueled, commercial transport. The end result of Phase I was to select two promising configurations for more detailed studies during Phase II.

The approach to Phase I is shown in Figure 1. To provide a firm basis for selecting the configurations for Phase II, four parallel areas were studied:

a) Configuration/performance

b) Mission analysis

c) Sonic boom

d) Cost.

The results of these studies were then combined into an overall system evaluation from which the selected configurations for the Phase II studies were obtained.

The upper portion of Figure 1 shows the configuration/perfonnance study, the purpose of which was to compare, parametrically, all reasonable combinations of trajectory, propulsion and configuration. The primary evaluation tool for these studies was an IBM 7094 computer program that combined aerodynamics, weights,

2

Page 16: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

~

,

. riAERODY "AMICS t--

THAnE OF1"S ~PROPULS ION L

BASELINE • THA,JECTOHY r-+ ~ VEHICLE r. • PROPULSION 1\1'" K CONFIGS. HSIZE : SYNTHESIS

• VEHICLE SHAPE

~WEIGHT.." • SCHAMJET

11r

OVERALL SELECT

w SYSTEM CONFIGS

l MISSIO N ANALYSIS .. EVALUATION ~ FUR .. PHASE 11

t .t~

I SONIC BOOM

I SYSTE~ ,f ECONOMICS I I

FIGUHI :l. APPHOACII TO PHASE I

Page 17: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

size, propulsion and performance. In order to ensure that reasonable results would be obtained from the parametric studies, the first step was to design a "baseline con­figuration". Aerodynamic, propulsion, size and weight data were then obtained by analysis of this design. Sizing equations were then derived that included the values obtained for the baseline vehicle. This baseline vehicle - analysis - computer equation approach ensured that the parametric study used realistic values for volume utilization, wetted areas, exposed wing areas, inlet pressure field, longitudinal and directional stability, etc. The configuration/performance evaluation comprised about 8090 of the Phase I effort.

1. 4 ORGANIZATION OF THIS REPORT

This report shows the studies performed during the first three months of the contract (Phase I of Figure 1) which culminated in an oral presentation at Convair, San Diego on 5 January 1966. The decisions made at that meeting are incorporated.

This report is organized along the lines that the study was conducted, i. e. ,

1) Early in the study a delta wing/body configuration was defined (Section 2.0). Ground rules for sizing of this configuration were to carry 200 passengers for 5,000 nautical miles at a cruise Mach number of 6: These values and the con­figuration were judged to provide a reasonable basis for determination of the best trajectory up to Mach 6.0 (Section 4.0) and for evaluation of best accelera­tor propulsion for the Mach 0 to 3 range (Section 5.0). In addition cruise Mach numbers between 3 and 8 were investigated. (Section 5.0).

2) Geometry variations of the delta wing/body configu-r'ation were then made to find the optimum wing and body shape (Section 6.0).

3) A variable sweep wing/body configuration was defined and wing planform studies were made (Section 7. 0) .

4) Blended body configurations were defined and optimized (Section 8.0).

5) An evaluation of configuration/propulsion concepts for cruise Mach numbers between 6 and 12 (Scramjets) was made. This included trajectory and cruise Mach number variations (Section 9.0).

6) The best configurations as determined in Sections 4.0 through 9.0 were then compared (Section 10.0).

7) In parallel with the vehicle studies, a mission analysis was conducted to deter­mine, from the mission standpoint, the most promising cruise 1\1 ach num oor and design range (Section 11. 0).

4

Page 18: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

6) Because of its significance on public acceptance, plus the effect on trajectory, engine siz ing and vehicle shape, an analysis of sonic boom was made (Section 12.0) .

9) Elementary sy"stem costs were determined (Section 13.0).

10) All of the significant factors as determined from the configuration, mission analysis, sonic boom and cost studies were then incorporated into an over-all system evaluation from which the most promising configurations for Phase II were selected (Section 14.0).

Sections 5.0 and 9.0 on Propulsion Evaluation are included under a separate cover, Report GD/C-DCB-66-004/2A (CONFIDENTIA.L).

5

Page 19: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

i-

2.0 DELTA WING BASELINE CONFIGURATION

Of the four basic configuration types to be investigated in Phase I, the relatively conventional delta wing/body arrangement was chosen for initial definition. This con­figuration was defined early in the ~study and was used for the trajectory evaluation (Section 4.0) and for the propulsion evaluation, Mach < 8.0 (Section 5.0).

-2. 1 GROUND RULES

In order to commence the design of the delta wing configuration, a set of ground rules were established as shown in Table 3. These ground rules were selected as providing a vehicle size roughly in the middle of the expected variations. As indicated in Table 3, the take-off weight was expected to be about 600,000 lb. and the fuel weight to be about 40% of the take-off weight.

TAKE-OFF WEIGHT 600,000 LB. APPROX. ~\ ~Q T . '.

WEIGHT OF FUEL 240,000 LB. APPROX. ~

CRUISE MACH NO. 6.0

NUMBER OF PASSENGERS 200

WEIGHT OF CARGO 5,000 LB. PLUS 40 LB. /PASSENGER

RANGE 5,000 N.M.

TABLE 3. DELTA WING CONFIGURATION GROUND RULES

2.2 DESIGN REQUIREMENTS

In order to establish a reasonable configuration, the following aspects of the vehicle were considered:

a) Adequate control surface areas

b) Acceptable C. G. location

6

Page 20: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

c) Location and stowage of the landing gear

d) Overall volume utilization (passenger, crew, cargo, fuel, systems)

e) Propulsion installation effects

f) Pilot visibility.

2. 3 CONFIGURATION CONCEPTS

Since this was the first configuration to be evolved, initial studies were made in the following areas:

BODY

A study was made to establish the most advantageous relationship of passenger, cargo and LH2 tankage with emphasis on passenger safety, drag, and volume utilization.

WING --Three basic locations of wing were studied--Iow, mid, and high relative to the body. This revealed the relationship of the propulsion system, landing gear, and wing/body structural integration.

From these basic wing/body relationships a series of configurations were evolved. The most significant combinations are shown in Figure 2.

2.4 CONFIGURATION EVALUATION AND SELECTION

For the configurations shown in Figure 2 the main areas of compromise are:

a) Passenger/cargo compartment location

b) Lengtl.l. of the main landing gear

c) Tread of the main landing gear

d) Stowage of the main landing gear

e) Inlets in the pressure field

f) Minimum inlet flow interference during M LG retraction

g) Wing carry through structure. 7

Page 21: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

\\"ING LOCATION

• LOW

MIDDLE

HIGH

TOP

A iii "

T lI(QF

:Jf' 11

BOTTOM

~-----------==~~ /7 =<=:J

f

-A-

FIGtJRE 2. DELTA WING CONFIGUR.\. TION CONCEPTS

8

Pl .. SSENGER COMPARTMENT LOCATION

SIDES CENTER

Page 22: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

\. The low wing layout allows the engines to be close to the vehicle centerline, ensuring that the inlets are in the wing pressure field. 'This allows the main landing gear to be located outboard of the engines, minimizing interference with the inlet air flow during retraction, but still providing a reasonable wing depth for gear stowage. The low wing layout also allows the wing center section to pass underneath the fuel tanks. Considering the mid wing layout with a wing carry through box incorporated­excessive tankage volume is lost. Alternatively a heavy center section results when the wing bending moments are carried directly by the 25' diameter frames.· Both the mid wing and the high wing layouts are poor in terms of achieving adequate tread for the main landing gear. Stowage of the gear in the outer wing is not possible be­cause of insufficient depth, stowage in the body results in excessive lost volume around the circula). fuel tanks.

Each of the columns in Figure 2 show a different locati(ln of the passenger compart­ment. The upper compartment, column 1, has about the best Gompromise. The low passenger compartment, Column 2, results in excessive 16st volume around the ci1(cular non-integral tanks (or requires the engines to be moved sp.~nwise). In addition, this low location of the passenger compartment interferes with the wing carry through box and is noisy because of the engine proximity. The forward compartment shown in Column 3 is probably the safest in the event of a crash, but with passengers weigh­iI\g 10-15% of the landing weight, a C.G. shift (zero/full passengers) of more than 20% M1A.c is not reasonable. The side compartment location shown in Column 4 is thought td be more applicable for the blended body configuration and does not appear to have any advantages over the top compartment location. Column 5 shows the passenger compartment located in mid-fuselage and on the C.G.' This is probably the lightest structural arrangement because the passenger ~compartment has the least wetted area and the unusable volume around the fuel tanks is minimized. The three-story, 10

abreast seating may be acc:eptabIe , although the separation of crew and passenger com partment does not seem desirable. This arrangement may be considered in Phase II as one of the structural trade-offs.

Of the five basic compartment locations, arranging the compartment along the upper body centerline was judged best for passenger safety, noise, and structural compatibility.

The low wing offers the best engine installation, landing gear stowage and structural integration with the body. Therefore the low wing - top passenger compart­ment configuration was selected.

2.5 SELECTED CONFIGURATION ARRANGEMENT

Figure 3 shows a plan and inboard profile of the baseline delta wing configuration. The body volume is dominated by the four, circular, non-integral tanks. Tanks 1, ?, and 4 are conical--closely paralleling the outside contour of the body; tank 3 is a cylindrical and less than body diameter to allow the wing box to carry through. The external lines

9

Page 23: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

\ )

FIGURE 3.

-~-i

-----

200 PAsSENGEJ:1 CQMPT

_._---------- ---------

BA.SELINE DELTA WING CONFIGURATION

. ~;~~( "-/ /',- \ , - - ,,- -. ,-,- .- -- - ,- -, - -

"./ i :

"30'

Wing area (gross) thickness ratio aspect ratio leadi ag edge sweep

HorIZontal area (gross) thiFlmess ratio aspect ratio mOVememt

Vertical ,. r ea thibkness ratio aspect ratio

Body length (overall) breadth (max- ) depth (max. ) volume tuel volume

Landing gear - main nose tread

Engines type thrust

Passenger ~ 6 abreast • " abreast seat spacing

Carll" b.y volume

D-D

5,.'

IOe'" -­~PAN

7,500 sq. ft. -04 1. 45 70°

1,410 sq. ft· 06

2.1 _150 to + 10°

1,320 sq. ft. .06 .8

335 ft. 25·3 ft. 34· 3 ft. lO6,66O cu· It· 52, 600 cu. it.

four 66 X 18 tires per oleo twin 48 X 12 tires 52 ft.

Pratt I< Whirney STFRJ-230A (4) 75,000 lbs. SLS each

24 rows 14 rows 36 inches

900 cu. ft.

!Lr:; u.u

'::

Page 24: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

'\ )

)

of the body are roughly 3/4 power with the maximum thickness at 60(~ of the length. The passeni1.er compartment is on top of the fuel tanks with 4 and 6 abreast seating and terminates at about station 190. Aft of the cabin is a cargo bay sized for 40 lb. of baggage per passenger at 20 lb/cu. ft. plus 5,000 lb. of cargo @ 10 lb/cu. ft. The four turboramjets with two dimensional inlets are located tmder the aft center wing. The main landing gear retracts inboard and has a dual hinged strut mechanism for gear

. stowage within the wing contours. The nose is designed to droop to allow pilot visi-, bility during landing.

2.6 AERODYNAMICS

Aerodynamic characteristics of the baseline delta wing configuration were analyzed at Mach numbers from 0.5 to 6. O. Primary emphasis was placed on lift and drag since these data were required for the aerodynamic subroutine of the synthesis pro­gram. The analysis procedures outlined in USAF DATCOM were used, supported in part with experimental data on cross section shape, body camber, etc., from Refer­ences 8 through 11. The resulting lift, drag and L/D characteristics are shown in Figure 4 for several flight Mach numbers. (The increasing L; D max. with increasing Mach number is the result of a relatively high zero lift transonic drag and is charac­teristic of bodies with large cross sectional areas: e. g., Reference 25). Figure 5 presents a breakdown of the total drag coefficient throughout the flight l\Iach number regime for a lift coefficient of . 15. These data show an appreciable percentage of the drag is due to the afterbody and friction.

A brief examination of the stability characteristics of the configuration was made. Figure 6 presents the Mach number variation of longitudinal aerodynamic center. The forward shift of aerodynamic center in going from transonic to hypersonic speeds is a result of the large body SIze relatIve to the lIftmg surface area. Since the lift on the wing and tail fails off faster with increasing Mach number than the lift on the body, increasing the body size with respect to the wing tends to increase the aerod} namic center shift.

A brief examination of the trim capability of the configuration showed that a large negative (nose down) moment exists at zero lift throughout the flight regime, due mainly to the negative lift of the forebody at zero angle of attack. This condition can be corrected by cambering of the fuselage, which will be studied more thoroughly in Phase II. The horizontal tail surfaces indicate sufficient trim power to provide trim at desired lift coefficients, once the zero-lift moment is removed. The effects of trim settings on LID will also be studied during Phase II.

I

The directional stability was checked at Mach 6.0 and it was found that the con­figuration was directionally stable for angles of attack up to 15 degrees.

11

Page 25: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

l\1ACH .6

;;i:n::·~:;::k.!~~=~:~d~ 1.5 .6

.5 ......... .......... ...... .5

.5

.4 .4

C .3 .3 L

.2 .2

.1 .1

0 0 0 4 8 12 0

)

LID

o Ci.

) FIGURE 4. DELTA WING CONFIGURATION - AERODYNAMIC CHARACTERISTICS

12

Page 26: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

.05

.03

.02

.61

SREF = 7,500 sq. ft. ---C--"--- -. ----;--- --------.• ---.----------------------. CCI -.cc __ ,.,..~

lit ___ i.. __ .. __ ... ! • .. ------r" .-~ ". ~ , .. ~-.o.- ___ 4.-... __ j.

! C 1S'.:

--'---+-~ ,

.. t "~ *." .. _ L. , i i

--;._---;- -- ---t·---·-T-~' ,

'-'~---.~-'--- --i- L ,,=. ----1 _ .. _____ :" __ :_:_1

"\_. .j . .1. .J

: ___ L __ ~_~_l~~j , .. -::- ['-----,1: ___ i ..... •. ,.,.::cc:-: ,.,.' :-;.i_: :cc:":,.,.: ',.,.' :--,1

_--:- t· -, -- I ., 'j

- 1--- ...:.----tc--,--...:.-i !.~

-- __ .L __ ..... _ 1. ________ 1. ____ ---Wing: ;.

,

Tail---

-l. __ ~ ! .: -~~

--- + .. _---; Lift, : ----+- ------, ,

I ,

------t-·>-- j -'----'-......--.4

I • 1

. ----_.! --- ----.~ !

I I I I

-- f t:- : ..... , Friction ,,--' , 1 1 1

O~--~--~--~--~--~L-~--~--~--~--~--~--~--.. --~

A.ERODY?-J.

CEi'\TER

(FT.

200

190

FROM NOSE)

180

170

2 .J

}lACH NO.

5 6

FIGCRE S. DELTA WING CONFIGCHA nON DR'\G BREAKDOW:\,

, -- L-----T--.~---;-- __ . ___ -+_~ __ ___i

. ' .

. ---~-------.:------~ .. ~-~ . . -. . !

L .-~ . ---.- .. - -t- L. -~ . -- ~ --L ____ -l __ L ____ .~ __ · L_· _i_:~

T t ' i ,i I i -+~. ___ ._~--- .• -~ _. ___ .,j

: , t· J

~;---~.--r-----r--:-.--~-----"''C:i--~~~------:-+----:--.... I -: ~~. j : ) , .. . ~ . i - r.--------f---~ -~ .. -. _~..L_. ____ ~ __ ~ _ _..:......: ___ : • .:. ____ ~

_, . __ 1 ~- ... +':.' . ........:_ .......... ~---i- --·r~---~. ---.. --.=-.--~.~--""oo;t:::_-~:___~ -Y--" •

-. ~_. ___ ._. L - . _-l. _ -1. . __ ~l I 1

-......;--~-=--=-.:.;..' ---~-----.---:---j I I ; i I

._~ _______ .1 ____ .. __ 1 , __ ~. ___ ~ ___ ....:...._._~ ... _: ___ ._:- .. -- L .. _. _. __

______ ._! ___ i __ · .~j __ ~ ___ : ___ j .. __ . __ ._~ __ .. _ i .1 __ . ____ .L _______ .;.._

\ : , .

o 3 6

;\L\ CH 0;()_

7

FIGLRE G. DE LTA \\'I?\G CO>.'flCLH.-\ TIt):\ .. :\ERODYl\_'\~iIC CENTER

Page 27: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

2.7 PROPULSION

For purposes of vehicle sizing, four Pratt and Whitney STFRJ-230A turboramjet engines were assum ed. This engine is a twin spool, axial turbofan with a bypass ratio of 2.15 : 1. The engines have a fuel rich primary burner and the bypass flow mixes with the fuel-rich turbine exhaust in the afterburner section to produce overall stoicll:'" iometric combustion. For ramjet operation the turbofan is shut down and air is bypassed around it to the afterburner section which now functions as the ramjet combustor. The nozzle is an expansion-deflection type with variable throat area.

Each of the four turboramjets are supplied by a two dimensional, mixed compres­sion inlet. Since these two dimensional inlets can be installed in much less spanwise width than four, separate axi-symmetric inlets, these two dimensional inlets give a more compatible installation within wing pressure field and vehicle balance constraints.

2.8 WEIGHTS

Contract NAS 2-3025, "Weight and Size Analyses of Advanced Cruise and Launch Vehicles", was used for the deterinination of the weights and sizing of the delta wing configuration. "First level" i. e., least sophisticated data, were used since these were consistent with the broad nature of the Phase I studies. Table 4 shows the weight and dimensional data for the configuration shown in Figure 3. The data shown in Table 4 are for the vehicle as drawn in Figure 3--the fuel tanks of which are sized only very approximately for 5,000 n. mi. cruise range. Vehicle C. G. shift is shown on page 18.

14

Page 28: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

AERODYNAMIC CtVICES wING + WING ~OUNTED CCNTROL SURFACES VERTICAL SURFACES HORIZCNTAL SURFACES FAIRINGS,SHROUOS AND ASSOCIATED STRUCTURE

80CY STRLCTURE

54327. 8296. 8781.

o.

STRUCTURAL FLEL(OR COMMON BASIC ENCLOSING STKUCTURE PRESSURIlEC CCMPARTMENTS SECONCARY STRUCTURE

PROPELLANT) CONTAINER O. 93143.

5193. o.

INCUCEC ENVIRCNMENTAL PROTECTION COVER PANELS,NON-STRUCTURAL INSULAT lCN

lANDING GEAR

MAIN PROPULSION ENGINES ANC ACCESSORIES AIR I/'lDUCT ION NACELLES,PODS,PVLCNS,SUPPORTS FUEl(CR CCMMCN)CCNTAINERS AND SUPPORTS OXIDIZER CONTAINERS AND SUPPORTS PROPELLANT INSULATION FUEL SYSTEM OXIOIlEK SYSTEM PRESSURIZATICN SYSTEMS LUBRICATING SYSTEM

AEROCVNAMIC ,CONTROLS

PRIME POkER SOURCES ENGINE OR GAS GENERATOR LNITS n,-,,,cn c-n .r.r~ ~ ,.' rr- ." ~ 'r.,.~

POftER CCNVERSION AND DISTRIBUTION ELECTRICAL ~YCRALLIC/PNEUMATIC

GUIDANCE AND NAVIGATION

INSTRUMENTATIGN

CCMMUNICAlION

ENvIRONMENTAL CC~TRCLS EQUIPtJENT PERSCl\N EL CuOl~NT SYSTEM COMPARTMENT INSULATICN

o. o.

42282. 17400.

3719. 20955.

f).

10266. 1536.

o. 4215.

160.

2313.

4063. 1233.

202. 2150.

o. 5274.

TABLE 4. BASELINE DELTA WING CONFIGURATION - WEIGHTS

15

71403.

98336.

o.

18299.

100532.

5847.

3526.

5296.

800.

420.

2025.

7626.

Page 29: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

PERSONNEL PROvISIONS ACCCMMOCATIO~S fOR PERSONNEL FIXED LIFE SLPPORT FU~NISHINGS AND CARGO HANDLING EMERGENCY EQUIPMENT

CREw STATICN CGNlROlS AND PANELS

DRY STRUCTURE

DESIGN RESERVE

PERSONNEL CREW,GEAR AND ACCESSORIES CREW LIFE SUPPORT

PAYLOAD C.AR GO PASSENGERS

USEFUL lOAD

RESIDUAL PROPElL~NT AND SERVICE ITEMS TANK PRESSURIZATION GASES TRAPPf:C FUEL TRAPPED OXIDIZER SERVICE ITEMS RESIDUALS

RESERVE P~OPElLA~T AND SERVICE ITEMS FUEL-~AIN PRCPULSION OXIDIZER-MAIN PROPULSION POwER SOURCE PROPELLANTS LUBRICANTS

WET STRUCTURE

IN-fLIGt-T LOSSES Fl..EL \lENT OXIDIZER VENl POWER SOURCE PRCPElLANTS LUBRICANTS

MAIN PROPELLANTS FUEL

TAKEOFF,ClIMB,ACCELERATE CRUISE DESCENT LO IT ER LANe

OXIDIZER TAKEOFF,CLIMB,ACCELERATE CRUISE CESCENT LeITER LAND

-0. -0. -0. -0. -0.

-0. -0. -0. -0. -0.

4700. 308.

8116. 305.

1250. 25.

13000. 35000.

230. 1213.

o. 121.

o. o.

173. 83.

I ,

1665. o.

3456. 330.

222000.

o.

13428.

300.

327838. )

o.

1275.

48000.

49275.

1565.

255.

5451.

222000.

TAKEOFF ~EIGHT 606384.)

TABLE 4 (CONT'D). BASELINE DELTA WING CONFIGURATION - WEIGHTS

16

Page 30: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

\ I

VOLUMES BODY STRUCTURE CREW ANC PASSENGER CCMPARTMENTS CARGO CCMPARTMENT LAN 0 IN G GEAR fAYS PRCPULSICN BAY WITHIN BODY WING CENTER SECTION FUEL(CR CCMMCN PROPELLANT) OXIDIZER CCNTAINER fUEL(OR CCMMGN PROPELLANT) OTHER BODY VOLUME

TOTAL 8GOY ~OLUME

WETTEC AREAS GROSS BODY

CONTAINER

INSULATION

LOWER SURFACES(TrERMAL PROTECTION) UPPER SURFACES(TrERMAL PROTECTION) PERSCNNEL CO~PARTMENTS CARGO COMPARTMENTS

PLAN AREAS WING(CR LIFTING SURFACE) (GROSS) EXPOSED wING AREA BODY MAXIMUM CROSS SECTION BASE VERTICAL SURFACES HCRIICNTAL SURFACES AIR It\LET CAPTURE AREA

UNIT wEIGHTS WING VERTICAL SURfACES HORIZGNTAL SURFACES BODY STRUCTURE (BASIC) LIFTING SURFACE MAXIMUM LOADING

DIMENSIONAL CATA WING

STRUCTURAL SPAN ROOT CHORD LENGTH THICKNESS RATIO

EODY LENGTI-: WIDTH HEIGHT

ENGINE SCALE FACTOR

CU FT 10999. 8645. 903. 270.

o. 3993.

52386. O.

3290. 18819.

99365.

SQ. FT. 21991.85

o. o.

4831.66 442.80

SQ. FT. 7504.75 4361.79 633.54 633.54

1212.15 1350.86

116.00

L8~9ET 0.24)

6.84 6.50 ~ 80.80

FEET

169.19 143.29

0.04

323.11 24.91 33.29

5.50

CU M 311. 245. 26.

8. o.

113. 1483.

o. 93.

534.

2812.

SQ. fi. 2043.60

o. o.

448.86 41.14

SQ. M. 697.19 405.21

58.86 58.86

112.61 125.49

10.78

KG/SGM 0.33 0.31 0.29 0.19 3.61

METERS

51.7".> 43.67

98.50 7.59

10.15

TABLE 4 (CONTID). BASELINE DELTA WING CONFIGURATION - SIZE DATA

17

Page 31: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

600

-CI";) 0 ~ . to

,.Q C ..j.>

-So 500 .... ~ to to 0 ~ 0

40v

30o.

~ . p:~+rt+

~h~ .'

::;t;: I±t;:: -....

----H--- ,..-,-,

~ ~.

160

+.

.......

+-1-.. -~'

'=z... ....-.. t.4;" .-l-;-,-,..,-. ~

r-~ .. +-~t;::-t

~~ .f-! -+-~ .. ---+~~

.~t::::;+ -++ .

1 ~TANK NO.

:- ,'+-1 1

. 4 ~-+!-'

~ ~.t_-'-'-'f--!ZERO PASSENGERS - '2~ '" ~==

t<

-=:tt=: . ~.- :~ AND 9.1.RGO

200 PASSENGERS,T 2 . BAC,C,AC,F. 1& CARGO ~ ,

EMPTY

3

170 180 C. G. Feet from Nose

TABLE 4 (CONT'D). BASELINE DELTA WING CONFIGURATION - C.G. SHIFT

18

Page 32: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

3.0 SYNTHESIS PROGRAM

In order to provide a consistent basis for the vehicle parametric analyses, a computer program that combined performance with vehicle sizing was obviously required. A modified version of the computer program used on previous Aerospaceplane studies was used. The modifications were concerned mainly with:

a) Changing the program to compute take-off weight for a specified payload/range.

b) Simplifying the program to enable it to respond to the broad studies required in Phase I.

3.1 . DESCRIPTION

The program used a mathematical model technique in which the computation of the vehicle weight, volume, aerodynamic and propulsion characteristics were expressed as functional relationships of the vehJcle geometry, sizing and trajectory parameters. Given the appropriate sizing, aerodynamic and propulsion input, the computer pro­gram used an iterative procedure to compute the vehicle size required to perform a - ,.. specified mission. Figure~ presents a flow diagram of the synthesis program which was used for thIS study.

The mission is specified by defining, as program input, the altitude-velocity trajectories for ascent and descent, the total range, the loiter time and an initial estimate of cruise range. The configuration input includes the coefficients for use in the equations which determine weights, volume, size, aerodynamic characteristics and propulsion characteristics. For the first iteration, it is necessary to provide initial estimates of fuel weight and engine size, and this allows a determination of the take-off weight and the vehicle size.

For the vehicle thus sized, a take-off computation is made, followed by climb calculations. If at any time during the climb computation, the thrust is less than the drag, the engine size is increased and the computations are started again. Vi.'hen the desired start of cruise condition is reached, the engine is throttled to yield thrust equal drag and the vehicle cruises for the initial estimate of cruise range. A des cent computation is then made by throttling the engine so that thrust is less than drag; this is followed by a subsonic loiter, des cent and landing. At this point the total range (excluding range/during subsonic loiter or cruise) is then compared wHh the total range

19

\.

Page 33: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

INPUT MISSION CHARACTERISTICS CONFIGURA TION CHARACTERISTICS INITIAL FUEL AND ENGINE ESTIMA TES

~,

WEIGHT/VOLUME .... .....

Wlo .... -

+ I INCREASE ENGINE SIZE I I TAKEOFF J~

t I CLIMB: IF THRUST < DRAG

t I CRUISE

L ... r'" • I DESCENT

+ I A nn TC:: 'T' f'" 0 T nc:: t;' 0 A 1I..TI":' t;' I ,J.J.j.JJUU.L '\J.L'\.\.J.&. ..... .LI.1.'\. .,L"U.L..:I

. I T I'"\T""",..,n I • I .LJ '-J~ ~!jn I

• I ADJUST FUEL

I DESCENT

+ I RANGE CHECK

I RANGE::j. RANGEREQ I

dt I LANDING

t I FUEL CHECK : FUEL USED:f FUEL ON BOARD

<tK I PRINT I

FIGURE 7. SYNTHESIS PROGRAM FLOW

20

,h

,

,

1

Page 34: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

" )

)

required .. If the range vaiues are not equal, the cruise range is adjusted and the computation is started again at the start of cruise point. When the range values are equal (within a tolerance) the fuel is compared with the initial estimate of fuel. If not equal, a new fuel weight is assumed and the entire calculation is repeated until the fuel used is equal to the fuel on board.

3. 2 COMPUTATION TECHNIQUES

The computer program is built up from subroutines. The sections which follow outline very briefly some of the more important subroutines:

3.2.1 WEIGHT/SIZING SUBROUTINE. The weight/sizing subroutine used in the synthesis program is the "first level" weight/sizing program developed by Convair under contract NAS 2-3025.

The weight-volume subroutine contains the equations for vehicle weight, volume and size. These equations are in the following form:

W ocW -'-W +W +W -+-W -'-W -' TO fuel engines pass surfaces fuselage landing gear

v =V -'-v +V + FUS fuel pass unus

These equ::rtions can be rewritten in the following form s:

where

W

WTO = Wfuel + Wengines + C1 (No, of Pass) -'- C2 (WT~/~)

i +C V +CW +C(W )

3 FUS 4 TO' 5 TO -

C1

, k1

, 1, J, W ,W etc., are fixed at any sizing condition. fuel engine s

Due to the nonlinear nature of the weight and volume relations, it is necessary to use an iterative procedure to solve for take-off weight and size. The take-off wing loading is specified as input.

The \veightisizing subroutine also includes geometric relationships that result in \veight and aerodynamic scaling effects, e. g. ,

21

Page 35: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

~\

I

)

)

d 1 .667

Vertical tail area = C. (bo y vo tune) . 1

Exposed wing area = Gross Area - C, (root chord x body width) . J

where C. and C, are constants determined from the baseline configurations. 1 J

3.2.2 AERODYNAMIC SUBROUTINE

The aerodynamic subroutine computes lift, drag, and angle of attack characteristics. The inputs to this subroutine are the aerodynamic coefficients; C

L ,CD < CD'

Ci wave, f etc., of the various configuration· components; body, wing, horizontal tail, etc., based upon the component reference area. Interference effects are included in com­ponent characteristics. The configuration characteristics are obtained by converting the coefficients to a reference area equal to the vehicle wing area and summing them up. For example, the following equation is used for configuration lift curve slope:

S Sb Sh w C

L =C

exp +C )I('

cross +C ... tail

)(

L S L S L S Ci

tot Ci w Ci w a

tail w

wing body

where CL

Ci • wmg

CLare component lift curve slopes

Citail .

s w

exp

Sb cross

= wing cAllosed area

= maximum body cross sectional area

= horizontal tail area

In the. performance computations the required lift coefficient is obtained from: V2

W cos y [ 1 - - ] - Thrust sin a . Rg

CL -'--------------------------req q S

w

.An iterative procedure is :used to determine the angle of attack which satisfies the above equation.

22

Page 36: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

The total drag coefficient is given by

"Yhere

C =C +C +C D D Dfo 0 D

o rIctlOn 1

CD = pressure drag @ Cl = 0

o

CD1

= drag due to lift

3.2.3 PROPULSION SUBROUTINE. The propulsion subroutine computes the thrust and propellant flow characteristics of the propulsion system being considered. The details of the propulsion routine varied for each propulsion system. In general the propulsion subroutines were divided into a turbine engine routine and a ramjet routine. The propulsion data used as input was non-dimensionalized as discussed in Section 5. O. In general, the following form of equations are used:

a) TU REINE ENGINE . Fuel Flow Parameter = _ rr;:;--

PTvTT

w F

2 2

= f (T ) = FFP T2

where P T = inlet total pressure 2

T T 2 = turbine inlet temperature

P T 2 and T T 2 are functions of such parameters as Mach number, altitude, pres­

sure recovery, etc.

Gross Thrust Parameter = TG = f (fuel flow parameter) = TGP

PT2

Ae

where Ae = nozzle exit area

~aF Air Flow Parameter = 2 = f (fuel flow parameter) = AFP

P T2

The net thrust is given by

V T = TGP x P x A - A x P - ~

T 2 e e atmos a g

23

Page 37: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

') b) RAMJET

)

The ramjet mass flow ratio, W = F (Mach number ahead of inlet) n

Ramjet Thrust Coefficient = C t = f (Mach number and fuel/air ratio)

The net thrust is given by:

\,. T = PFC x w x C x q x ACAPT n t

where PFC = pressure field effect = f (Mach angle of attack) q = dynamic pressure

ACAPT = ramjet inlet area

Specific fuel consumption - TSFC = f (Mach, and fuel/air ratiO)

Ramjet throttling is accomplished by adjusting fuel/air ratio.

3.2.4 PERFORMANCE SUBROUTINES. The performance subroutines of take-off, climb, cruise, descent, loiter and landing use conventional aircraft performance computation techniques. The climb and descent computations assume straight line climbs between two points on a Mach number/ altitude trajectory. The performance computations require as inpu1; the vehicle weight, thrust, fuel flow, lift, drag, and angle of attack. In addition to these standard performance computations there is a subroutine which computes at a given Mach number the altitude to maximize lift to

drag/SFC. This routine is used to establish the start of cruise altitude.

24

Page 38: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

,

)

)

4.0 TRAJECTORY EVALUATION

The first parametric study conducted in Phase I was a trajectory evaluation study. It was the objective of this study to detennine a near optimum trajectory and also to determine the performance sensitivity to trajectory variations. Figure 8 presents a typical mission trajectory and indicates the critical areas which were investigated. These areas are as follows:

1) Sonic Boom

2) Dynamic Pressure

3) Inlet Pressure

4) Cruise Altitude

5) Descent Trajectory

6) Subsonic Loiter Cruise .Mtitude and Mach Number

4.1 TRAJECTORY EVALUATION GROUND RULES

The following ground rules were applied in the trajectory evaluation study:

a) Baseline Delta Wing Configuration. This configuration was utilized since its characteristics were available at the time. It is believed that the trajectory evaluation results are essentially independent of configuration.

b) P&W STF-230 Fuel Rich Turbofan Ramjet. This propulsion system was utilized since it was typical of the airbreathing propulsion systems under consideration. It is believed that the results, at least the trends. obtained with one type of air­breathing propulsion would be applicable to other airbreathing propulsion systems. In computing the propulsion perfonnance, the engine was considered as two separate units, a turbojet and a ramjet, each with its own sizing require­ments. The number of basic turbojets == ACT where the basic turbojet size is 550 lb/sec SLS. Computations were not restricted to an integer number of turbo­jets. The ramjet capture (cowl) area == ACAPT.

25

Page 39: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

110

100

90

80

70

60

--;::: 0 50 0 0 ...... --

) (l) '0 ::s ;::: .... 40 <

30

20

10

o ~~!r;m~:~~~;-=:;~:~~~4m~~i~~~1r~~~~~ o 1 2 3 4 5 6

Mach No.

FIGURE S. TYPICAL TRAJECTORY

26

Page 40: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

c) Cruise Mach Number = 6.0

d) Mission Range co' 5,000 n. mi.

e) Subsonic Cruise Range =-0 10 n. mi. ,Subsonic Loiter 100 sec.

f) 200 Passengers @ 175 lbs. per passenger

g) 5,000 lb. Cargo..,. 40 lb. Baggage/Passenger

h) Synthesis program \vith a preliminarj weight/sizing subroutine was used. This program was used for the entire trajectory evaluation study so that the results are consistent; however, the take-off weight characteristics obtained in the tra­jectory evaluation study should not be compared directly with the results of the othe'r evaluation studies; e. g., propulsion evaluation.

i) The trajectories which were considered are shown in Figure 9. 'The sonic boom levels shown on this figure are nominal values based on a preliminary sonic boom analysis. The descent trajectories are approximately constant dynamic pressure trajectories. The break in the descent curves at Mach 5.5 and 100,000 ft. is not significant. it came about since the descent trajectories were analyzed prior to completing the evaluation of cruise altitude.

4.2 somc BOOM V ARlATIONS

The effect of sonic boom level on take~off \;veight characteristics are sho\vn in Figure 10 for two turbofan engine sizes. The knee of the curves occur at an overpressure of

approximately 3.0 psf. Below 3.0 psf the take-off weight increases quite rapidly as the altitude is increased to reduce the boom overpressure. It is also necessary to increase the engine size as the altitude is increased: For lower trajectories, sonic boom overpressures greater than 3.0 psf,the increased engine perfonnance with a larger engine is more than offset by the increase in engine weight such that a smaller engine yields lower take-off weights.

A transonic and low supersonic trajectory having a nominal sonic boom o~:erpressure of 3.0 psf was selected. The detaile? sonic boom analYSiS, discussed in Section 12.0 indicates that the sonfcboom level associated with this nominal trajectory is some­what less than 3.0 psf for most of the configurations.

4.3 DYNAMIC PRESSURE VARlATI01\18

Figure 1~ presents the effect of dynamic pressure on take-off weight indicating that there is essentially no effect on take-off weight for maximum dynamic pressure between 1500 and 2500 psf. (The weight analysis techniques used did not account for dynamic

pressure as a primary factor effecting structure weight). These dynamic pressure

27

Page 41: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

110

100

90

80

70

60

....> ~ 31,)

3 0 0 0 ......

)~ .to - .~

...., <

30

20

10

n

)

t- . •.. ~ ~.- ~t - ,. 1- : .. ! """.-"

:=i;T-'F-'~'Il:' Son-ic "boom-overpressure 5.0 psf +---'---"-...:....:.c:...:.j-i-'F--,-:--- ~.~.·~i~-£~d~~~=;l~:$~f:2 Sonic boom overpressure 4.0 psf

o

. i . • . • . -----..... --~----...... ,

1.0 2.0 3.0 4.0

:vlach Number

Sonic boom overpressure 3.0 psf Sonic boom overpressure 2.5 psf

Dynamic pressure 3,000 psf Dynamic pressure 2,500 psf Dynamic pressure 2,000 psf Dynamic pressure 1,500 psf

330 psi

5.0 6.0

FIGCRE B. TRAJECTORY VARL!\ TIONS

2S

Page 42: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

Take off weight

600,000

580,000

Ib 560,000

540,000

520,000

, " .:. , ; :::··t·: .. +·"

2.0 3.0

.... ~ ... , ...... -i . . . ; : . ; '~

Sonic boom overpressure ~ psf

ACT '·(No. of Tu r bo jet sat

7.0 SLS ai rflolA'= 550 Ib/~ec. )

6. °

4.0

FIGURE 10. EFFECT OF SOKIC BOOi\I 01\ TAKE-OF f WEIGHT

Take off weight

Ib

560,000

550, 000

-. ,~ i - ~ ~ l . •

.~~~ ~:~~~f~i:.:-.~: ~+:~ ::!·.~.~.;:~;.~.t. : .. :'.-;.: :':~~'!":-' -j':. ,-': .. - : ., ~ .• - ~. - - . ~ .-. I

•• ~ '" .•. t -~ • _ •• I .•.. ,

• :',: ::.--:~ :--:-1 .- : : ~ . : :: +' :., :::::'.:.:tc::-=.:::.:.r;..· ....... ~ __ ........................ ....., ___ .............. l_.· ...

-_ ....

1000 20n 0 ~~ooo

D:'-'113mic prl'ssure pSl

FIGGRE 11. EFFECT OF DY:·:.\.i\IIC pnESSU~E <.,);\ T:\KE~OFF WEIGHT

Page 43: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

variations were obtained by operating over constant dynamic pressure trajectories be­t\veen a sonic boom overpressure trajectory of 3. a psf and an inlet diffuser pressure trajectory of about 220 psi. From these data it is apparent that sonic boom overpres­sure considerations have a much larger effect on vehicle size than dynamic pressure. Since performance characteristics cannot be disassociated from propulsion size, the effects of variations in engine size, ACT, and ramjet capture area, ACAPT, were in­vestigated.

The effect of ramjet capture area on take-off weight is presented in Figure 12. The optimum ramjet capture area is approximately 130 ft2. The effects of turbofan engine size on the variation of take-off weight with capture area are also shown. These data indicate that the optimum ramjet capture area is relatively insensitive to turbofan engine size, however increasing the turbofan from 6.0 to 7.0 increases the tak~-off weight at the optimum ramjet capture area.

It should be noted that at a later date in the Phase I studies, a more thorough in­vestigation ofpropulsion size effects was made. This is discussed in Section 5.4.

4.4 INLET PRESSURE VARIATIONS

Figure 13 shows the effect of maximum diffuser inlet pressure on take-off weight characteristics. These pressures were achieved by operating over trajectories having these values without resorting to builtin reductions in pressure recovery. The maximum inlet pressure trajectories were used from a dynamic pressure trajectory of 2000 psf up to Mach 6. O. The corresponding inlet unit weight characteristics are also shown in Figure 13. The results indicate that the increase in inlet weight at the higher inlet pressures more than offsets the gain in propulsion performance.

4.5 CRUISE ALTITUDE VARIATIONS

In determining the best altitude for cruise, the least cruise fuel will be used when V. L/D/SFC is a maximum. Maximum values of LID can be achieved by flying at the altitude that r~sults in L/DMAX ' which is dependant on wing loading. Minimum values of SFC are dictated by the throttling characteristics of the ramjet as sized for accelera­tion including the constraints of engine cooling. The best cruise altitude is therefore a balance between wing loading, ramjet sizing, acceleration trajectory, ramjet throttl­ing characteristics and engine cooling requirements.

The effect of cruise altitude was studied for a wing loading at takeoff of 90 Ibl sq. ft., an end of acceleration altitude of 91,300 ft., and for the engine cooling re­quirements shown in Figure 38. From Figure 14 it is seen that minimum ascent + cruise fuel occurs at a cruise altitude of about 110,000 ft. which is also the altitude for LID, X and minimum SFC. Figure 14 also shows that increasing the ramjet size to [gtf sq. ft. increases, slightly. the best cruise altitude and reduces the accelera­tion plus cruise fueL Figure 15 shows the effect of cruise altitude on takeoff weight for several ramjet capture areas. From these data it can be seen that the lowest takeoff weight occurs between 110,000 and 115,000 ft. , the lower altitude being associated with the smallest capture area. The minimum takeoff weight 'for the various capture

" .

30

Page 44: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

Take off weight

Ib

570,000

560,000

550,000

540,000

530, 000

120 130 140

t,p = 3.0 psf

q = 2000 psf

150 160

Ramjet capture area - sq ft

170 180

FIGURE 12. EFFECT OF RAMJ~T SIZE AND TURBOJET SIZE ON TAKE-OFF WEIGHT

31

Page 45: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

w I:-,J

'''---

Takeoff Weight

lb.

~

tr:-- .. .cc.~ -: ~7:7f7T;t;7-:r:-:-~·t:ili:~r ;,;,:,1,[, ., .. ,·Jttfrf1ti' UtT t..dill. ,,,, :;;~ : :: :;:: :~: :::: ~!!: 7::; ;;:, :;' .:£; ::i: ;:;;;~~ ::;,[@ ,. 't;-u~ ':~;:,~: ;;;; 520,000 :::,S '" ,,' ';,: :-:1.: :.I:: ::;:p,-:;::c:: ';~: ::::ri:;; ::r: 1: i1 iftf+ ffP~i.: .l

i: ::'

500,000 I~-~~:' ~i ~s!f~:~ ~um ~j;! ". 'J. .,j, ".,,, '" '''''' 163 " ",' ,," 203 1?2, ,,1 "; ;:; , 'f: ::;1"'1'::: ' . .:: ~~~j~:;-'.: ~:~: ; ::: :~:~ :~;l~::' ~.;:"j-" .. -1-.-, :_'::"" ''''''r'' ::+.--. ;: l:: .:,: '::; ,;":; ';; ;::,:::1:::

480 000 t:X::" ·.L ,,'.1: "1=: ::J,;:' : '" " : ': ";, ' .. " ", '" , I

100 200 300

Inlet Pressure (psi)

ACT = G. 0

ACAPT' l:lO sq. ft.

Inlet Weight Ib/ sq. ft. of capture area

FIGUH~ 13. INLET PHESSURE VS TAKE-OFF WEIGHT

Page 46: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

" )

)

1.0

1.0

Relative sfc 1. 0

.9

.9

.S ...., :":! ... 00 00 t":j

S ill ttl ...... ::l ... 0 + ...., s:: ill 0 00

<

::i

90,000

1.6

1.5

1.4 90,000

100,000 Cruise Altitude ~ Ft.

110,000

) Cruise Altitude ~ Ft.

FIG 14. EFFECT OF CRUISE ALTITUDE h.~D RAMJET SIZE ON MASS SIZE RA TIO

33

LID

sfc

Page 47: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

I ')

)

1.0

.9 Relative

sfc .96

.9

Take off

weight 10

5.0~~~~~~~~~~~~~~~~~~~

= 150 FT2

~~m ~lli1ill! ;1~~1 ~J::~~~ ;:lm:j ·:JT1d::n -8;';; m~mi .:*1 4.4 I

100 110 120 Cruise Altitude (1000 ft)

620,000

600,000

580,000

560,000

540,000

520,000

500,000

Cruise altitude (1000 ft)

Figure 15. Effect of Cruise Altitude on Take-off Weight

34

Page 48: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

area/altitude combinations occurs at a constant fuel/air ratio of about. 023 (<P== • 8). Figure 15 also shows that the heavier inlet associated with increased inlet size more than offsets the reduced acceleration fuel weight shown in Figure 14. The results shown in Figures 14 and 15 were obtained for a constant cruise altitude. Operation at a constant L/D/SFC would give Borne slight variations in these results but not change the trends. It is concluded that the lowest takeoff weight will be achieved when cruiSing at the best value of the range parameter V. LjD/SFC and that engine over­sizing specifically to increase cruise altitude is not desirable. The synthesis program __ was then modified so that the altitude for cruise would be at the maximum value of L/D/ 'SFC. . -..-,

4. 6 DESCENT TRAJECTORY

The descent from the end of cruise is accomplished by throttling the engines so that thrust is less than drag. The performance is computed along the several altitude­Mach number trajectories shown previously in Figure 9.

The ramjet thrust during descent is given by:

T = CKTH x maximum ramjet thrust

The ramjet SFC during descent is constrained by cooling considerations.

The turbojet thrust during descent is given by:

T = CKD x drag

The effects of these throttling parameters on take-off weight are presented in Figure 16. On the basis of these data, throttling constants of .2 were selected for both the turbine engine and the ramjet.

The performance was analyzed along the descent trajectories sho\';'l1 in Figure 9. The effect of these trajectories on overall gross weight is shown on Figure 17 which indicates that the optimum performance is obtained for approximately the highest altitude descent trajectory shown in Figure 9 which is 910se to maximum lift/drag ratio.

4.7 SUBSONIC LOITER AND CRlJISE VARIATIONS

The subsonic loiter and cruise trajectory variations were investigated by determining the effect of Mach number and altitude on the range parameter V. L/D/SFC and the fuel flow. Figure 18 shows the effect of these parameters on the range parameter and Figure 19 shows the effect of these parameters on fuel flow.

Figure' 18 indicates that the optimum subsonic cruise condition occurs at approximately Mach. 9 at about 45,000 feet. Decreasing the Mach number decreases

35

Page 49: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

Take off

weight Ib

Figure 16. Effect of turbojet and ramjet throttling on take off weight

Take off weight

Ib

Figure 17. Effect of Descent trajectory on take off weight

36

Page 50: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

) /

V. LID SFC

6,000

4,000

2,000

o o 10 20 30 40 50

Altitude (1000 ft)

Figure 18. Effect of Subsonic Loiter Altitude & Mach-No. on Range Parameter

40

Fuel Flow 20 lb/sec

o o 10 20 30 40 50

Altitude (1000 ft)

Figure 19. Effect of Subsonic Loiter Altitude & Mach No. on Fuel Flow

37

Page 51: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

the maximum range parameter and also decreases the altitude at which the maximum occurs. The relatively poor subsonic cruise performance is, in part, a result of the fact that the SFC increases when the fuel rich turbofan is throttled. The upper altitude end point on each Mach number curve is approximately the point where maxi­mum thrust equals drag; i. e., the engine is not throttled.

Figure 19 indicates that the minimum fuel flow, which is the parameter of interest for loiter time,occurs at the higher altitude and is not very sensitive to Mach number. Essentially the same minimum fuel flow can be achieved at various Mach number-altitude combinations.

The aerodynamic data used in investigating these subsonic loiter and cruise variations had a drag divergence Mach number of .9. This was merely a preliminary estimate and was not based on detailed analysis. The effect of drag divergence Mach number on overall performance is insignificant, however the effect on the optimum Mach number for subsonic cruise would be noticeable. It W) uld change the optimum Mach number, altitude for cruise and change the range parameter somewhat. In Phase II the drag divergence characteristics will be better defined and the optimum subsonic cruis~ conditions established for each configuration.

4.8 SELECTED TRAJECTORY

On the basis of the trajectory variations discussed above a nominal trajectory was selected and is shown in Figure 20.

A transonic and low supersonic trajectory having a sonic boom overpressure level of 3. 0 psf was selected. This overpressure level is obtamed as defmed m the section above on sonic boom variations and is a nominal value based on preliminary calculations. It is expected that the more detailed sonic boom calculations will show that this trajectory has a lower sonic boom level than 3.0 psf.

Between Mach 3.5 and 4.0 the trajectory follows a 2000 psf dynamic pressure line.

Between Mach 4.0 and 6.0 the trajectory follows a 130 psi inlet pressure line.

A constant Mach nu..."'TIber climb is followed to the start of cruise condition. The start of cruise is shown at 110,000 feet on Figure 20, however this point is varied

--~~--~~----------somewhat to achieve the best value of the range parameter for each run. ----_. The initial sharp descent from Mach 6.0 to Mach 5.5 is not significant. It

merely re~;mlts from the fact that when studying cruise altitude variations it was necessary to have a descent trajectory below 100,000 feet. For cruise altitudes above 100,000 feet it was assumed that the trajectory descended from Mach 6.0 to

) the nominal descent trajectory at Mach 5.5.

38

Page 52: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

The subsonic loiter and cruise are assumed to occur at Mach.9 at 40,000 feet.

This selected trajectory is not necessarily the optimum, however it is near optimum and is a representative trajectory for an air breathing propulsion system. As such this trajectory was used for the propulsion system comparisons and for the configura­tion variations. Additional trajectory variations were made during the propulsion evaluation study and during the cruise Mach number study. as discussed in Section 5.0.

39

Page 53: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

100

90

80

70

60

E-< ~

') 0 0 50 0

>0:; Q

_I ;:J E-< SUB- ------+----. - --t-- - --->-< , E-< 40 SONIC ....:1

i

30 -----. --·i··~

;

.. - ,-

20

.. -.. --:.:T·--.~ .. - L ~--~_+~4----+--~-+_~_+i--~~I--~~--~~--~--~--------------

_l.~_~~~~_~_._ .. : _._~_~i _"~:Li·. __ ~i ... I I·" i .. ' . f . --~-'-----r-- --

: :

10 1Tt- ++1c -j--J-:: ..... , ..... i ... o

o 1 2 6

}Iach Xo.

) Figure 20. Selected Trajectory

40

Page 54: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

5.0 PROPULSION EVALUATION CRUISE MACH < 8.0

See Report GD/C-DCB-66-004/2A.

)

) J

41

Page 55: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

Page 56: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

6.0 DELTA WING CONFIGURATION VARIATIONS

The effects of variation in the following parameters were investigated for the delta wing configu:ration:

Wing aspect ratio (70 degree leading edge sweep) Wing sweepback Wing loading Wing thickness ratio Body fineness ratio

6.1 GROUND RULES

The following ground rules were used. These ground rules were also applied to the configuration variations considered for the Variable Sweep configuration (Section 7.0) and the Blended Body configuration (Section 8.0).

1) Pratt and Whitney STF-230A Fuel Rich Turbofan Ramjet

2) Cruise Mach Number = 6.0

3) 5,000 n. mi. range

4) 200 passengers

5) 5,000 Ibs of cargo plus 40 Ibs of baggage per passenger

6) Selected Trajectory - Figure 20

7) Subsonic Loiter Time = 1,000 seconds and Subsonic Range = 100 n. m .

6.2 WING GEOMETRY VARIA TIONS

The baseline delta configuration had the following wing character i sties:

Leading Edge Sweep = 70 0

Wing Aspect Ratio = 1.45 Taper Ratio = 0 Wing Loading = 90 PSF Wing Thickness Ratio = .04

81

Page 57: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

The variations considered were sweepbacks from 60° to 75 0, aspect ratio vari­

ations from. 96 to 1.65 for a taper ratio of .2, wing loadings from 65 to 110 psf and wing thickness ratios from .025 to .07.

The effects of wing sweepback on take off weight are shown in Figure 54. The take-off weight is not too sensitive to changes in sweepback. The optimum sweep­back is approximate ly 70 degrees.

The effects of wing thickness ratio on take-off weight are shown in Figure 55, The optimum thickness ratio is about. 06. The effects of thickness ratio on unit , wing weight and fuel weight as a percentage of take-off weight are also shown in Fig­ure 55. Fat thickness ratios below . 06, the improved aerodynamics which yields the lower fuel weight percentage are offset by the increase in unit wing weight. For thickness ratios greater than. 06, the reverse is true.

The effects of wing aspect ratio on take-off weight are shown in F'gure 56. In­creasing the aspect ratio increases the take-off weight. Also shown in Figure 5() is the effect of aspect ratio on fuel weight as a percentage of take-off weight and unit wing weight. From these curves it is apparent that the increase in wing weight with increasing aspect ratio offsets the improved aerodynamic characteristics. The unit wing weight increases due to the increase in structural span.

The effects of wing loading on take-off weight for various aspect ratios and sweep­backs are shownin Figure 57. Increasing the wing loading decreases the take-off weight due to the reduction in wing weight. In order to select a nominal wing loading, it is necessary to consider take-off and landing requirements.

The study ground rules shown in Table 2, specify the take-off velocity as 160 kts. and the landing approach velocity as 135 ~s. The mass ratios are such that take-off ~- the cti1ical speed. Take-off distance is not critical due to the high take-off thrust ~ ~ to weight characteristics. It was assumed that the take-off angle of attack was 15°. ~ 1/\ High lift devices were assumed yielding the following take-off lift coefficient charac­teristics:

Configuration

L. E. Sweep = 70° L.E. Sweep = 60 0

Aspect Ratio = • 96 Aspect Ratio 1.21 Aspect Ratio 1. 65

"-

0 0

.2

.2

.2

Take-off CL

1. 12 --1.21~

.99 1. 07 1.16

A ten percent velocity margin was assumed; that is, it was assumed that lift equalled weigh~ at 145 kts.,_rather than at the specified take-off velocitYOr 1601«s.

-------------------- - - --- -------------------------- ------------------

82

Page 58: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

:0-.... 0 0 0 ...... ...., ..::: bD ..... Q)

~ ...... ...... 0 I

Q) ..:.:: cd

E-<

)

)

600

550

500 .::~ j . ~-: ~-

60

Taper Ratio, A = 0

65 70 75

Leading Edge Sweep Back Angle (Deg.)

Figure 54. Take-off Weight vs Leading Edge Sweep

83

! --"t-

: : t :: .. _. I .

. I I

80

Page 59: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

00 ~

'-..---~

t-rj

~. "1 CD CJl CJl

..., ~ CD I o ~

~ .... ~ ..... < rn

~ ...... CJ ~

~ Ul rn !l:1 ~ ..... o

;l ..... n ?'r ;::l CD (fJ

Ul

~ \l) M ..... o

~ CJl

Fuel Weight Take-off Weight

~ 0':>

~ -:]

~ 00

~ ..... n

B (l) Ul [JJ

~ M ..... o

"----I

Unit Wing Weight ~ psf

~ 0':> 00 ..... o .....

t9

IT' I j l' r! !'~Il I Itl WI i' it nn ~ ; ; I ~ 1 ! t· J l l' 1 " -I t-· Itt- I :" t ,.! I ~ 1 i ~ . ~ t- -i I

'! 1 ...:..~ f-Ll:.. I_:":'~ U·.' j ;..;..;.'" I, " , jT·: I. :I-~--:-, ,t-'--;--r~::, t,' :.

I ,d :<:: ; Ll: :: -. : ~: ; ~'i ; I t ; Ii ; i ; ; :: :::' ,:1; ':;1 dlit: It ~,,: ~'tl ,I., .. ,).. ·t~· ;!-t~ t ~ " ,. , , •• , ' " j H, .,., ~'~f;

': I:, r I: .. :;:' t.l: ;1 :, . i . [I "'[ "I J'I ,."., 'j , iiI 1'" ~ t I' 1 t ~ ~"'! .• -1 H- t. 1 . .,.j-' . f • t l 1 I \ t· 1- t- .-:. t t-, I : ~t t ~ r r' . L... t' , II! t r It! !" ,. f; , t r t-I ~. 1 '

r~ H-t:--, , "" 'I" "C' 'I j. ~i" 'I' , I ; I '1'1 ,·tI, ;, \' ; t Et , I;, i·r' , . q, , ~ Lh trll it ; it t;c\j ,tit t:~~ ~llt lljt(tH HI! illtH,1I li'rr :1;: "~r; ~! ; .ott;"l 'Pi .:-1; q/t~Hft l:li

(Itt til' d~llf1!t:t:'li ~i;; tt[!;"); r:lt, 'f ;f,.t;",. r'i" 't't ~ It ,. ~ i ,! • j I I . " 1 -t •• J ~ r r -. \ - , - -, I

If II rrt tit; :q' :;1 rt-;;lli: j· t tn. ! II ;'1 :ilt I:,:;: 'fill Ii !ji:'

If-<'r m-" t·, ... ,. '" 't" "'I f.rr t 1 ~ t I j,I Ii! ' j '.-. r \J r' t! t" t-, .; ,,+ ii . i' 1 ":' 'I ,." I " ," t-t"

j Itt ., , f" .. I- - ,.!. t-. I t- t I-t

t I' ~- ~:: ~ r I ~ i ;-t; i :f j; .j l t: : ~ ;. t :": I 1 I' + t I I ~ t-i l " ,-., -.j. \ .. .,. •• F-'t.l 1::l-t- ii" ",' , I [ t ~'I : I, ., t .

,.-ntti', t I,· ., j' ", • , . " , It· '! I ~ tti (+ ,;. , ,1_, I' r" 'r I , I,.! "! j .j~ I h I I t J·t' I'" t .. ~r t r" I ',' '" I ~ t '~ tTl '. t' .. r I!' 1 t I I ,

I .! .. \ r )! • I • . , , : 1 ~ -\ - " ~ ." I; j Ii!;' : i : i ;: i i ;! i f iii ;:::' ,. m+t~Tr lTi; '~;'fJ ' : ~'.: . : t :

, I" ":, ," I • I ' , , I • , ~ , I , t I, I,; f ' - , .. ~ ". - I + ' •

i ; : ~ . ~.: :; : L:; , : n ~ i .; H ~ ~ ~ i ~ ! ~!. ~:rt--:·~ -:-j; ~, ., 1" "" Tj:-:-

I • '.' r.' t! I" \ I. . j. ,. t: j ~ '", !" i . I j • ! t-! ~ t ! i i ! j't ! ~ . i: : :,1! :. t ! ! ." ,t ~ J

"It· ,II ' ,.'" t'I' ... ; 'I' '. '. .- !--I- .,.; T ,., '" t ~ I f I ' ~ I ~. I ~ I t . \. til 1 ~ ., •• l' : 't ... I •. T ' ,

f':";~~ ::;1 ~ '-.:t; :..;;- ':-:-:-:- ----:":1 ~:-: : , t , 'I 1'" \", . , "It .. I, "" ., .. ! ~.:-: I ~ r' ; ~~: :.: - '~! 1 t ~;; i_·~;

; n! :i: :\.;: ;-~~~.: :t~: '''''- ... I ---. c

..., ::T .... CJ

8" (1) Ul Ul

~ ~ .... 0

o t-.:l

o ~

. 0 ~

0 <:Jl

o 0':>

o -1

J

CJl CJl o

Tak~-off Weight (1000 Ib)

0':> o o

0) CJl o

[PI lJ! t ·tl' ftit nrn n:llH : ;~ q t :!! : I: : ~ U~; tit H 1 J I t 1 itt' ~l t i " "'<I' ''''n'f,' ct,· ,t ~l IfHr Ii i;H ;tHHhi t·· It! ~r t; ftrltlrl; .. lL!1!tHt-t-""'tH If IltHt: I' fil ;\!-' :1 tnt LfEtl!f, ·1' .. I· ._p- +ft j tt· +-

1 .1, r ~. f-ti t f t t' :t +8 " .

rHB .~. 1 ~T , IH IL -'

r f- tEfH! It. rift! f l~ ~#JtV fH- , . .t '

i H:t~ IIHtt±:tt '.1. HI . ' ii r1-ft~tn+f +r

l· I il t 'ttt ~~'H '('I' f ,:1 r . Id~l lhl tnf Ii It (r r

/ir\ fIt; HlfltH t'-Ibl t ;'I'·i:W t. j ~n it' ~Ur' ~} :f~f.·~ t .-

ill H' !ll L Ij u!fil . PI ~ [rlr! Hit nH) I t 1"

t t' I ' I r I 'I iU! '" 1 'j I, 1: tH.:I!:! fill\ itt ttl I'Ll ;~;I: + \ t1 Iii , d I ! I '1, I·d [II it! It t r ~ ~l

~f![tl!f,tfi rf If" Uf!l WIt til H! l):: :fli IU: ttll ~!I,:itttlrll'liil' H til fld Ii'; -lb~W L,\:: :1 t fUIHi-tlll

.::J

Page 60: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

...., ..t:: ..... Q)

~ -Q) ;::;s ~

o o o .....

~

650~--~~~--~~--r--r~--~-~~~-~-----~--~--~~~-----~--~~ "r : :\.::.: .~:. :;::: :.' !i;: :':l,.:::i

j::;: : ::1>:::1\: : .:>I:::.::1:::::i: :: : : t~: :: :::: '.:: :::: :::: :..: .. .. ...... .. I' . . . . .: I .. ' .:.1Tt.... ... I .'

fn 600 .... ~

~

..t:: bD ..... Q)

~ ""' ""' 0

I Q)

~ E-;

.8

v'-t-j 6 f::~r::: r

.38

. 37

.36

.35

1.0 1.2

Aspect Ratio

;

10 A speet Ratio

Aspect Ratio

1.4 1.6 1.8

.; :1 : 1.:'.

:':1' :' • • ~ 4

.. I· .

::':l""-~:'. '.:' ... I:::' :·j··I:::~~··l

.' j: .. I ..... , "j"::; . i:j - . :...:' f..::::

J

Figure 56. Take-off Weight vs Aspect Ratio

85

Page 61: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

00 0')

Take-off Weight (1000 lbs)

800

700

600

+

500 60

~-

\---./ ~

,,',:T Take-off Speed ;:: 160 knots

- ~ 1 -'U q - ~ It 11 I l:t tt

ft It -, ,t III f ~ + ~r ~ t

If J . I t ~ , 1-

j '. till

. 1 ~t

It t

1.65 } AR (A ;:: 70°)

1.21 .Jl.LE

W[fr 1 + t tt i , J t .+ +

60 0 (A. ;:: .20)

70° }ALE (A. ;:: 0)

:I fi • j

7( 80 90 100 110 120

Take-off Wing Loading (PSF)

Figu e 1 . Take-off Weight VB Wing Loading

- - - --------- - - - -- -- --- ---

Page 62: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

With these data, it was possible to determine the maximum values of wing loading which would meet the take-off requirement. The resulting limit lines are superimposed on Figure 57. The best configuration is the 70 degree delta wing with a wing loading of 81 psf.

6.3 BODY GEOMETRY VARIATIONS

The effect on take-off weight of body fineness ratio variations was investigated over the range of fineness ratios from 7.0 to 16. O. The baseline configuration had a body fine­ness ratio of 11. 5. The results are shown in Figure 58. This data indicates that the optimum fineness ratio is between 12.0 and 14. O. As the fineness ratio is decreased, the higher drag offsets the gain in structural efficiency.

6.4 INTEGRAL TANKS

USing the baseline delta wing configuration shown in Figure 3 "as a basis, the effect of changing from the five circular, non-integral tanks to integral tankage was evalu­ated. For Mach 6.0 cruise, the body structural concept for the non-integral tank arrangement was "hot" nickel alloy primary structure with insulated, nickel alloy tanks. The body structural concept for the integral tank arrangement was a titanium, primary load carrying structure with external insulation and nickel alloy cover panels. The integral tanks had a tank liner.

Table 9 shows the Significant differences between integral and non-integral tank­age. Table 9 shows that integral tanks give a lower take-off weight. This results mainly from the spiralling effects of the smaller body volume associated with the better volume utilization of the integral tankage and from slightly lower unit body

weights for titanium construction.

6.5 FINAL DELTA WING CONFIGURATION

Based upon the configuration variations discussed above, the final delta wing configur­ation has the following characteristics:

Wing Loading Aspect Ratio Taper Ratio Leading Edge Sweep Thickness Ratio Body Fineness Ratio Integral Tanks

81 PSF

1.45 o 70° .06 12

The synthesis printout which includes the performance and weight/sizing charac­teristics is shown in Table 10. These data include all of the updating throughout Phase I and can be compared with the final data for the variable sweep, blended body and

scramjet configurations.

87

Page 63: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

-----\ I

)

)

:0-..... 0 0 0 ......

..., .c OIl ..... ~

~ ..... ..... 0 I ~

..!<: ell ~

800 ~c:-;::-~ --- h"-7 ~ 1---

700

600

500

400 6.0 8.0 10.0 12.0 14.0 16.0

Body Fineness Ratio

Figure 58. Take-off Weight vs Body Fineness Ratio

88

Page 64: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

I . Non-Integral Integral

Tankage Tankage ,

WEIGHTS

Aerodynamic Devices 60,079 53,593

Body 99,697 77,981 i / i

Induced Environmental Prot. 0 31,923 i I I

Main Propuls ion (Total) 105,988 67,490

Fuel Tanks 20,406 0 \

Fuel Tank Insulation 10,3;33 ° i

Fuel (Total) 218,868 196,646 I

Acceleration 77,732 69,545

Cruise 104,837 94,032 \

Descent 15,802 14,175

) Loiter 17,597 15,964

Landing 2,797 2,822

Take-off Weight 598,447 537,040

VOLUMES ,.

Body Structure 11,236 9,931 I

Fuel 51,661 46,416'

Unusable 19,072 12,513' I

. \'{ . _15'" Total Body Volume 100,381 83,418

DRAG

@M= 1.4 160,027 142,374

@ M = 6.0 (91,300 ft) 112,972 100,864

) Table 9. Data for Integral vs Non-Integral Tanks

89

Page 65: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

-~ )'fFnr.VNA~'C DFVJCF~ . ~JNG + WING ~nUNTEO CONTROL SURfACES

\lFRTTCAI SlJRFACFS HOR 110NTAI ~URfACFS

FAIRINGS.SHROllDS AND ASSOCIATED STRUCTURE

fr.tv STRUCTlJRF

38228. 7451. 7Q14 .•

o.

STRUCTURAL FUEL{ OR COMMON PASTC ENClCSTNG STRUCTURE PRFSSlJRI7FC COMPARTMENTS SFCONDARV STRUCTURE

PROPELLANT) CONTAINER O.

fNrUCfD FNV'RO~~FNTAL PROTECTION COVFR PANFLS.NON-STRUCTURAL J,..SLJI ATtr.N

lA~DIf\G GFAR

"AJN PROPlJtSJCN fNGTNFS AND ACCFSSORIES AIR J NOIJCT leN .-~ACFtl FS.POCS.PVLONS.SUPPORTS fUFI {OR r.OMMON)CONTAINFRS AND SUPPORTS r,XIOT7FR CrNTAJNERS AND SUPPORTS PRnPFl1 ANT IN SUl AT ION fUFt SVSl-FM OXIDI7FR SYSTEM PRFSSURI1ATJON SYSTEMS UJARTCATJNG SYSTEM

AFfCorVNAp.tIC r.CNTRms

FR IME P(1W ER SOURC FS FNGINF OR GAS GENERATOR UNITS flOWFR SOURCf TANKAGE AND SYSTEMS

PO~FR cnNVFRSTn~ ANn DISTRIBUTION fl FfTRICAl ~VDRAlJtIC/P~FIJMATTC

CUJ[ANCF AND NAVIGATION

INST"U~FNTATTrN

r(l"~Uf>if(ATJON

~~~IRnNMFNTAl CCNTROlS ECUTPMENT PFRS£lNNFI rrn ANT SYSTEM CCMPARTMFNT INSUl AT ION

" •

12788. 5193.

O.

18611. 12352.

41408. 16967. . 3678.

-0. -0.

. -0. 1389.

O. 3889.

160.

2114. 1074.

3598. 1120.

181. 2150.

o. 5214.

Table 10. Final Delta Wing Configuration Data

90

53593z~

77981.

31023.

16385. --. 61490.

5230.

3248.

4718.

800.

399.

2025.

1606.

J: F J( sr:" N E I PR CV T S TON S AccrMMODATTCNS FOR PFRSONNEt fTXFO tIFF SUPPORT FURNISHJNGS AND ClRGO HANDLING E~FRGFNCY FCUIPMFNT

CRfW STATTON C[NTROlS AND PANELS

fR't STRUCTtlRF

fFC::TGPI. RFSERVF

fFfCS(~'" Fl CRFW.GEAR A~D ACCFSSORI~S CRFW LTFF SUPPORT

PA'fl(lAD rARGf: PASSENr.FRS

USFflJl lOAD

~f~TlitlAl PROPFU ANT AND SERV ICE ITEMS TANK PRFSSURIZATION GASES TRAPPEr:: FUEL TRAPPFr. eXTOl7ER SFRVICF ITEMS RESIOUAlS

PFc::FRVF pRnPFltANT AND SERVICE ITEMS FUFL-MA TN PRGPUIS ION CXJDT7FR-"ArN PROPULSION P(1W FR SOli RC E PROPFt LANT S lijRRiCAt~TS

\IF 1 STRIJCTlJR F

IN-FLIGHT IOSSFS fUEL VFNT OXIDI7FR VENT POWFR SOIJRCE PROPFllANTS UJAR ICANTS

~ATN PROPFLLANTS FlJFI

TAKFOFF.ClJMA.ACCElERATF CRUISF DFSCFNT tOTTFR LAND

DXIOI1FR TAKFnFF.CIIM8.ACCELERATE CRUJSF OESCFNT t n rTF R t.AND

T A "EOf F WF U;HT

69545. 94032. 14175. 15964.

2822.

-0. -0. -0. -0. -0.

4700. 308.

8116. 305.

(

1250. 25.

13000. 35000.

, L

204 • 1014.

o. 107.

o. -0.

170. 83~

(

1528. -0.

3397. 330.

196646.

-0. t

13428.

300.

284226.)

; o.

1275.

48000.

49275. )

1386. ,

252.

"

"

~ j') L:f9. , -

5254.

19664'6.

I'

531040.)

Page 66: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

~\

}

)

)

~ ~~u ~ ~<'" ...... ~yt) .. , %/ ~/ , "'" c: b. {!,? "" '\

t:.:~~ "l..,? ,

..., . ,':;,'

"r.Uj~FS POLY STRLJeTlJRF rRFW ANC PASSfNCFR COMPARTMENTS CARGO COMPARTMENT IA~CING GF~R PAYS PRrpUlSTON RAY hITHtN RODY ~ING CFNTFR SFCTION flJfl{CR COlo'MON PROPFLLANT) CONTAINER extOllER CONTAINFR FUfl (f1R. Cf1MMON PROPELLANT' INSULATION rr .. fR AnCY VnUJ~F

TOTAL RnDY VOLUME

kF1TFD ARFAS CROSS RODY t flWFR SlJRFA(FS(THERMAl PROTECTION) UPPFR StJRFACES(THFRMAL PROTECTION) PFRSONNFl C(MPARTMFNTS (~RGn cnMPARTMFNTS

HAN AR fAS wINGfOR I 'FTING SllRFACE)(GROSS) FxpnSFn WING AREA PflDV MAXIMUM CRnsS SECTION PAS F "FRTICAI SURfACES ..,OR r 7 ONT At SURFAC FS AIR INlFT CAPTURE AREA

liN IT WF Ir.HTS T " .. ~I~U

"FRTJCAI SIIRFACES ~nRt7nNTAL SURFACES pcnv ~TRUCTURF (BASIC) tIFTIN!; SURfACE MAXIMUM lOADING

CI"'F~,trNAt DATA "'NG

STRlJCTURAl SPAN ,RCOT f.HORO lENGTH Th'f.KNFSS RATlO

'Frey t fNGTH wIrTH ... FIGHT

FNCI~F ,CAlF FAcrOR

CU FT 9931. 8645.

903. 270.

o. 4741.

464J6. -0. -0.

12513.

83418.

SO. FT. 19862.62 5561.53

14301.08 4831.66

442.80

SO. FT. 6630.12 3880.54

556.15 572.04

1078.71 1206.68

113.11

lB/SCFT c:: 7'7

--;;T

6.91 6.56 3.66

81.00

FEET

159.59 134.68

0.06

314.48 23.15 30.92

5.39

Table 10 (cont 'd). Final Delta Wing Configuration Data

91

CU M 281. 245.

26. 8. o.

134. 1314.

-0. -0.

354.

2361.

SQ. M. 1845.24 516.67

1328.57 448.86

41.14

se. M. 615.94 360.50

51.67 53.14

100.21 112.10

10.51

KG/SGM f'I ?h

0.31 0.30 0.17 3.67

METERS

48.64 41.05

95.85 7.06 9.43

,

,

,

!

Page 67: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

TiMF AL T ITUDE VElOC lTV WEIGHT RANGE THRU<;T DRAG MACH Q GAMMA AI PHA (LAVAL COACT CDeDR COO

'j COL (OF AlO PR SFC

PFC WA WF wox AE FIIH OXIDflER RIC OVOT VI

,. PTl CMl J;?'

~'!.

* :0: :0: :0: :0: :0: :0: :0: :0: :0: * :0: :0: :0: :0: * :0: :0: :0: :0: :0: :0: * :0: :0: :0: :0: :0: * :0: PI

70. 50. 2<36. 5"5178. 1. 341207. 117450. C.27 104. 8.56

15.00 0.1159 0.1129 0.1129 0.0021 0.H)11 0.0098 1.03 1.000 0.980

1.Or) 314;;> • <14. -0. 3960.00 lA67. -0.00 c. -0.52 968.

15.433 1.00

67. 5000. 659. 531230. 4. V56096. 53A63. 0.60 444. 13.31

4.AR 0.1654 0.C183 0.0183 0.0021 0.0073 0.00R9 9.03 1.000 0.942

1.0(') 3110. 93. -0. 3960.00 5809. -o.on 151.0 10.<10 968.

15.599 1.00

9A. 15000. 846. 528162. 8. 319A04. 5635? 0.80 535. 19.84

4.17 0.1333 0.0159 0.0159 0.0021 0.0050 0.008A 8.39 1.000 0.874

l.N) 7581. 78. -0. 3960.00 8877. -0.00 2e7.19 5.15 968. ;; 1, • 1.-

17.649 1.00 -b~ ,.,-

') 60S

/ 178. 75000. '315. 526078. 12. _~·/-b

. / ! .

761350. 53560. C.9O 446. 19.57 . V>

4.76 C.1602 0.018i 0.0181 0.0021 0.0069 0.0091 8.84 1.000 0.828

1.00 1977. 60. -0. 3960.00 10961. -0.00 306.50 i.95 '168.

9.736 1.00

un. 37'500. S88. 523300. 20. 1/ ':-,,'; 4- I 189B70:..., 293.2]..,. 1.02 323. 9.48. / ~<I __ - 5.('H 0.2318 0.0371 o~\LUl 0.0149 0.0175 0.0097 6.25 1.000 0.785

1.N) 1341. 4h -0. 3960.00 .,

\G, '--

13740. -0.06 162.72 1.51 959. -! j)..~

, )' I

'5.9ft4 0.9A I, --. i , \/~ ,

711 • 39'500. 108'5. 522164. 25. 18AQ87. 110141. 1.12 353. 3.29 or

'5.'50 (1.2143 0.0470 0.0470 0.0274 /1 • 0.0101 0.0095 4.5p 1.000 0.778

. ::.

1.03 1336. 41. -0. 3960.00 ~?r 14876. -0.00 62.31 3.0'2 948. ~' 6.117 0.95

745. 41700. 1162. 520768. 31. 1831'56. 129'531. 1.20 365. 2.60

'5.41 0.2073 0.1)535 0.0535 0.0321 0.0170 0.0095 3.87 1.000 0.774

1.04 ]297. 39. -0. 3960.00 16271. -0.00 52.76 1.86 982.

) 6.091 0.97

Table 10 (cont'd). Final Delta Wing Configuration Data

92

Page 68: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

,

)

TTMF THRIIST AI PHA

(f) I PFC

F!JFI PTI

Al THUOE DRAG

CLAVAl (OF lolA

nXIDJ7ER eM1

VELOr. ITY MACH

COACT ALD

WF R I(

WE IGHT o

CDCOR PR

wax OVDT

RANGE GAMMA

CDC SFC

AE VI

* * * * • • * • * * * * * * * * * * * * * * • * • * * • * ~'\6.

IA1187. ,).O'i

o.n17"'! 1. n6

19A1"'!. 6.796

411. 707391.

4."0 0.0101

1.10 7'ln9.

A.791

4AO. '-771104.

4.16 0.0086

1 • 1 1 76061. 10.6A1

,)7A. 7<;')776.

'l.Al f).006R

1.1/ 7R,)74. 14.015

~.

3.17 O.OO",:\A

1 • 1 '\ ~~7,)6.

19.,)A7

660. 417471.

7.18 o.oon

1 .14 3A<;,)7. 6?091

70" • 4f-47~6.

7."i4 O.nol,)

1. lA 43391.

17;>.977

4'iOOO. 147H4.

C.177"'1 0.0097

1335. -0.00

1.10

47000. 153800. 0.1484 O.OOAA

1450. -0.00

1.44

4AOOO. 1"6')16. C.l1/1 O.OOB5

11'>45. -0.0(1

1.66

4A100. 119014. 0.1016 f.OOAl

lAAO. -o.oe

1.R6

49,)OC. IIIILL.

0.0664 0.0077

76Rl. -0.00

7.11

"iO('l(JO. 747657.

0,.0464 0.0064 ~905.

-0.00 7.R6

50400. 769818. 0.0346 C.O(l,)A

4084. -0.00 "3.1~

1356. 1.40

0.0506 3.50 40.

34.32

1550. 1~60

0.0460 3.22

43. 75.S0

1743. 1.80

0.0413 2.96

48. 1A.Ol

1937. 2.CO

0.0312 2.73

55. 16.46

2421. Y.J<J

0.0293 2.71

76. 12.54

2901). 3.00

0.0239 1.94 108.

11.52

3370. 3.4R

(l.0201 1.72 117.

lC.81

511161. 474.

0.0506 0.991

-0. 2.01

513810. 504.

0.0460 0.915

-0. 2.51

510973. 6C8.

0.0413 o. q'i 7

-0. 3.49

508516. 726.

0.03?? 0.938

-0. 4.55

503284. LlJ., 1. •

0.0293 0.885

-0. 7.59

49848A. 1534.

0.0239 0.826

-0. 11. 15

4'B641. 2076.

0.0201 0.826

-0. 1Z.57

Table 10 (cant 'd). Final Delta Wing Configuration Data

93

50. 1.45

o. 0291 0.765

3960.00 l1Z6.

70. 0.96

0.0265 0.762

3960.00 1444.

86. 0.59

0.0243 0.763

3960.00 1656.

101. 0.49

0.0223 0.769

3960.00 1861.

-u-.-:r .J

0.0182 0.818

3960.00 2362.

1 I) 3 • 0.Z3

0.0151 0.934

3960.00 281)6.

176. 0.18

0.0128 0.906

3960.00 3326.

Page 69: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

TrMF Al TJTtJDE VElOC lTV WEIGHT RANGE THRUST ORAG MACH 0 GAMMA

') AtPHA CLAVAL COACT CDCOR COO f.0I COF ALO PR SFC PFC WA WF WOX AE

FllFI ox r IH 1 FR RIC OVOT VI PTt CMI

* * * * • • • * * • * * * • * • • * * * * • * * * • • • * * 707. '50'500. 3390. 493460. 177.

466~n. 210034. 3.50 2039. 1.06 /.'54 0.0344 0.C200 0.0200 0.0127

0.001'5 (J.0058 1.72 0.826 0.905 l.t6 4100. 117. -0. 3960.00

4Vi80. -0.00 62.99 12.2C 3345. 1/'5.869 3.35

148. 56400. 3814. 488803. 201. 438159/. n60'51. 4.00 2009. 2.18

'/.64 0.0343 0.0111 0.0171 0.0108 0.0014 0.0056 1.94 0.826 0.900

1.19 3842. llO. -0. 3960.00 4R,/17. -0.00 147.59 12.11 3828.

tAR.R'56 3.81

199. 61'500. 4363. 483961. 236. '117887. 16899'5. 4.50 1496. 2.41

'1.13 0.04'56 0.0110 0.0170 0.0093 0.00'/0 0.0057 2.68 0.826 0.912

1.'/6 2826. 81. -0. 3960.00 '53079. -0.00 183.16 8.56 4308.

211.374 4.24

) R6'5. 76400. 4878. 479180. 286. ?I)OR09. 1~4709. 5.00 1212. 1.42

3.60 0.0'555 0.0168 0.0168 0.0081 O.OO,/A 0.0059 3.31 0.826 0.939

1.34 nIH. 65. -0. 3960.00 15781)9. -0.00 120.47 7.01 4814.

?'52.fl13 4.64

947. 84700. 5396. 474206. 356. ;lnnoo. IP82? 5.50 995. 0.94

4.13 0.0665 O.GI71 0.0171 0.0071 0.0031 0.0062 3.89 0.826 0.977

1.44 1897. 55. -0. 3960.00 62834. -0.00 88.29 5.54 5321.

'/99.'/'50 5.0'/

10'50. 91300. 5913. 468920. 451. 171/39. 100864. 6.00 873. 0.56

4.1)4 0.0744 0.0174 0.0174 0.0064 0 .. 0(41) 0.0065 4.27 0.826 1.021

1.'5'5 1666. 49. -0. 3960.00 6Al,/O. -0.00 57.46 4.52 5829.

'170.619 5.39

) Table 10 (cont td). Final Delta Wing Configuration Data

94

Page 70: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

T J MF III T nUDE VElOC lTV WEIGHT RANGE THRlIST DRAG MACH 0 GAMMA M PHA Cl AVAL COACT CDCOR coo

rOJ r. OF AlD PR SFC PH WA wF wax AE

) f'tJ FI oxrOllER RIC aVDT VI PT1 eMl

.. * * * .. * :0< * * .. * * .. * * * * * .. .. * .. * .. * * * .. * * r ! .-- ---, P08'i. ~ 5959. 467494. 485. 1 ('96A. 90~65. 6.CO 515. 1.89

6.411 0.12'57 0.0265 0.0265 0.0064 0.0116 O.OOR4 4.75 0.826 1.021

1. A 1 11 29. 33. -0. 3960.00 (91)4'5. -0.00 197.01 0.78 5830.

20<;.'598 '5.n

[io/',f1J -~ 5959. * 313462. 4386. <:;> dDl}03. J 909A9.* <;09f.f9:- 6.00 515. *

A _ e:; 1 * 0.1266* 0.026(,* 0.0266 * 0.0064* *Start of 0.0118* C).()08e:;* 4.75* 0.826* 0.965 * Cruise

1. A?* 1131. * 24.* -0. 3960.00 * 16357A. -0.00 0.78 * 5829. • 20<;.192* 5. 13*

'5179. lC300Cl. 5463. 372819. 4494. 2007? 77390. 5.50 430. -0.42

6.25 0.1241 0.e271 0.0271 0.0071 O.DI 1 '5 0.008'5 4.57 0.826 1.016

1.70 930. 6. -0. 3960.00 1114721. -0.00 -39.61 -4.72 5340. 12'5.041 4.77

'5;>77. H12500. 4965. 372302. 4577 •

) 1 A1r.6. AD 513. 5.00 363. -0.06 6.85 0.1478 0.0334 0.0334 0.0081

0.01112 C.0092 4.42 0.826 0.977 1. (,9 1118. 5. -0. 3960.0'0

164 n8. -0.00 - 5.36 -5.34 4829. 72.7?'1 .4.32

53fl'5. 102000. 4467. 3718'n 4f..4f. 16349. 8'5165. 4.50 301. 0.08

7.'59 0.1795 0.0428 0.0428 0.0093 0.0735 C.OIOO 4.20 0.826 0.949

1 .6A 71 (1. 4. -0. 3960.00 165148. -0.00 -5.95 -5.93 4315. 40.f.76 3.86

'54'50. 99000. 3963. 371540. 4704. 1'542'5. 90478. 4.00 273. -0.53

7.85 0.1996 0.0500 0.0500 0.0108 0.0789 r.D103 3.99 0.826 0.936

1.61 660. 4. -0. 3960.00 1 6'5 '10 O. -0.00 -36.94 -6.20 3807.

24.68A "1.44

'5'114. 93000. 3453. 371198. 4756. 1'5'194. 93984. 3.50 275. -1.20

7.44 0.1992 0.0516 0.0516 0.0127 O.MAA n.OIOl 3.86 0.1'126 0.941

1.49 673. 4. -0. 3960.00 16'1A42. -D.On -72.39 -6.12 3308.

16.'167 "1.06

I /

Table 10 (cont 'd). Final Delta Wing Configuration Data

~fi

Page 71: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

TTMF AI T nUDE VELOCITY WEIGHT RANGE THRIIST DRAG MACH 0 GAMMA AI PHA (LAVAL CDACT CDCOR COO

') r.0I COF ALD PR SFC PFr. WA WF wax AE

FIIFL nXIOT7ER RIC Dvor VI PTI r.Ml

* * * * * * • * * * * * * * * * * * * * • * * * * * * * * 5616. 86600. 2947. 370860. 4799.

1~394. 97166. 3.00 271. -1.54 7.11 0.2027 0.0541 0.0541 0.0151

n.O?90 C.OIOO 3.75 0.826 0.968 1.3R 687. 4. -0. 3960.00

166179. -0.(')0 -79.12 -6.23 2809. 10.R?~ 2.65

57!H) • 7R500. 7442. 370306. 4836. 14R77. 99107. 7.50 275. -2.29

6.60 C.200,) 0.0544 0.0544 0.0182 0.0764 C.0098 3.68 0.901 1. 421

1.7R 427. 6. -0. 3960.00 1667~3. -0.00 -<;7.50 -6.04 2313.

7.393 2.23

57R7. 69000. 1 <141. 369824. 4868. 14999. <19869. 2.00 275. -3.16

6.17 C.2004 0.0547 0.0547 0.0223 o .('In7 0.009R 3.66 0.946 1.244

1.1 q 395. 5. -0. 3960.00 1 fo771 6. -0.00 -Ul7.l6 -5.62 1815.

5.31'1 1.78

) ~RR4. 57500. 1453. 369307. 4895. 1471'4. 97981'. 1.50 268. -4.47

5.74 0.2057 0.0551 0.0551 0.0277 0.0176 0.0098 3.73 0.985 1.326

1.10 41'0. 5. -0. 3960.00 1 fl7733. -0.00 -113.10 -4.76 1309.

4.~?q 1.30

~ ~ .., 0/, , /.O"H. IU"/ • ">Vl.'V. 'uu. .

A778. 55112. 1.00 217. -3.37 6.'5'5 0.25'51 0.0384 0.0384 0.0125

('\.01'56 C.OI02 6.6'5 1.000 2.608 1.1"0 486. 6. -0. 3960.0C

168'579. -0.00 -56.94 -2.21 968. 4.0flA 1.00

610A. 4nooc. 872. 367971. 4936. 61''5'5. 41604. 0.90 223. -3.62 6.70 0.2478 0.0282 0.0282 0.0021

0.0159 r.Ol02 8.80 1.000 3.956 1.("\0 '567. 7. -0. 3960.00

16906R. -0.00 -55.05 -1.07 968. 4.618 1.00

7108. 40000. 872. 358497. 4936. 47.£,4'). 4264'-. C.90 223. -3.62

6.6'5 0.2455 0.0289 0.02fl9 0.0021 0.01'57 0.0111 8.51 1.000 0.800

1.00 418. 9. -0. 3960.00 17R'54i'. -0.00 -5'5.05 -1.07 968.

) 4.61A 1.0(1

Table 10 (cont'd). Final Delta Wing Configuration Data

9f

Page 72: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

"-)

TrMF Al T I TUDE VELOCITY WEIGHT RANGE THRUST DRAG MACH Q GAMMA ALPHA CLAVAL CDACT CDCOR COO

Cnl COF AlD PR SFC PFC WA WF wax AE

F\lFI OXIOIlER RIC OVOl VI PTI CMI

* * • * • • • • • • * * * * * * * • * • • • • • • * * • * • 7A06. 40000. 872. 352008. 4936.

41083. 41083. 0.90 223. -3.62 6.46 0.2370 0.0278 0.0278 0.0021

0.0146 0.0111 8.52 1.000 0.803 1.00 413. 9. -0. 3960.00

18')017. -0.00 -55.05 -1.07 968. 4.618 1.00

801l. 25000. 813. 349937. 4964. 6136. 40797. 0.80 352. -5.24 4. 'i 1 0.1489 0.0175 0.0175 0.0021

0.0061 0.0094 8.52 1.000 7.760 1.00 1002. 13. -0. 3960.00

) 1 R710=\. -0.00 -74.32 -0.25 968. 8.l25 1.00

R377. 'iooo. 659. 343323. 5001. 6'i66. 43689. 0.60 444. -5.28 3.78 0.1160 0.0149 0.0149 0.0021

n nn~c n (HHIC 7 A1 1 ('Inn l~ lA"7

1.00 1883. 30. -0. 3960.00 pn717. -0.00 -60.54 -0.52 968.

l'i.'i99 1.00

8513. 50. 197. 340501. 5001. '511'J. 5257. 0.19 486. 4.00

3.78 0.1160 0.0149 0.0149 0.0021 0.0039 0.0089 7.81 1.000 1.842

1.00 600. 3. -0. 3960.00 1961i38. -0.00 o. -0.52 968.

1'5.0£>] 1.00

) Table 10 (cont 'd). Final Delta Wing Configuration I)lta

97

Page 73: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

7.0 VARIABLE SWEEP CONFIGURATION

7.1 CONFIGURATION EVALUATION

Except for the obvious changes in the wing planform, this configuration is basically similar to the baseline delta wing configuration shown in Figure 3. Many over-all features that are good for the delta wing configuration are also good for the variable sweep configuration. Both configurations have a low wing, a top passenger compart­ment, circular non-integral tanks, a propulsion system installed under the aft wing center section and a main landing gear located outboard of the engines. The effect of variable sweep is therefore effectively isolated as a single parameter.

Except for the wing. all design requirements of the delta wing configuration shown in Section 2.0 apply to the variable sweep configuration.

The major wing requirement is that a geometrical pivot location be evolved that achieves the minimum changes in c. p. / c. g. travel throughout the wing sweep angle/flight regime.

Several preliminary layouts of the variable sweep configuration were made in order to study the effects of different locations of the pivot. The following general conclusions were revealed:

a) To minimize c. p. /c. g. travel. an outboard pivot (approximately 25% of extended span) is necessary (unless the wing center section trans lates fore/aft).

b) The outboard pivot allows a reasonable layou~ for the main landing gear (includ­ing tread, stowage and inlet/ engine effects).

c) Because of the high aspect ratio Wing. a center section carry through box is necessary, the low wing enables the box to pass under the fuel tanks without excessive lost volume in the body.

d) The overlapping portions of the wing and, therefore, the cut line of the inner and outer wing panels are dictated by the wing center section box and the stowed main landing gear.

98

Page 74: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

7.2 SELECTED CONFIGURATION ARRANGEMENT

The final arrangement of the variable sweep configuration is shown in Figure 59. The pivot is located outboard at 25% of the extended span (22 ft from centerline) and on the 40% chord line of the outer wing panel. The leading edge sweepback varies from 20° to 70° .

Operation of the moving wing is achieved by actuatGrs mounted on the for­ward face of the center section carry through box. This arrangement has the advant­age of reacting the major flight loads by an actuator system in tension.

The main landing gear hinges on the aft face of the wing center section box and retracts forward so that the wheels are stowed forward of the box. (Aft or in­board retraction are excluded because of the wing geometry and inlet interference, respectively. )

'7.3 AERODYNAMICS

Lift and Drag. The main emphasis of the analysis was to obtain the lift and drag characteristics for input to the aerodynamics subroutine of the synthesis program. Lift and drag characteristics were determined for Mach numbers from O. 5 to 6.0 with the wings swept aft,and for Mach 0.5 only with the wings swept forward.

Figure 60 shows a nominal schedule of wing sweep that was used for deter­mining the performance of the variable sweep configuration. This is based on the data shown in Reference 21.

The analytical procedUres contained in USAF DATCOM were supplemented with current experimental-analytical data on variable sweep aerodynamics, such as Reference 26. The resulting lift, drag and LID characteristics are shown in Figure 61. Figure 62 presents a breakdown of the drag coefficient for a lift coefficient of .15. These data show that an appreciable percentage of the drag is due to the after­body and friction.

The longitudinal stability characteristics of the variable-sweep configur­ation were determined. Although the baseline configuration was found to be statically stable throughout the flight regime, large trim deflections were found to be required to offset a large moment at zero lift, as was found for the delta-wing configuration. To demonstrate trim capability, this condition was corrected by assuming a positive rotation of the forebody of 2 0 relative to the main fuselage and wings. (Reference 27 reports a similar ~esign modification on a proposed variable sweep SST configuration to obtain a more positive pitching moment at cruise and good trim-drag charact.eristics.) Figure 63 shows the stability characteristics of the configuration for subsonic oper­ation with full-forward wing position; deSired lift coefficients can be obtained with

j trim tail incidence angles of approximately _4 0• Figure 64 shows the stability and

99

Page 75: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

r- -'.

~ t~D Of V!~W

SO'

-----_._--- _ sTj.' . . ~:;

200 ~S£NG.E.~ ---CMr.-----·-

Figure 59. Variable Sweep Wing Configuration

100

70·

4: I \ .... ·u·JG HINGE

44' .

.. _f~~GO ~Pi

'- M.:.. C. PJvo"l'" KoUNTING '$;",

·29~.---·

··--.L

Wlag area (gross) _epl:/fwd tIl1ckness ratio swept/fwd aspect ratio swept/fwd leading edge sweep swept/fwd

Horizontal area (gross) tb1ckness ratio aspect ratio movement

Vertical area thicklles8 ratio aspect ratio

Body length (overall) Ixeadth (max. ) depth (max. ) volume fuel volume

Lauding gear main nose tread

Engines type

thrust

Passenger 8 6 abreast .4 abreast Seat spaciag

CarlO t.y volume

120' ~PAN 70'" 50WEfP

200' SPAN 20' sweEP --.. --.-

7,350/5,000 sq. ft. .05/.098 1. 96/8.0 70°/20·

1,410 sq. ft. ·06 2. 1 -15 to + 10·

1,320 sq. ft· .06 .8

335 ft. 2S.3ft. 34'3 ft. 106,6liO cu· ft. 52,600 cu· ft.

four 66 X 18 tires/oleo twill 48 X 12 tires 35 ft.

Pratt" Whitney STFR]-2JOA (4) 75,000 Ibs. SLS each

24 rows 14 rows 36 illcbea

900 cu· ft·

=-=

Page 76: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

~.

70

60

50

t'LE 40

:30 t-'

0 ......

20

10

0

\......J

t.;;;T:T'rn' ' ::-'01': ;:. j ~, ~', T-;-!' ,7 ~'mm' ;.:-;- ;;F-::o.:--;-i :-~-r::~ITD:' :::; :~: -;::; ,.:: !r:~ ~:I: :;;: 1:;' 1:1 !I.: t:!t 1;1; ;:;: ;::1 :~j; :::: ,::.t.:., :::; 't:. ;t!' ;~;; I::: t:" t 'tt I .. i.+ ;,1- •• ~I~ ." •• tt 1+" ttt, 'ft+ ..... ++-'t-+- I--~ ... t ••• , +-0-" +..-., 1~+_ ·~+t "+-1 tty' It-l.)

t \ '" I, • \ • • I . , I' I'! t •• I • I I ~ \. . I • IT' ." ,t I', ~ •• , ..' J I' I • •• • I t I It. j t • t,ll ,l't !I" 1,1, t.1 ,.jt. , Itt ,I. I,., I. , .. ,' t., ft t'. "il Itll tit! " ••• 11 ; ; ;. t t:;: ::;: f . . .. '.: ::,' ; : : ,.:: : I ," :. : :: ::, . .: ~ . I :: j,:: : :, t:.: f t ; ; I . I

11 I: ~- t I:

11: -H--+ to •

!':::l!':~: -:: <: :::: , .. , ,',1> :.J.> :.;;f::: ,.}',;[ :YH:;: :::' , , ,. , .. ' ::1, .. , . , .. . .. , .... 1 . . . . , .. 1 ,. . .... 1. . . . , : i . . .. ,... . .. , ... ; ., .. to •• tIt. :/: '~ ". 'f ·.·.1(. ···:t· ... ,." .,0, ~~l.lf·!

f I ~ i ! q i; C U ~: ! 1:: i ~ ~: :: ~ : ! ; i :: ~::: :;:: : : :: ;~):; ~ i [[ 1; : 1:: : ~ 1 t ~ ( •.• j., l+-+t .''t- ~tl .• \'f' -+ .... l-.j.. t~_... .. .... r· I···~l·.·--. -.:-.-.+ +.-0-' .. -t·~ ~t-~t !~:l tq~ ::; ;~:: :~I' .... ::::!;~:; :;~. :::~ ;::; '''1 ~;=: :;:: :1',; • !., .t:/'·j +1'1 't" .O-~+ t"1 ,.,-/, "'< .~., '11~ ~'t. / ... 1 r't. t ,;

ilirl~]i; ~i~~ V:;l'ji '·i ;;;: ::;;;:;;: i;~:ti;~; ~:}::: ::t: ~r:: i;:i ~;;j ;~ni;ii iiiittiii tt~-.... ''-'1'"'. ~ •••• t t-+ t·..-: tl-~"lt ... ".~-~'!""'.'j. ·-··t ...... L-·t.j.~·t.J t-+-·t -f-r-~ ~-"'.-t-..- ~~"'.'.j. t- ....... .-- ·-+t~t ;:i ;::: :;;: ; l' ;!; .::: t:~~ ~::; ;;::1:::; t::! ,I. !;,::;::: :;;' i;t: !;!! ;;:r :~:; :tr: 1 .• I ,... : 1 ' I I il ' i. I'" ,,,. i' .o, •• ;. I' . 'j' ,I" i .. , ; , , " ,.,1 'j' I ' .. j ;'" .. i ' I it ' I Ilt+ -j •• t l' I 't .,j, t, l /-1' ,tt. ", , • .j. .>,. I't· .,., , t !+'!f I;.. " I rt t

t ij t I' I , I' . A, " . "r !'\ t·· r 101 " "I, II • I , I , • ,~ , . l • • •• l." H· t I' t! i'" ." ldl t

I.

~!I 'I"! i'f'.' 1,\ •. t "1' ''''1'''''1 f'.' ,.. ,;. ",I;".,. ' .... ' I'n I,. ", '!Ii Ii 1!!' ;:;. ; .; ';:1 tL :I~ ;:tl ;J~ :::~ ~~;: ::; ;;; ~::~I;:;: ;::; ~'jt !~! .t:! !t!~ + t; ",t "'" ,t". .i' 'It' ",.+,.1 ~" ..... , 'to ,H + .. , ~ ... • .. ·'f·11·+ H'~ +tk. ....... ,./.1.+ t;:, :'rt:}1 tIt: 1:' " r;;l':t' ·!;:t::~; !~; ~:' '!:: :::; ;;-!! ~t t t;'; ~:;~ t;·+-~ t-~.!l , t ,I f II I , I ~ I 1 • I ':1 II, j '.' t 't! t \ .. I I' , .. ; t! "I I . ;, I j •• ",' '. , it.t. ",' • til Ill; 1 1 " • 11 t I '.ll I! t t t j t tit j,. , ,. • ~L ., ~ I + ~ j ••• Itt ~, + t ,I' • j t -f. +' _

11 !; !' i i~: til! ' : 1 \ \Tit :;t! I! I! \ \ ; \ j ; : : : : i 1 :.: 1: :; !::. ; t , . j 111 it il il \ r I; i lllq ~;I~.' IItt ;." !d\ ,I '.t"- l':r "tl '1.-·~t'·'1 '" "1 ·• .• ,.t~·,1 .. , .. I" It" t:11 :~;.,l1l' , I! I • I' I I I ! t ' , i. I. ~ t ".' t ~ 4- I . t ; I I • . . • . tIt r I - . It· I •• I " .. I ~ ! j. I:·· ,!,; t 1 ... +1.- f- f-' ~t- ·-tit- .~ --1.'t' --,;. -->+-++ ·++--11-+--+". +--It l' "'-+-+--i. ~. '0.1' ~- .... ~ f-t ..... -.j.- t ...... , ......... tt~"

Il t'l :lWt j ; ; : I! ; i ;; ~! 1 ~ ~ I :; '! t; ~;;: ;::: : ; t •• I : ; :'! : l~ : : : ~: :; ; r;: ;!:; ; ;! it;; ilt " J.' I! '" ,t rr •• j': I. , ,. I I J' t ", ~ ! t ' , • ,.!.. . . .. t '.. .. I •. I, ,'" ,. j, • r't , r' ILl. rJj~t tIT '. +1 !.l... 'tttf'f" .,' .t' Ilt~. I' Ii' II"~ •• ,: 'ot tt~t t +

" 'r'" j , i' , 1 " I , , J ,. " ' It. , I'·..·· l' I" .. 1 ,;;. ". f'" :i!1 'ii! II; i" I!.tt. II.~ :tt 'I" .~!~' ~l~" r.'.l" t-~ .. I ·'1 ., 1 ~ '_+ I: :\1 tl ;;;' ;: tt: ~~:~ :tt~ : :.: .~: ~~ ::~ ~:t' t:t '_:r: tit' t ,I,II·l t, Itf 1.".'+ +." +t •. i ".·'.1 hI ''"ltFl .I.· t·,., 'H'. t... '.'1 1-+ 11 "'.t~cj, "I.·t 1fI·t Itlt I' I ": ,I" II'" ,I t' " .. , •... !" ... ,. 'I ... "t'l" ,I I ' , It t··, ".jlt t' I rl. 1"1 ti"~ ~ .. !, ~. tTiI +1 .j ,. It I

• I t I I I ' , It. 1 • I • ,. ~", I ' • t ., • • • I • • • t • f t I , I , • t ~ I tl ! itt I i I! 1\ '. \ • 1 f I' I • 1 II, ' , 1 : 1,,1 "" : '. : ... .. it:" • q I\" L 'f t. , " •• , Co, "I It'. '!'1

111 . " " 'I" t 'I' ! I' It. 1 .

t !: ~! ; t- ; t.: t; I : ttl t t . +

j ',·1", r l.t··'.II+. t I,. t-.,t .11, 1 11 I ./ t' !" II. l' If" 'II' t I' 'tf 't' t It t - t 111" HI 1-H I It t ' . II I' , t... ., I It 'I ,It 1/ 1

o 2 3 4 5

Mach Number

Figure GO Variable Sweep Configuration - Sweep Schedule

~/

Page 77: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

gmgm MACH

.5 .8 .8 ~. f::=+:;::

~~~

::.:tr=t: ( t\ = 20°)

.&

."= j:::ti:_f--4.~t--...-,

t::.::i--. -- 1:::....-;-:;= ~ ...... =1. ~---+_. F-~1 :c::.. -=-,. j

., .. ~:t.- -:;:-;1"';

o o 4 8

o

••• .j... .• -

t'::cj.=':' I" ~. ..: r···c· ::71c:~ .:; l== I=:=:' 16

~~-±:~ I:::'~~ .. ... ~ .. f""':+-~' f'-~:~ t ._.'

. :

f;; to": :::::';F' :::::--+-~. 12 : . .c .. _:. I

:.~== c:-:::';·.:-,:::· ~ .. ::"" -. •.. - -....... .. ,...

J: ---:-.:~. e"

LID :;; ..

... : ..• 1--'-,,,c.:: . <~~ iif::.--:-8 f-· ::-.; . :--:-

... r.;.::'i

:-:-: f'-'- ,--' ;I-

:;c;,..: .. ~ ..

4 :;(' ... ,

",.

.6

1.5

C 3.0 L.4 ~~

6.0

.2

12 o

j.e ':"~=-= t:::-:-~, ... .. -~ j--.; ~ r: r=c:, . c. ., ~.-F

c:c :: ,;:::>;!! ~ . --i""'"

6.

!3.

:1,. v

R ;~ !; iii

'.:'

~~. t:t ~.t:::::: r.: 'i#j ", .. :-~.-0 o 2 4 6 8

MACH

.04 .08 .12

::.c:':-: ~ .. -1-._+-- IV'OA ""TT f'~:- ; .. J. .In.\.."n

. ::1 ~

::;c" ::~. (A 20°) .. ~

10 12

Figure 61. Variable Sweep Configuration - Aerodynamic Characteristics

102

Page 78: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

))

i I

Mach No.

SREF := 7,350 sq. ft.

ee = . 15

Figure 62. Variable Sweep Configuration Drag Breakdown

103

7

Page 79: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

,..... o tn

C

.20 I' "li~:II:!I;I'.i!I.:III.:;!II"IIIi1llli\II:!;it:lr!l; :I!, i' " !11!!l \I: ,; I

it

00

15 -l . iV"! .:liW;!d:qW!!!IIJ'lr';I:'I!!li:;I'I:' il::.i~::'~.fi.!1-4° • -. ~. +:4, • ... ·~d· .. i~.,. ~~-rntt , +~-++t~ t+ .... >--t+~l.tr t·~~ ,.~., -·H+L .... -. ...... + ...

_8°

L .10

.05

o

o 2 4 6 8

(YO

_______________________ ~-~-•• ·o.

\~/

X :::: 200' ca

x = 60' REF

r:-:.:-: ,;7jri1'Tr.1 °f-:-:' IrrrF'1-1:rm~m' r.;-.rilltnm':i ;!"mITfTlTlln~11.~:I· II!ll' \q~; ;~~~ d :1: tt~fot t 1t;' ;! I ~:. ttl :1', 'It".' 0 1 " 0 t

t~;; Iti: f~! ::!i 11'*'!:'1 :j>l ii f lLf' rfH if'! 1;; Lj t -4 Ii 11 0 I t L ' :;d :d! ~L; :1; !.:i! :~fl ;tf: t{tt ~Ii! ;~:: ~:I ;!H Trl: ~ ~t t;~ t I yth1trtrjr~:: :;;- .:::,;j: ;:i; '~'~~o' ::, :::;I~ii !Hi ;il;ll;:ii~;; ::;;jT: .... H.' .. ~ ....... ~ ............ , .• , ·l.... ·t· .. o. '0;" ~::. 'M+ .t}·} ~tr:;' ....... ,. ... . ;.'. :;r; ~t;: 1::: '; , :~~: .::: l:t: ·tl, PI" ~ .. '. ;:;lj ::~! :;tl • :tl " n I'::: !:;~ ::.'; 'II; I't' II,! -,,' ... 'I" "~' .jJ. t!tt 1;1; I, ...... :, '11, • f Itt I'ot It· ...... ..

~:t~tm ;~~: :~;; :::: ;.;;; ~~;; i~~; :~:: ~.:; ;;:; I;:' ;:'. :~;; 'd,: ;::: ;~,; :~~; ::~; ,', .1, .. II •.. , .. ,,,' § .," ''I, ~j Hi '" I:W I" lJlI~ " ,,,. '''I I'"

.iill rJ1 tlij ~m2 itt ;:d ;~jj m: ;til 1m trt! ~i ml in; !~ t\t til! }fll In: <:'I~~L :~rl ::~: i;:; -;::~ ::~: ::~4 '. ~ ~;~l: ~nti~~~ :::; !;;; H l:i i:H H:: ;~:: ;;:: ,,,. OIl. t .. ,,,. ·L .. t ......... , I g' .... 1.' ...... 1 ... · -'.l.~1 "', ',u.; .. !lr.::" :;:: ~f;: ;T:; ;i-T~ 1:;':,:::: ;1':: .!:f . l ;::: ~~;;~. : :i7j :-:-:i" ~ :;fl; :trl i;~I' j1i~~~::: ",J'I '0" .,. "i§' .... " .. '°'1 , ....... , ....... 1t .... t t .d t ",' "" "1' .. .. ~;~;r;;;: ~t;~ti:~_~ ;;~i ~~~~ ;:~~ ;~t ;~~ ~~;.; ;:;; !~~ ;~;. ;;:~ rr ·t:~- , .. ;' '.Ii fur;~ ·'."f·'·I' 1'., 1 ..... "" .", .!'I •. ~.' ,.1, "f' .It·~:·· "'.1 .,,,~1., 11ft '''f~ll' ~, .. ),., iF; iH ;t:t:;:; ri:'~til'ttwti tITrl~~1~"'Hi; :'i1 ;iW:1 :~TH+ 'fi! Sl ,~·;W rH~ .,1 ""t,t.)I" 10 .. " I Ifn 1 I'" If!." . ., -II' I, ,)I I" "'11 l~ f"l "II

":'~~l :';~ ·~jnf;l·: t::r ;:1, . n . ~, ' :. :t;~ ~ p:. ::.1:' . itH tif :::. •. !;: d·!~ -ti t

.... I I iliillti"; "'I' :tl' 'dll~rrl!!r!! . 'II f"l " .. ~~' l'lrt .m · .. ·!W! lHi!:U fl. ;::; .. ill ::!!Il;:; ;I'~ : .. i IQ!rli'l, 'HPij·..! 1 It; fl· ;:.i' ,: ,I,!, H'I'; 'ff"; +:1 j':Jj" :;;+;.:;c;::' .. :rll;H_.,:' I,,;,'. I,i.' nltt:':'J';+ ';;'LH"["i' "~;H'if' ;~:: tl·~ ntl :tt: ~:u !;_:~~;1' :;t1 -t t!. ;; ::!' ,'tt fi~ r:: ~1 ! 1 ·t: llLl~:II :"W::., ;p: 'L; II . It" tll!rlHfiih lti~ t!;J 1::,;1,. ;!Il 1,1,1, jtl, .... fit,~ . H,. ;',1 .(~-:-. i -;-+"1" t tt', 1· .... 1· I t'l .f-'I r "It ~. . !, ~,. . • ~ ., I t I ,. I • :' , .,. t I ~t I • ~ • t T t·. -+- -1 r .. 'ji" :,I!J; ... I) •• 1 .. 'j "n HP~ ,Ifi , ... ~ ,I., .. ,. mt!fl1n! 'j nn w ~'\i~ i!if f~~rriih ~~~f- ~~f ;h·~H1ttt ~! pTt-tP;i t!~ tfi i+H ,,~i Ifi tH~ :'g~ ,;., .", .,., ...... " .. '''}''I ,', , .11, ,t" .,. ;'~i .If! j ,I,. ° iii' 't., ·thTft;; ~~;~ ~;:: ~~; ~:;" ;~;-;I~;;~~!t;' ~t'l ;;;i i;;; r+;'l ;;~; ;.;~: j;'. tt~t it~; ~-::; :~;; .. 'f"" '.,. "'1'1.· ... 'I"ii"'rm'~ R1.'i' '''I tw"!' '" .,., d' tid tt;'lt!" "" ~1~: ;:4; ~~7~ t:h :.~~ ~ .: ~-:-:! ~f.-r:· .!;'~ .JI' :fi+ :-i~ Hti 'fT: ~'rlH H.tf:;~~{ :~~~ ...... , dO' It .. ",·1 .,. "1' .... " . It!, l'" . 1 .. I' ."f ·\H tl ' ' " 1,1, 1I" 'tl' :_:...ni.;i::'i; I:~: Hrt-;:: ;.; ' .. : :':1' i r· 1 ,;1': . I:!: :l:; : I, f·" t,:i 'I: ,I:; ~ r ' " "I~~~" II! t" ", " •• ,. ,. t .,1 ~l' t~:, H' .. / •• \ tl' 1'1' I" ,·t· .• l • oJ. " , • \ " ., t ' ... ..., • I· ••. , • • , • '. ~ • ~ '. , ,I , . ."t ~ I .•. ~ ... "I· ... , 'iI, "" ," .... '" .. I. r,. Ilfl I, .. 1" .... ,I', ,d. ,t .. 1"11"" , ' .. :~l: !i+~ ~ ... ~ "'~;J ;~";"1 _:~.;~.::.:..' '.!..!..~ "T .. t! L.; '':''';-~ :.:~.! :~ ....... I: . ,I. '. ; i~!, "II' ',,1 .rr·Hlt· 1m· "'1 .. ,. '~' l, jl 8Hr·,!. r:~ !'" 1"1 ... ' "ff tT+tf f·ti j7r: 1ij, '" "'!! 1"1 "i' •• , . ! it ·t·· , (' .. I Ii r~,·tt .j, .. tItj 'I' a; t· .... H" '''I' 1" I' - .. ., I ,; .". " .. 'I .. , to>·, I", i, '1" .,., "Ii ,', U t,;, "i , I". (.!. 'I ,t" .. 1/ t t" t·.·, .• 'iit. I .t- , • tt I,.· 'ft! ' •.

!tl!: ::.lifii!"ll.!~·~ I I:'; ;i':~;' l;llIlW'j' ,If:1 f:f'jl, ;lni"lt"lt I' Il·i!JI!:l!WJ .. : f::'I' "I' I,!: I, II.' '11.'t~·!I' 'I, 'liilt:;1 I·.·· t I'" ~IIT!II I n 1('/1'" .! II' d , :I+-' -t}rt j't 't~··~ f' H- I +.11'. t··· t- + H' ~t •.•••.

ii:TI lIi! tdqt m:EH i nn l1 tnl If!l;J ~;L! tLTIf!ii!; IlHlWli\ !r\T~;

.06 .04 .02 o -.02 -.04 C

M

-''-.--'/ i

Figure 64. Variable sweep configuratiqn - trim at Mach 4.5

Page 80: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

( )

trim capabilities of the configuration fully-swept at hypersonic speed. The directional stability was checked at Mach 6.0 and it was found that the configuration was direct­ionally stable for angles of atta~k up to about 15 degrees.

7.4 WEIGHTS

Equations for the variable sweep configuration were determined from data generated under Contract NAS2-3025. The effect of having variable sweep was estimated from Reference 20, which showed an increase in wing weight of 25%. compared with a fixed wing. Other data were similar to the baseline delta wing configuration. Weights and dimensional data are shown in Table 11 for the configuration as shown in Figure 59 which is sized only very approximately for 5000 n. mi. range.

7.5 WINp GEOMETRY VARIA TIONS

The effects on take-off weight of variations in the following wing geometry parameters were investigated using the synthesis program:

a) Wing Leading Edge Sweep

b) Wing Thickness Ratio

c) Wing Aspect Ratio

d) Wing Loading

7.5.1 LEADING EDGE SWEEP. Leading edge s'weep variations were made for a fixed wing loading of 90 psf. As used here, the leading edge sweep refers to the maximum sweepback. Wing sweepbacks of 65 and 75 degrees were considered, in addition to the 'nominal sweep of 70 degrees. Figure 65 presents the effect of sweep­back on take-off weight. The take-off weight decreases with increasing sweepback, due to the decrease in wing structural weight which results from the shorter structural span at high sweepback and due to lower drag. A check of the wing planforms showed that because of the decrease in wing span as A LE is increased, in order to in~tall

engines and landing gear under the'fixed inner wing, A LE should be less than about 70°.

7.5.2 THICKNESS RATIO. Wing thickness ratio was varied over the range from .025 to .07. Figure 66 shows the effect of thickness ratio on take-off weight. This data indicates that the optimum thickness ratio is approximately .05. As with the delta wing configuration discussed in Section 6.0, decreasing thickness ratio below about .05 improves the aerodynamic efficiency; however. this is offset by the increased wing structural weight. For thickness ratios greater than about. 05, the reverse is true. The lower wing weight due to better structural efficiency is offset by the loss in performance due to the higher drag.

106

Page 81: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

AEROCYNA~IC CevICES WING t wING MOUNTED CCNTROl SURFACES VERTICAL S~RFACES HORIZCNTAL S~RFACES

FAIHI~GS,ShRCUDS ANC ASSOCIATED STRLCTUKE ,

BOey STi<LCTURE

100566. 8670. 9864. 2111.

STRUCTURAL FLEl(OR C(MMO~ BASIC ENCLCSING STRUCTURE PRESSLRIlED CGMPARfMENTS SECCN(ARY STRuCTURE

PROPELLANT) tONTAINER Q. 94881.

5193. o.

INCUCED ENVIRC\~ENrAl PRCTECTION COVER PANElS,NCN-STKLCTURAL INSULAT leN

LAf\OING fE~R

I"IA IN PROPUL S IC ~ ENGINES AN[ ACCESSORIES AIR II\CUC TIe f\ NACElLES,FCDS,PYLCNS,SUPPORTS FUEl(CR CCMMCN}CCNTAINERS AND SUPPORTS OXICIZER CO~TAI~ERS AND SUPPORTS PROPELLANT II\SLLATIGN fUEL SVSTEf'o1 OXICIlER SYSTEM PRESSLRIZATICN SYSTEMS LUBRILATING SYSTEM

~EROCVNAMIC CCNT~OLS

PRIME PCwER SOURCES ,.. ;"'. ,r nrC' rC~lcnAT,..,n rT" L. '''''~ L. V V I.... "' ... I... ,.... 'J v".L' ..J

POWER SOURCE TANKAGE AND SYSTEMS

POkER CCNVERSICN ANC DISTRIBuTION ELECTRICAL HYCRALLIC/PNEUMATIC

GUICANCE ftND ~AVIGATION

INSTRUMENTATION ~

CO~MUN ICAT ION

cNvIRONME~TAL CC~THOLS

EQUIPf'lENT PERSC f\N EL CJOLA~T SYSTEM COMPARTMENT INSLLATICN

0. o.

53813. 22500.

4259. 20968.

• "1 -..:.

10270. 1679.

o. 4217.

161).

L.. • -' u •

1358.

4550. 1339.

224. 2150.

o. 5274.

121211.

lC(lf)74.

o.

20307.

117866.

6494.

3817.

5890.

800.

417.

2025.

7648.

PE~SO~NEl P~CVISICNS ACL(~~~OAIIC~S FOR PERSC~NEL FIXEO LIfE SLFFORT FURNi5HING~ AN0 CAHGU HANULING EMERGENCY EQlIP~E~T

CRE~ STATICN C(~lRULS A~[ PANELS

CR y S TRlC TUR E

CESIGN xESEkVE

PERSCNI\EL CREw,GEAk ANL ACCtSSOkIES CRE~ lIFE SUPPuRT

PAYLOAC CARGU PA~SENfERS

USEfUL llJAC

RESIDUAL PRUPEllANT AND SEkV[CE ITEMS TA~K PkESSLKILATICN CASES TRAPPtC FUEL TRAyPEC OXILIZER SEKvICE ITE~S RESICUALS

RESERVE P~CPElLA~T ANC SERVICE ITEMS FUEL-~AI~ PR(PLlSICN OXICIlER-~AI~ PROPULSION PC~ER SOURCE. PROPELLANTS LU8RICANTS

RET STRLCTUKE

IN-FLIGhT LCSSES FUEL ~ENT

OXI!.JIlER vEt\l POwER SOURCE PRCPELLANTS LLtHHCANlS

~AIN FRCPELLANTS fUEL TAK~OFF,CLIMS,ACCELERATE

CRuISE CfSCENT LO ITER LANe

OXIDIZER TAKECFF,CLIMB,ACC~LERATE

CRUISE DESCENT LeITER LAND

TAKEOFf wEIGHT

-:;

-0. -0. -0. -0. -0.

-0. -0. -0. -0. -0.

13428. 4700.

308. 8116.

305.

300.

( 4£:0277. )

O.

1275. 125n.

25.

48)00. 130!)0. 35(00.

49275. t

1725. 231.

1358 • \ o.

136.

263. o. o.

18U. 83.

( 451539.)

5598. 1666.

c. 3602.

330.

222000. 222000.

o.

f 679137.)

Table 11 (cont'd). Variable Sweep Configuration Baseline Weight and Size Data 107

Page 82: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

VOLUMES BO[Y STRuCTURE CREW AND PASSENGEH CCMPARTMENTS CARGO C(MPARTMENT LANCiNG GEAR BAYS PR(PULSIO~ eAY wIThIN BODY WING CENTER SECTION FUELlGR C(MM[~ PRCPELLANT) CONTAINER OXIDIZER CCNTAINER FUEL(OR C(MM(~ PROPELLANT) INSllLATION QT~ER BOCY VCLuME

TOTAL BODY VClUME

"ETTEr AREAS GROSS BODY LOwER SURFACES(TrERMAL PROTECTIO~) UPPER SLRfACES(TrERMAl PROTECTIO~) PERSGNNEl CO~PARTMENTS CARGO COMPARTMENTS

PLAN AREAS WING{GR lIFTING,SURFACE)(GROSS) EXPOSED wING AREA BODY MAXIMUM CROSS SECTION

·BASE VERTICAL SuRfA~fS HORIlCNTAL SLRfACES AIR INLET CAPTURE AREA

_ _ n'- ....... v

wING VERTICAL SURFACES HGRIZCNTAL SLRFACES eocY STRLCTuRE (BASIC) LIFTING SLRFACE ~AXIMUM LOADING

DII"ENSIONAl DATA ~ING

STRl..CTURAl SPAN ROOT ChORD LENGTH THICKi\ESS RAllO

EOCY LENGTt­WIDTH rEIGHT

ENGINE SCALE FACTOR

Cll F T 10821.

8645. 903. 210.

o. 2247.

52421. o.

3292. 18438.

97041.

SQ. FT. 21653.44

o. o.

4831.66 442.80

SQ. FT. 7342.02 5347.48

623.62 623.62

1193.17 1439.04

1 c:;t) r./\ ... ..,.,v • ...,v

lBI SQF T 13.70 1.27 6.85 4.38

92.50

FEET

265.63 97.68 0.05

320.63 24.71 33.03

7.DO

eu M 306. 245. 26. f 8. o.

64. 1484.

o. 93.

522.

2146.

SQ. ~.

2011.60 o. o.

" 448.86 41.14

SQ. ~.

682.07 496.78

57.93 . 57.93 11C.85 133.69 , ""') ,,~

~::I."j

KG/SGM 0.62 0.33 0.31 C.20 4.20

METERS

80.96 2<; .. .,

S. 7. ~:

10.01

Table 11 (cont'd). Variable Sweep Configuration Baseline Weight and Size Data

108

i '

Page 83: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

~ )

/

)

)

o o o .....

.02

60 65 70 75 80

Leading Edge Sweepback

Figure 65. Take-off Weight vs Leading Edge Sweep

.03 .04 .05 .06 .07 Thickness Ratio

Figure 66. Take-off Weight vs Thickness Ratio

109

Page 84: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

7.5.3 ASPECT RATIO. In addition to the basic variable sweep wing, wings having aspect ratios of 1. 47 and 2.61 were also investigated. These wings had the same leading edge sweep and taper ratio as the basic variable sweep wing. Aspect ratio is computed in the swept configuration and wing area is defined as the area to the center­line exclusive of the glove. The effect of aspect ratio on take-off weight is shown in Figure 67, which indicates that increasing aspect ratio increases take-off weight. The corresponding unit wing weights and performance fuel as a percentage of take-off weight are also shown in Figure 67. As the aspect ratio increases, the aerodynamic efficiency increases, resulting in a decrease in performance fuel. This gain is off­set, however, by the increase in unit wing weight. The unit wing weight increases due to the increase in structural span.

7.5.4 WING LOADING. The effect of wing loading on take-off weight for the three different aspect ratios is shown in Figure 68. The corresponding wing weights and performance fuel weights as a percentage of the take-off weight are also shown in Figure 68. Increasing the wing loading decreases the take-off weight due to the fact that the decrease in wing weight offsets the decrease in lift to drag ratio. As with the delta wing configuration discussed in Section 6.0, take-off velocity requirements place an upper limit on wing loading. For the take-off calculations, a take-off angle of attack of 15 degrees and the use of high lift devices were assumed. The following take-off lift coefficients were established for the three aspect ratio configurations

) at a wing loading of 90 psf;

)

Aspect Ratio Take-off CL

1.47 1. 96 2.61

1. 74 1. 87

1. 92

These lift coefficients were adjusted for wing loadings other than 90 psf to account for the fact that the percentage of wing available for high lift devices changes with changes in wing loading. A ten percent velocity margin was assumed. The upper limit on wing loading is shown superimposed on the data of Figure 68. This data indicate that even when considering the take-off requirements, the low aspect ratio wing yields the lowest take-off weight.

7.6 FINAL VARM.BLE SWEEP CONFIGURA TroN

Based upon the configuration evaluation data described above, a final variable sweep configuration was se lected having the follOWing characteristics:

Wing Loading Wing Sweep Wing Aspect Ratio

125 psf == 70° :::: 1.47

Wing Thickness Ratio == .05

110

Page 85: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

12.

)

)

Body Fineness Ratio = 12 (same as delta configuration, since bodies are essentially the same)

Integral Tanks

A final synthesis and performance run for this configuration is shown in Table

111

Page 86: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

.... .... ~

\~,

""1 ~. >-j (1)

m -l

>-3

~ , o :::: ~ ....

oq t:r' .. <! Ol

;.-en '0 (1) n ... ~ ~ ..... o

.... o

Unit Wing Weight (~ psi)

.... .... .... t.:>

.... C..:>

.... II'-

.... 01

.... .... O'l -l

...... .1~." \I ", tlt!l 1,1. H ~ . H H t. .J I, . ,q • I . ~T n~ rrmmffTTT1T'1'rTI"i Pf mmm mn rrrn " 'r rml1lf'I !~l E:'t111l !W'lii! Willi '1;;liU!:'HH1'JiJf 1J tI!!! '

:'I! ';; itl' 1 !l i'P ;:lir:ffit 1:; ,iii iii' i11i! " r 11ft j Ii ~ H::!: i!::~!1 'HI! !.,: ;11' ::JJm·':i1· ,it ; . i'l iinnJ!

t"'

. ! 't" ',ii.i I . lll' " II" IH Hj' I .I HI" I" : l~ :lE 'II I • up r m Iii' .:! I I till fmhi +it

f I ~; ;: j • : i. 1 : r; ~ t ,t!:', ! t, " ';;

JI~i j,1.1~iM , I 1m llillr' u1l!jf' llIil'll .11Ij] , " jFi~W~itn~!~, ,',i: iHl 11!11!l11:f!tl!n'lt tlJlcrlHffj\

..... I II .,~ .q ::t1; H· !' .. JHt " 'II' .1 t ,LltH-

. ') ;'~ :11 !!It! Ill; !I'I d "11 :!ll !i:: : IlliJ I W" I" I 0. ii· r ':, HJ+!Il1;llifH~' I,,: 111 l;U !/llli~) iI:,!!1

II ~: ;;11 II' I' lilli!: Wi lilliil np 'j , n;l tfii I· .1;" 'j~ i'lI! I!, '!!l}"i:I'ii{fhi,lltttl,' . "llJ !, 1m 1 I ! 11 'i r " '-e:l lit:

• i I; I" I'll!. f lI;! :f" HI " J .t· .!' It lJ.l , 'II jI "" , . 1 'Ii '~'i ~ I,ll ,I 1 II

(fl I 'tt • 'J II' 'g ," I, II' 1} l' 1.11 : g !". !:' , 1 j if ,., I!':I:[I, Ill! I ~I :;0 0 Iii I I !'t lj;1 iI III Itlll !i g, III L 1 I liL' tj I 'liH1111rr liw !ijt

l,l4' 'HI· i ! Iii I ' ,I[[j,q .tIl ifj'l iW rIll I l I I f r I Iii 1111 IlIhr Jli l ~'I

'~ltl~;jl j ! 1 ~I Illl!!d II 111 iii! ir~ , ,h it, 'I', itllllFf 1.'lf H',', 1'11r f@l. I ' I' I I t 4 I I ~ I t

Il'i! I ,11' j '11 Ell Ilil IH ilL it: Huh,. i fijt ,I lI[11l,litt 1:1: 11'1 llii ~ l' . , l1u ' I I· ,II "I 8+ffi

~ ! ijll' iUli I' ii!l!!fl: Ili'ii'j: '1' ' ',' I F'I jl, l' II iii I mil' rl~q I . ", . liir:rirrli~'r !i;! 'M

fIIlj '[I ill Wti1 J II i1llrn~H jill IllIW!

-IfIIHI1" !!i" l:t, II!.!l 'I· II lli'lllt~I"I.l!1 H!! I.ili tv .r II, dd I \'1 \, , I j.IN I lrf,

~ iUtlli ! '1: 1 I !]1I1 Iii IIJI Ull ,il! j'l Ijll ill: tHit' i 'Hlf if! t ·f 'It1~ .. , 1 "t i 111'~i " !I. ,IIi Ii till I 'iiil I' ttl I ii' h;' l~"'j mi '111 'I 1!H' t', W: ,,~ lift

mfi :11 1 ij 11m'!!) '1m! 11 "I • ' 1 md, '1 1, :.II I' r. III. Jl'], IH I '! ~ JtillI;1 ,j I I I Hil. i, II i!:Jllj

00

IV . IV

00

''..J

~. (fl

'0 (1) () M

Fuel Weight Take-off Weight

c.> o

f- -li-H+P"jf'+r:+.+++t II'-

c.> 01

N ~ 0 -4f!J+1+t+tl

N .... ' o

IV

IV

IV

""-

IV

0.

IV -all.l.U.>.C-.L

00

. ~ o

;.-en

16 g.

~ M o·

O'l o o

J

Take-off Weight (1000 Ib)

-l o o

00 o o

to o o

.... o o o

.... .... o o

... r.: <:: c

'lin ifml{li'l'fTl ,'1, q ft" ""j"t" l"llf iUi j Iii": i'i; lii ti! j':11 til II! I; I ,." .. I.. _+1t-+ _.'" .~.J.~ ~_ ...... ++.. 1-+., :;" ,;" fC':,,' "I"'; .,t! 'If! 11'1)1:.: 'F

.... ~:;I:" I:::;: !i::, 'i;;:IIII,;I::l::I[::,,::

~ C,::t:l' ;n.' ::iird" ni;~i~j' :j;!' ::~~ l!il~j,t;i,~jt: :',.,. ,,,., .," , .. , ,ttr Ii: , '" .L ··~1· t't···· ,I,; "~,I 1'1: 1 If!' liti :11; ';',;q 1',II'i' t:I;:h is h t ifi : t.;: ~H Wi :ftiffS t~ihl

~ ~;:~. !~lj: lj~]i~~ :;,1 ~I~!:i~.ij" w' ::1 iii! I! H!: ill; t'; :i'l "i: ;'If I,'!I' ' ,,"~ 111 '11 ' HI 'H, "U" I"'" ." ". !Ii Ii,,, 11', 11; !!, I'!" \'J'I Iii' Ij 11 j i I ti'l!i : iii MIT IT" ltt 11· 14 ' , jl +,~, H .' "r' Ir;!t~itt; :1" I,' :1, :,!: 11:<) Ir!!i;~11 I'" jJ If·: ...... ;jllflH il' tl, it t 'ii·1 'jlf !,!ditl t it t- t I II

~ ll!!PliL 1l1l1!ilj'[JI 0\ Il\iilfH,! I J 1\11 thi ;111 Hillin llirf tn . Jl iLl l11-TI ~r TnH[llt u fila 'fill P!~ I~I! lIlf ':1 Vlf,Hlt'i' ij~.m 'I ,t)l n"lj'Il~' jlHI, ,m .' "ii, '[ I

t.:> In; :1:1:l,! ;,,1, tHllllil .11 if 'jl! . I o 1i!1 :''''!i j::' ,[ ill II 1'lIt1 11, 'j ttll,·1t Hit illl ii.i, J Ii P p!:..(1 +H lil ltLi jill

i!!, PQlflhi:f: ;~~l~!!:n!i !\li !Jlj 1 'f!H1 illl iii; lih ::jij'ii l.Jl:~' ,tilt! nli Ilill jill • ire ,nt H-ti,l:h, Itl! j "rm t T, ~t'l H1' .'-11'!:; if!1 [ill I!:: t:,,' 'rl'l ,11' I ,tit: ITill'!.; L..... II " " I ' ~J, -t I ~ ,- t t, • , I ~ _

• tIl ')' I " tt. "'t' ,', ". \ " , ~ I" ji!,!,;" .. 1: :II! p:!l' 1'1' Hilt';' "j 1/', I'::: Hr: i-lfl' 1ft n:t +F:8~~ I !.~:' im'·, f:~~ .... ,', "tl !'" 'I . I'" liIl }JIllli I, , i'" rr+i'HHH.mlJjll~''; :::! , HIli H I; liU ,l!ll id\W/ [l:\ :i\!!l:~\ i Pi{ u!l fill Hll ~W

M iLi i1l!I,H ;II: Pi; :1,', 'I'! ;1 :;;, !1!! ~!!: ;If: ... '" -'11 I, III, ,I,·.i..!..g -L..::" I ,. t'" l- • ~, ~

~ ',ll'![i lii! fil' ;::':': It li~I i:l' i :t: ::" '",ltll 't .. 1 .+ .. ,11j ,~' 't'l jl'l + " .. 1.11 ,,, 'I "I"" ,,11 , .. 'I I\: ~I I 1'111 ,.' 11'1 jll' il! 1\1' Iii' ,1: ' ,I 11!,1 ,: , " 11:1 ~HttH+-H ri- r :~ I ;",! ":, I, *h j,l; I I, I. : ,,1' ,Pt,l' ':: lilt ii, 111'Ij']::' " f:!~ nJ: ;t~·I~Jl. ;~~, in! ;Jl hH H ili .. ~t: HI'

t.:> li~", " tiL I,,·till: :'11 l~' t':! iii: h ;,., Trii:I"I"'; .: ji:'; ,·",mc t;li Itji irfi il II;:! 7:"':"

1,11 ,!;!!liil H11 LH!1 jiil :d 'Hi lw +I[jl!i': ::" :Itt 1:" Ii ',,j ,rlt :11· :'Ii :':: ,bEF,r; " ! : '! l! J: ; i ! ; ~ !.! ~! ~::: ; 1., d.; 1.1. ' ;; i ... ; jI' :,'i i,i \: ,t :ill :11) 'I;:::ntl' i;:' I,: :)~ gi; 1i ~Hl L:~~ ~i~l J.!! ! dF .Z~·tl ~ JUP ::i f!;!;!;;; ::n iii, r ILi r ff lJif !rU

00

Page 87: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

'-----'

:0 -<

0 0 0

-<-' ..::: bll ...... Q)

~ ,,-, 4-J 0 ..... I

....... Q) W ..':<!

('j E-;

~)

~, Take-off Speed 160 knots

I00°r;iFiffiTPiTC:-f:J;; ~"::, ::~r~~: FL jTv--:-~nB'Tifl~F 71J;ITr-:: :::: :;,;1:::; :;:~ ;;: /::;: IT?:::: Itlil !lllii l , ;/'1 ' If "I, • ,~,. -Ifj~f,,'I: .I';~t !., '" ,.j' ~ I, !I'~ ,1. 1 !" 'I-"j "':r:'I; ';1 ." 1":1"" l'lf I!., tit·",·· '"'-rl ••• '" ,I" "11 "'J.'" ""I" ""I""~"I"'" , ..• j,," "'llil'" .," .,,' "'1'''' I· .. h-· "" I'" ... ~ .. , ...• 1 ....... , ",' ·t .... ,. ;Jf j!.: ill: j;~: ;JI [; ';.: ;:'::: ::!llP:'· 'I :~'; ;~"I:::: :::; :;'; :::i .::: :;::·1;;: dt;i,r:' ::tl It: :;:11;;:: t;l; ;~!: ;;i Illl :1:: ::~! I' f ':I~ .t:; :;:: ::.: :::: ::~; '.1 :':' ~~, ·:-:P.::t:::: ++r ;:~~n";: :.~' :::: ~~: ~I; :,.:',' '~:: ~::: :~~~ :~;. :::; :~~ ;':; :::1 :·~tt ,jtl ,,', "" ,'" ,,1'1 "" .. ,:i:, , ,,, :\"" ,", .. " ...... ""j' ". I " .. " ,", I'" j, I "" :1 d" .. ,:1 "1 ',,, '" ", /1'1 ·t:1 J'" : ; : 1 ;.: i :: t I . : If; !;;! : ~ l' .. :!:: j : ~ l' ;)" ::; " . : . : ; ! .; , i: ;;. t I!:; 'i; ~ . ~:; !.!: ; ! ~ ;'; i I ~; ::;; :; t ' L : :. ;.: i :;:: ; i; ,;t : , : ~ .::; "I'"'' P"tijJ., "+'1"'" '1"'" , .... 1. ....... I ... ·',·t·· .. ·'··1' .. ·· .... I, .. , ' " 'Tt 11,,/").., 'r.~" •• ''''j'''t ........ ', .. 'HI 'r"I"" itf~: :\~1 ~tH'H~ :~!! i::: i:::!;!:: ::::I>i1 :~::'I:;':~":::\ :ii: i:;l :i:; !!i: i~!: ;it; !d~ Hi! :~;~ !it: i~;: Hit ::U H!: i:: II~~' ;tj'l i;'j!

000 ":1 l~I'!J.l·fH·'·'" "" "'ii"" """';L .• " ., , " !""ftG'" "i' '''t''· ." ,,,I ~fEt!S'" ,' .• ,,, ,J,1 ''I, ',,1 ",,t, ,', ,;j ,I ,t 1 iJ ----':-Ij. itt r-;-r!" I • Ii ',. :'I,!","-:,;rl--~;--:; .~:-r--:~7 !:T .. : "'! , •. j 1'-:--;-, ·;i .1,11. ~ ~ , •... :-r;, i~·11 ';~l 1/' I' ,!l ." .. ,!, Ill' 1"1 I.! I ,li. ;1" I,. " " .• '.,- •. j ····1 ., •• ' ,,! ,JI, .,.: ",; .,1'1."; .t .. ,.l,! ...• 'f-j '!i' .;;1 'I t 1'1: ... , tllJ l'I' :::1 i:ll[)f~'!!':i :;~ .:::::,:,' -;::1:::::.:(::, :::,;.:. ~i:E::: ";:1::;: :.:,;1\: ["Y!: !!i' 1'1:: :i;: Jill I;" i:i; :~::~j:: d:[!:l~.

iiil ii~l j~!: ~:-: ;::d;U~~j:~~' ~~~i-~i :"~_:~ii:: GL~ ;i::'~;~i <;;~L2lI: :lU~:i;: :~~1~~ :;;~ 'ff{ IT Ul1 q:: i;:! ~~~~ ii!~ ;~;;p~~; !l-~i!~lii ;;i~j~~~_; ~;~~ ';.~ ~i::L~i; t~:'!::;~ ;i~~!~:~~ ~~~~ll!~1 ;~~~jin} ~::: :iF ~:~;Ljl ~~~: .~!E tiL! !lft fJllHH !iIl l~L ;iH.Eti !~;!!!i~~

J

H-:, , .... , ...... rtR"····f7':~,,, ,1'''7 'j' . '" ~ftH4·: .. ':-:-~~;,'I" '" 11'1 ",Ym 'm"" '''' "/' ""1:'" :;:il';~: :'::1:" ;:::(, N.J':: G~ :::,\::: ;:::1:,:, ·;mii : .:i;, ' ;:::;:;:: :i:11ij IHl hi lit:~i';ll::i ti': ,:,diU!l; il::':":

80~-~~::; :~;~ ~t;t+8H'f;~~~ ;:';':~': :~;;*H--•. ;::'~!:f8f+ :;;:): ~;:;I;::t?:.:::; :::~ :::; rrtn'mt"fH+ 'ttl1t~: J~.: ~:~?H-il: ~:~! ~~~~ l,I,iH,,, .. "',, .. ""I ,,' , ,~ .t", "I '''' It, ", ",' " .. I ....... ,r,.I, ... j~ ... ,:1 '1 f '''1 ,j.,.,j "" 1 .. 1 '/'1 ittl ,'" .. " 1+1~1.;~~: :::;',:::; :.:;.!,~~!r :: .. ~ ;_:! 1 ..... ;:t -I;.!J -.. :; d-' '::! ;;:~ i~;: ::::t:..;~: ":-~:!~;.:~ .. -+ U~t + 1'1 '!' ~:: .. '::L:i ~;"t:- t"l ~~!. ~t :::.: ~~t.;

. "all" " "I·t

", ""1 .. ,, "]lll' "" .'". .~.' .. j"~'f1# ""t,,,· 'I"'''' "'1"" ~tfffi'4m'" illr """fi"j "·il· li, ""lrtt, , ... "8' A SP!:'C'!' Ij~, .... +~ '1"" ""1"" ... ~ .. j •• ~!.\ ,'lfl'l 'I" -...!.~::~ .... 1'1"'" .... .,~. ';1Tf Itt ,",·,tti'" + ...... II. ItltljG- ..... "'j ,

1" .. "', "'il"" "" .. " .. ,' ,,' """'1' ,,,' ", .. ,. ,~'" " ....... '1 ..... ". , t . ''''''.1 , ... I'" t" Ull " .. ~r J

hi ;::' "', ::: !-l.~:i~+':: ::: W71+:fr:-,.':']0' " '~'~~1+:-: :;,,,"'>.::': ": .. :::: ::~.: , ", -:" I ::.: ;::' tm,:, ,::': ;"; ",:1.." Illd,." ... "" ""I'" til, "J. '" ," '." ''''I'~' " .... , .. , .... --'. tI'l hi ,t tr tt ! "",j ... l '11 lB' "', .'" RATIO ;!.!i::::~ ';~:!::', :::' ;::~ :::: t:: ;::t :;~: !l:: :;:: : ..... :::~ !;;: :H. "I .:',!:::: 't:~ t' lLt " ~ .. ~.+~ t':a:~f~ it., ; ;:~~ !i;! . -... ,1.+" I,.,,,,·· ... 11. ....... ,,,' ... " ... ,,, ..... p ... '-"l~~.t' ... ~~'+ .• '. h~ 4t. ·f·trmttm~~t ':111+:;'~1~i ... .1 ....

-1ill:P~Pl~; !;f~:;;:~ iii:j::;; ::::!i;! ;::::::ii ~i:!!i::: ::::~:::: ~: ... ';; :;::~;:i~ ;':. ~I';:!j~~ Hi! 1.1t !.!r; !!H fH ~tm~ ~ll.t !ft :!!~1::;: 700 ,I '·"CL~:~":..1.L:..·'I-i':"''.:J. :::;'"~..:.''''''''' ... ".", ,'" ," ~I""." " ~,,,, ,.H,tI. t. ... rl ... , 'I~IK/,. In, '''':..1.:' - :,,1/1'1 1: ':;t:L~': r.:iT:C::- :i::j';~: 72r::-:c ;,--:-T::; :-:::r;:; ::':1:;:: :::i'tm" ~ .. ;.:t:: 'I I~ .~ il r!:,'ll' II '1m HL mnlfu':T'\f1; " .. , ':' .j··I'''· ··tt'l'l, "" ·tl ,.-,1 1 ", it '1,,,1 .-. ", . I' , "', I'" .•• , •.. ; tl.JIiII"tl J .. ti't t t:l....L I t ,I>. '" . t ,

<1 I "~" t· ", .• , , •• , •. ~ J .. , •• '1 "~11 , •. "r' "T' ,,1,1·· •• ". ,.~ .' .• , • .; •• ,. ! • .,.. .- t ~ .. {, >.t1- 'f •••• .,/ .... , • ... ·1· .. • "I.,.! ... , ...... " ,', ........... ,} . ." H," •• ., , .• " 'I'" - ... ".+ .•. , ':T!'''ITffo!t1tt .J. '1"-:-::111.·fl1"1 + 2.61 i-j::t;:;~ :;:: :~:; I:': ;~'; ;::t .:~ !;;;tr;;: :;:1(::;; ;;,:1:;:: :::; ;.!; tiU ;;~: ::;;t:: •. 1 ~ I, ~ lit' :n trIo +"!! , I I I' ," r"; f • , j , I ; ; ; : ' • . '. • 1 'I f.· . '. !: I 1 ' " r 1 •.• i 1 • " • It·· t" "1' • r T r -,.. "t t . r ' - ~ • , 1 • t , I + t t. 1 f '"t ., + ,J •• H+TH-~~-;+:-ii;y'~j-:+H" ;-HiH+ *t++P: .::;';':: ':': :.~, -:::; ::', :;-:.i:SF~ti:': tit ":J t t: t·" +1 ':::I:~;~ 'II',I .... I!: .. ! ... , "/11 "'1' '".",. )"/ "., , ... 1"" Id.l,t" ,q, , .. , ,.+.j:,., ''''1'''- !!t~l:l~! . 'l'I'mt "-L'I' f'jt'l'l'I'~ 'tm ... ~.t'"

, "" ['" , ... I' 'til' '1"1'" ,,, , .. , "tn"II'I' I'" , .. , ,,,. "'1 "I' "') ,,, ... , 'tt.I:Mn }: I 'f~~'-" . + 11 "I ",.", '1' "j' 'j' 11 ' .. /,. );," I'" "1 ," ,tt .. " ,'''L:.il: ;,t;'c:!' ""'1" , 'i H' 'j, '. 1 96 ~r !hi tt'!! 1 n- t t. ntl ",r .tt: 'ITT; ;'. t .~; ~tt: ;~1 t:;~~i':; ~It;"[-;I+ r:;"7" ;r~ !!1 J t ·tt. ~l ,.... t • 'J 11'1 Lllt,·j, ,lit "It ,,,. ,.t "11 .,,' ,,, ,1" I. .. ,,,r ,." 't" ... , ,[r1 "" ".t ,n

J• !Ililltl ,ldUlii litl flii'!'!,!, ·HHt.llWr

600 Ii ',ili I'! .i;;' I;",,',' :"! 111 Ii· ''l' ::,1 lW I:;: ;'1 1 ":: :r:; iii' ilil Itl~ PI! '. ~ ,f:t t!liflrHH·! :11 i, ;.u, '/1:11 Ill ' "" "', I'" Id I' , '" I!' '''iI''1 I"il"" ' , ', ... " , " ":!"'I Ifn'ii: :1' JI 'Ill" 11H .,d 'I" IH II l'I'rmt 1 47 ' ., , I. • I : I", •• -I ~ I • t • , , , I' ,t, t , •• If' " ,t. ,., t • t :; j • .' . I , f';' t! l- tit t· • I: ." , " 'II, "t· Iitl .\t l ,JI, .11, ,,I .... I" ',1, I'ti ,,,' "'.' "", .. " 1'1' I"., 't" "t, • t " t Ij' n" III 'Ji l' t 'jd 'I. •

-++ ril"~ H-i-+; ; j! I t;,d· -H~j 'ri;'; Hi +hf Hi i ;i~ ;n~t Ii;' ;~~; I'ff! ;!i: ;h f Hi; :i :;;'! ~t lfi' t 'r': j[t ~·jt· t t t t ~-t ~;"! I II.I·! Ilj~i 'I" q" q" '" 'II I;'ji "1' "'t ' H ,\,1 t., !I" rl,1 .... .1 1 1 j [, !I'I It t t.t 'j til.,; II Hj I j' 'I [Ij" .if; tid '~q t;r: I ·t t':: " ~tllt t+: ill ; I t!;: '!: :'~I t jt 1~:~ I:L til! ;.t ,tt t If ,r + ~ It '1 11 . t r tl

H'11l1IUlI~il HllJ lllj~ i!jl Ujl IW1HU\lU l!Hi\~il tHhllH ilit:i. n Uti ali!l [11 1 1U! ~i; . t 500 IttllmltfHl lin Inu ' itll 1m llHtlWlilllH!li i!!1iHu lPillfi:lfl!1 :iil!UH nnn mHl t1 ii! t til

~ I

70 80 o 100 110 120 130 140 150 Take-off Wing Loading (pst)

Figu~e 68. Take-off Weight vs Wing Loading

Page 88: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

TIME ALTITUDE VELOCITY WEIGHT RANGE THRUST DRAG MACH Q GAMMA ALPHA CLAVAL COACT CDCOR COO

COL CDF ALD PR SFC PfC WA WF WOX AE

FUEl OXID I IER RIC DVDT VI PTl CMl

* • * * * * * • •. * * * * * * * * * * * * * * * * * * * * * 30. 50. 368. 599741. 1.

346751. 175654. 0.33 161. 6.79 15.00 0.2734 0.1815 001815 0.0354

0.1331 0.0130 1.51 1.000 0.983 1.00 3153. 95. -0. 3960.00

2743. -0.00 39.44 2.34 1072. 15.844 1.03

11. 5000. 659. 595884. 4. 350659. 77335. 0.60 444. 12.15

4.86 0.2584 0.0362 0.0362 0.0137 0.0106 0.0119 7.14 1.000 0.942

1.00 3062. 92. -0. 3960.00 6600. -0.00 138.58 1.99 1072.

15.599 1.03

lla. 15000. 846. 591966. 10. 314921. 96492. 0.80 535. 14.54

4.32 0.2128 0.0374 0.0374 0.0176 0.C080 0.0118 5.69 1.000 0.874

I.e 0 2542. 76. -0. 3960.00 10517 • -0.00 212.45 3.81 1072. 12.649 1.03

) 159. 25000. 915. 589135. 16. 257360. 92155. 0.90 446. 13.76

5.05 0.2556 0.0429 0.0429 0.0186 0.0121 0.0122 5.96 1.000 0.828

1.00 1947. 59. -0. 3960.00 1 '1'1L.Q • ..,J-rv. ~o.oo 21i.61 1.39 1072 •

9.236 1.03

238. 37500. 988. 585214. 28. 186923. 102484. 1.02 323. 6.46

6.71 0.3593 0.0659 0.0659 0.0286 0.0244 0.0129 5.45 1.000 0.785

1.00 1320. 41. -0. 3960.00 17269. -D.CO 111.19 1.03 963.

5.964 0.99

277. 39500. 1085. 583620. 34. 186040. 122438. 1.12 353. 2.38

6.40 0.3295 0.0719 0.0719 0.0381 0.0210 0.0127 4.58 1.000 0.779

1.03 1316. 40. -0. 3960.00 18863. -O.lO 44.97 2.18 933. 6.115 0.93

321. 41700. 1162. 581907. 42. 180147. 126334. 1.20 365. 2.34

6.47 0.3181 0.0718 0.0718 0.0381 0.0210 0.0127 4.43 1.000 0.774

1.04 1276. 39. -0. 3960.00

) 20576. -0.00 47.38 1.67 955.

6.085 . G.94 . . "

Table 12. Final Variable Sweep Configuration Data

114

Page 89: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

TIME THRUST ALPHA

COL PFC

FUEL PH

ALTITUDE DRAG

CLAVAL COF WA

OX 101 lER eMl

VELOCITY MACH

COACT ALD

wF RIC

WEIGHT Q

eDCOR PR

iiOX OVOT

RANGE GAMMA

COO SFC

AE VI

* • • • * • * * * * * * * * * * * * * * * * * * * * * * * 417.

184536. 6.34

0.0174 1.07

24321. 6.768

49.7. 1'19817.

5.86 0.0140

1.12 27606.

8.281

560. 224250.

5.11 0.0108

1.13 30435. 10.678

611. 251 943.

4.52 0.C084

1. 14 33019. 14.066

707. 328381.

3.46 0.0045

1.14 39 1 93. 29.575

714. 411233.

2.84 O'()026

1. 15 45201. 62.089

832. 455881.

2.48 0.0017

1.15 51321.

122.936

45000. 133902. 0.2718 0.0124

1312. -0.00

1.03

47000. 144638. 0.2274 0.0120

1431. -0.00

1.40

48000. 158548. 0.1875 0.0114

1623. -O.LO

1.62

48700. 174112. 0.1562 0.0108

1855. -0.00

1.84

49500. 223212. 0.1024 0.0095 2644. -O.CO

2.36

50000. 255441.

O. C716 0.t083

3847. -0. (0

2.86

50400. 285632.

0.0535 O. t073

4010. -C.GO

3.33

1356. 1.40

0.0654 4.15

39. 34.23

1550. 1.60

0.0596 3.82

42. 26.28

1743. 1.80

0.0541 3.47

47. 17.43

1937. 2.CO

0.0498 3.14

54. 15.00

2421. 2.50

0.0424 2.41

75. 9.71

29C5. 3.00

0.0345

107. 9.18

3370. 3.48

0.0293 1.83 115. 8.48

578162. 424.

0.0654 0.999

-0. 2.01

514877. 504.

0.0596 0.978

-0. 2.55

572048. 6C8.

0.0541 0.960

-0. 3.38

569464. 726.

C.0498 0.941

-0. 4.15

563290. 1091.

0.U424 0.887

-0. 5.88

557283. 1534.

0.0345 0.827

-0. 8.89

551162. 2C26.

0.0293 0.827

-0. 9.86

Table 12 (cont'd). Final Variable Sweep Configuration Data

115

62. 1.45

0.0356 0.765

. 3960.00 1073.

82. 0.97

0.0336 0.761

3960.00 1412.

99. 0.57

0.0319 0.762

3960.0(' 1634.

114. 0.44

0.0306 0.769

3960.0C 1846.

149. 0.23

0.0285 0.818

396V.OO 2356.

118. 0.18

0.0236 0.934

3960.00 2854.

2G8. 0.14

0.0202 0.9(.6

396U.CO 3327.

Page 90: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

TIME ALTITUDE VELOCITY WEIGHT RANGE THRUST DRAG MACH Q GAMMA ALPHA CLAVAL COACT CDCOR COO

COL CDF ALD PR SFC PFC WA WF WOX AE

FuEL OXIDIZER RIC OVDr VI PTl CM1

* * * * * * * * * * * • • • • * • • • * • * • • • • * * * 834. 50500. 3390. 550929. 209.

457940. 285872. 3.50 2039. 0.84 2.48 0.0531 0.0291 0.0291 0.0201

0.0017 0.0073 1~83 0.827 0.905 1.15 4026. 115. -0. 3960.00

51554. -0.00 49.45 9.58 3346. 125.877 3.35

886. 56400. 3874. 545140. 240. ~30358. 250942. 4.00 2009. 1.73

2.57 0.0530 0.0259 0.0259 0.0173 0.0018 0.0068 2.05 0.827 0.900

1.18 3770. 108. -0. 3960.00 57343. -0.00 11 7.23 9.62 3829.

188.879 3.82

950. 67500. 4363. 539181. 283. 314240. 180544. 4.50 1496. 1.94

3.19 0.0702 0.0250 0.0250 0.0151 0.0031 0.0069. 2.80 0.827 0.912

1.27 2793. 80. -0. 3960.00 63302. -0.00 147.63 6.90 4307.

211.325 4.23

) 1031. 76400. 4818. 533332. 345. 249552. 144211. 5.00 1212. 1.15

3.76 0.0852 0.0247 0.0247 0.0132 0.0047 0.0068 3.45 0.827 0.939

1.36 2210. 65. -Oe 3960.00 69151. -O.CO 98.20 5.11 4811.

?r;?~r;? 1.. ~'2

1132. 84700. 5396. 527267. 430. 202447. 120'760. 5.50 995. 0.77

4.37 0.1019 0.0252 0.0252 0.0117 0.0061 0.0068 4.04 0.827 0.977

1.47 1899. 55. -0. 3960.00 75216. -O.CiO 12.58 4.56 5316.

2'38.458 4.99

1255. ,91300. 5913. 520865. 545. 172450. 107073. 6.00 873. 0.47

4.80 0.1139 0.0255 0.0255 0.0104 0.0085 0.0065 4.48 0.827 1.021

1.58 1671. 49. -0. 3960.00 81618. -0.00 48.06 3.78 5823.

369.023 5.36

1278. 98570. 5942. 519873. 567. 137567. 102453. 6.00 626. 2.25

6.21 0.1582 - 0.0340 0.0340 0.0104 0.0157 0.0079 4.66 0.827 1.021

1.78 1332. 39. -0. 3960.00

} 82610. -0.00 233.08 0.92 5819.

/ 256.479 5.11

Table 12 (cont'd). Final Variable' Sweep Configuration Data

116

Page 91: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

TIME AL Tl TUDE VElOClTY WEIGHT RANGE THRUST DRAG MACH Q GAMMA ALPHA CLAVAL COACT C l)COR COO

\ CDL CI)F ALD PR SFC J PFC WA wF wax AE

FUEl OXIDI ZER RIC DVDT VI PTl C Ml

* * * * * * • • • * • • * * * * * * * * * • * * * * * • '" 5199. 103192. 5942. • 415014. 4399.

103299. • 103299. • 6.00 626. • 6.25 • 0.1596 • 0.0343· 0.0343· 0.0104 * ·Start of

0.0160 • 0.<,019· 4.66· 1.000 • 0.963 • Cruise 1.78 • 1335. • 28 •• -0. 3960.00 *

187409. -0.00 -0.10 • 5818. * 256.188· 5.16 •

5318. 94000. 5430. 414216. 4511. 21782. 91879. 5.50 648. -0.83

5.15 0.1259 0.0294 0.0294 0.0111 0.0100 0.0071 4.28 1.000 1.C16

1.57 1295. 8. -0. 3960.00 1'88261. -0.00 -18.75 -4.52 5333. 192.275 4.90

5416. 93000. 4933. 413489. 4594. 26040. 94779. 5.00 561. -0.12

5.70 0.1464 0.0351 0.0351 0.0132 0.'Jl29 0.0t.89 4.17 1.000 0.971

1.57 1111. 7. -0. 3960.00 188994. -0.00 -10.63 -5.28 4825. 114.364 4.43

) 5506. 92000. 4437. 412883. 4664. 23855. 91412. 4.50 475. -0 .15

6.33 0.1736 0.0425 (,.0425 0.0151 0.0173 0.0102 4.G8 1.000 0.949

1.56 1043. 6. -0. 3960.00 189600. -O.tO -11.40 -5.65 4315.

e5.461 3.96

5591. 91000. 3941. 412364. 4722. 21170. 100231. 4.00 3 93. -0.16

1.09 0.2110 0.0529 0.0529 0.0173 0.0240 O. e1l5 3.99 1.000 0.936

1.55 911. 6. -0. 3960.00 190C99. -0.00 -12.25 -6.01 3804.

35.«;55 3.50

5610. 90000. 3446. 411983. 4710. 18022. 103580. 3.50 315. -0.22

6.01 0.2648 0.0682 0.0662 0.0201 0.0352 0.0129 3.88 1.000 0.941

1.53 779. 5. -0. 3960.00 190500. -0.00 -13.25 -6.55 3289.

18.914 3.02

5741. 86600. 2941. 411634. 4811. 15881. 105858. 3.00 271. -0.87

8.51 0.3<.·93 0.0810 0.0810 G.0236 0.0437 0.C131 3.82 1.000 0.968

1.46 7G9. 4~ -0. 3960.00 19C 849. -0. (0 -44.67 -6·54 2778.

) 10.121 2.58

Table 12 (cont'd). Final Variable Sweep Configuration Data

117

Page 92: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

TIME ALTITUDE VElOCl TV WE IGHT RANGE THRUST DRAG MACH Q GAMMA ALPHA CLAVAL COACT C l)eOR COO -" COL COF AlD PR SFC )

PFC WA WF wax AE FUEL OXIDIZER RIC OVDT VI

PTl CM1

lit * • • • • • • * * • * lit lit * * * * • * • • * * * * * * * 5833. 78500. 2442. Itll050. 484q.

15773. 105083. 2.50 275. -2.19 8.02 u.3060 0.0794 0.0794 0.0285

0.0374 0.0135 3.85 0.907 1.363 1.34 425. 6. -0. 3960.00

191433. -0.00 -93.13 -5.17 2282. 7.352 2.17

5928. 69000. 1941. 410526. 4883. 14899. 99225. 2.00 275. -2.83

7.70 0.3059 0.0748 0.0748 0.0306 0.0308 0.0134 4.09 0.951 1.238

1.23 390. 5. -0. 3960.00 191957. -I).DO -95.92 -5.03 1779.

5.302 1.73

6039. 57500. 1453. 4C9949. 4914. 14089. 93778. 1.50 268. -3.85

7.58 0.3142 0.0726 0.0726 0.0345 0.0246 0.0135 4.33 0.990 1.350

1.13 412. 5. -0. 3960.GO 1<12534. -C.VO -97.52 -4.11 1254.

4.316 1.23

) 6187. 45000. 968. 409091. 4943. 10972. 72988. 1.00 211 ~ -4.02

7.26 0.3891 0.0699 0.0699 0.0268 0.0295 0.013 7 5.56 1.000 2.058

1.00 491. 6. -0. 3 960,,00 193392. _() . GO -67.91 -2.63 968.

• r;L 0 ~~

Jo. vv

6247. 40000. 872. 4U8689. 4952. 9442. 63035. 0.90 223. -4.94 6.91 0.3780 0.0587 0.0587 0.0186

0.0266 0.0135 6.44 1.000 2.741 1.00 573. 7. -0. 3960.00

193794. -0.00 -75.08 -1.45 968. 4.618 1.00

7247. 4GGOO. 872. 397088. 4952. 52947. 52947. 0·90 223. -J ... 9 4

.t; '" (~4· O.37'io6 0.0493 0.049:) O~C135 (;.C2('9 (:.C1'+9 7.60 1.0:';0 0.789

}"OO ~3 8 .. 12. -C .. 3960.0C 2'J,'j,Q5 & -0. C. C -75.08 -1.45 96F..

L\>.~6l8 1 ~ t 0

lS'4.:.r ~ 40GOQ. 872. 389124. 4952. 51£:759 51275. 0.<:;0 223. -4.9"

6&24- O~3603 0.0477 0.0477 0.0135 C~0193 0.0149 7.55 l.,.OOC 0.789

1. C 0 4334: 11 ~ -0. 3960.00 \ 2133594- -O.lO -75.08 -1. 4 5 968.

) 4,.618 l.00

Table 12 (c01:t'd), Final \T2.ria.b It, S\v~;ep Config-<.lration Data

: l~

Page 93: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

~)

TIME AL TI TUDE VELOCITY WEIGHT RANGE THRUST DRAG MACH Q GAMMA ALPHA CLAVAL COACT COCOR COO

COL COF ALO PR SFC PFC WA WF WOX AE

FUEL OXIDIZER RIC OVOT VI PTl CMI

* * * * * * * * >0< * * * * * * * * * * * >0< * * * * * * * .. * 8090. 25000. 813. 387621. 4972. 9987. 66297. 0.80 352. -7.70 4.51 0.2256 0.0391 0.0391 0.0176

0.u090 0.0124 5.78 1.000 4.882 1.00 1003. 14. -0. 3960.00

214862. -0.(0 -109.00 -0.37 968. 8.325 1.00

8310. 50eO. 659. 382876. 4999. 9838. 65419. 0.60 444. -7.09

3.71 0.1773 0.0306 0.0306 0.0137 '0.0051 0.0118 5.79 1.000 10.811

1.00 1867. 30. -0. 3960.00 ) 219607. -0.(0 -81.28 -0.7C 968.

15.599 1.<'0

8498. 50. 244. 380549. 4999. t:!~"'" n ~,.." .,., 0.24 486. 4.00 ;)'00. :;;Joo::>.

3.71 0.1773 0.0306 0.0306 0.0137 0.0051 0.0118 5.79 1.000 1.668

1.00 586. 3. -0. 3960.00 221934. -0.00 o. -0.70 968. 15.274 1.(0

Table 12 (cont'd). Final Variable Sweep Configuration Data

)

119

Page 94: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

AERODVNAMIC DEVICES WING + WING MOUNTED CONTROL SURFACES VERTICAL SURFACES HORIlONTAL SURFACES FAIRINGS, SHROUDS AND ASSOCIATED STRUCTURE

BODY STRUCTURE

64985. 9230. 9515. 1321.

STRUCTURAL FUELtOR COMMON BASIC ENCLOSiNG STRUCTURE PRESSURIZED COMPARTMENTS SECONDARY STRUCTURE

PROPELLANT! CONTAINER O. 71342.

5193.

INDUCED ENVIRONMENTAL PROTECTION COVER PANELS,NON-STRUCTURAL INSUL AT ION

LANDING GEAR

MAIN PROPULSION ENGINES AND ACCESSORIES A I R IN DUC T ION NACELLES,PODS,PYLONS,$UPPORTS FUELlOR COMMONlCONTAINERS AND SUPPORTS OXIDIZER CONTAINERS AND SUPPORTS pROPELLANT INSULATION FUEL SYSTEM OXIDIZER SYSTEM PRESSURIZATION SYSTEMS LUBRICATING SYSTEM

AEROOYNAMIC CONTROLS

PRIME POWER SOURCES ENGINE OR GAS GENERATOR UNITS POWER SOURCE TANKAGE AND SYSTEMS

POWER CONVER.SION AND DISTRIBUTION ELECTR ICAL HYDRAULIC/PNEUMATIC

GUIDANCE AND NAVIGATION

INSTRUMENTATION

COMMUNICATION

ENVIRONMENTAL CONTROLS

o.

19189. 12680.

40716. 16708.

3649. -0. -0. -0.

1 524. O.

4215. 160.

2305. 1205.

4037. 1223.

EQUIPMENT 201. PERSONNEL 2150. COOLANT SYSTEM O.

85117.

82535.

31868.

18192.

67031.

5812.

3510.

5259.

800.

404.

2025.

7625.

COMPARTMENT INSULAT ION 5274.

) ~------------------------------------------------------~ Table 12 (cont 'd). Final Variable &Weep Configuration Data

120

Page 95: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

PERSONNEL PROVISIONS ACCOMMODATIONS FOR PERSONNEL FiXED LIFE SUPPORT FURNISHINGS AND CARGO HANDLING EMERGENCY EQUIPMENT

CREW STATION CONTROLS AND PANELS

DRY STRUCTURE

DESIGN RESERVE

PERSONNEL CREW,GEAR AND ACCESSORIES CREW LIFE SUPPORT

PAYLOAD CARGO PASSENGERS

USEFUL LOAD

RESIDUAL PROPELLANT AND SERVICE ITEMS TANK PRESSURIZATION GASES TRAPPED FUEL TRAPPED OXIDIZER SERVICE ITEMS RESIDUALS

RESERVE PROPELLANT AND SERVICE ITEMS FUEL-MAIN PROPULSION OXIDIZER-MAIN PROPULSION POWER'SOURCE PROPELLANTS LUBRICANTS

WET STRUCTURE

IN-FLIGHT LOSSES FUEL VENT OXIDIZER VENT POWER SOURCE PROPELLANTS LUBRICANTS

MAIN PROPELLANTS FUEL

TAKEOFF,CLIHB,ACCELERATE CRUISE DESCENT LO ITER LAND

OXIDIZER TAKEOFF,CLIMB,ACCELERATE CRUISE DESCENT LOITER LAND

TAKEOFF ~EIGHT

82610. 104198.

12633. 19565. 2328.

-0. -0. -0. -0. -0.

4700. 308.

8116. 305.

1250. 25.

13000. 35000.

230. 1205.

o. 120.

o. -0.

176. 83.

(

1122. -0.

3525. 330.

221911.

-0.

(

Table 12 (cont'd). Final Variable Sweep Configuration Data

121

13428.

300.

323906.)

o.

1215.

48000.

49275.

1556.

259.

374996. ,

5511.

221911.

602483.'

Page 96: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

VOLUMES BODY STRUCTURE CREW AND PASSENGER COMPARTMENTS CARGO COMPAR TMENT LAND ING GE AR BAY S PROPULSION BAY WITHIN BODY WING CENTER SECT ION FUELlOR COMMON PROPELLANT) CONTAINER OXIDIZER CONTAINER FUEL(OR COMMON PROPELLANT) INSULATION OTHER BODY VOLUME -

TOTAL BODY VOLUME

WETTED AREAS GROSS BODY LOWER SURFACESfTHERMAL PROTECTION) UPPER SURFACES(THERMAL PROTECTION) PERSONNEL COMPARTMENTS CARGO COMPARTMENTS

PLAN AREAS WINGIOR LIFTING SURFACE.eGROSS. EXPOSED WING AREA BODY MAXIMUM CROSS SECTION BASE VERT I CAL SUR FACE S HORIZONTAL SURFACES AIR INLET CAPTURE AREA

UNl' Wt:lbMI;)

WING VERTICAL SURFACES HORIZONTAL SURFACES BODY S TRUCTUR E e BAS IC ) LIFTING SURFACE MAXIMUM LOADING

DIMENSIONAL DATA WING

STRUCTURAL SPAN ROOT CHORD LENGTH THICKNESS RATIO

BOOY LENGTH WIDTH HEIGHT

ENGINE SCALE fACTOR

CU FT 10207.

8645. 903. 270.

o. 1475.

52377. -0. -0.

13037.

86913.

SQ. FT. 20413.75

5115.85 14691.90 4831.66

442.80

SQ. FT. 4819.81 3161.51

511.59 587.92

1108.64 1214.61

111,,39

l..B/SQFT 13.48 8.33 7.88 3.19

125.00

fEET

180.51 86.18 0.05

318.81 23.41 31.35

Tab Ie 12 (cont I d) . Final Variable Sweep Configuration Data

122

CU M 289. 245. 26.

8. o.

42. 1482.

-0. -0.

369.

2460.

SQ. M. 1896.44 531.00

1365.43 448.86

41.14

SQ. M. 441.71 293.11

53.10 54.62

102.99 112.84

10 .. 35

KG/SGM 0.61 0.38 0.36 0.17 5.61

METERS

55.02 26.45

91.11 7.15 9.56

Page 97: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

8.0 BLENDED BODY CONFIGURATION

8.1 BACKGROUND

The basic feature of this configuration is self descriptive in that the wing is not discrete from the body. This blending of the wing and the body is motivated by both structural and aerodynamic considerations. Blending the wing/body intersection provides a better ratio of volume/lifting planfonn which in turn reduces the wetted areas which results in lower friction drag and '-lower structure weight. In addition, this blending can benefit the flow field for the engine inlets and minimize the wing/body interference drag. The basis for a configuration of this type was provided in the detailed Aerospaceplane studies conducted by Convair in 1964.

8.2 GROUND RULES

) In order to make a design study of the blended body concept and make it comparable with the delta wing and variable sweep configurations the ground rules shown in Table 13 were est,ablished. These are quite similar to the ground rules shown in Table 3 for the delta wing configuration.

)

Range = 5,000 n.mi.

Cruise Mach = 6.0

200 Passengers

5,000 Lb. Cargo + 40 Lb/Passenger

Selected Trajectory (Figure 20)

Fuel Rich Turbofan, STFRJ -230A

Subsonic Loiter = 1, 000 Seconds

Su~g,nie Dn", ~ .........., 100 n. mi.

~.~ ~ Integral Tanks. -

TABLE 1l. GROUND RULES FOR BLENDED BODY CONFIGURATION STUDY

123

Page 98: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

, ) 8. 3 CONFIGURATION CONCEPTS

A review of the previous Aerospaceplane studies showed that with a 80 0 swept leading edge, an aspect ratio of .46 and a take-off wing loading of 64 lb/ft2 the low speed handling qualities were marginal. Both the longitudinal short period dynamics and the Dutch roll characteristics fell within the "acceptable for emergency operation" limits as established in Report No. TC-1332-F-1 "Handling Qualities Requirements for Hypervelocity Aircraft". These handling qualities are unacceptable for commer­cial operations.

Two alternate approaches were therefore adopted that would provide more acceptable handling characteristics: (a) The wing planform was modified to a double delta, or (b) var~able sweep wing panels were extended for landing and take-off. (a) vs. (b) is the classically different approach of providing either fixed or moving aero­dynamic surfaces in order to get adequate stability.

A series of brief designs were therefore made in order to study these two approaches. The most significant of these are included in Figure 69 which shows different approaches to blended body configurations. The three configurations in the top row show different locations of the passenger compartment. The top location shown in the left hand column was selected as having the best compromise between cabin structure weight, cabin insulation, volume utilization, engine noise, passenger appeal (seating layout) and c. g. travel.

The left hand column in Figure 69 shows different vehicle shapes. The upper three show a low, mid and high "wing" layout. The low wing layout was eliminated because the flat lowel surface does not provide the aero/propulsIOn advantage mherent in the blended body concept. Compared with the high wing layout, the mid wing layout results in a better distribution of engines around the aft body, a wider tread and shorter length for the main landing gear and better structural blending. The lower configurations of Figure 69 show variable wing sweep approaches. The upper of these tW? shows a 80

0 delta wing with overlapping wing panels. The lower configuration shows an attempt at eliminating the duplicated structure of the overlapping wing panels, however, this resulted in a configuration that required more total wing area than the overlapping wing. In addition, the moving wing and the aft control surface almost violate the principles of a blended body without giving any obvious advantages.

It was therefore decided that two blended body configurations would be evaluated, the mid wing, double delta and the blended body with overlapping, variable sweep wing panels.

8.4 DOUBLE DELTA CONFIGURATION

) This design is shown in Figure 70. As shown in the cross ,sections, most of the blending of the body and the wing is on the lower surface. The upper surface has less blending

124

Page 99: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

Double Delta Low Wing

Double Delta Mid Wing

Double Delta High Wing

Variable Sweep Overlapping Wing Panels

Variable Sweep Aft Wing

Panels

TOP

\, '-

-----.l

PASSENGER COMPARMENT LOCATION

FOR\\'ARD CENTER

"

Figure 69. Blended Body Configuration Concepts

125

Page 100: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

< j t

! --.1 A -~- .... ! ~-I - i

i - _ --tIl-:__ : - - !

~-­~!

Figure 70. Blended Body - Double Delta Configuration

126 -~

/ N'4TANIC

!

I ! I

L..--__________ : __ ~

~ ;

-c--------------oS'" \

~C;V

~ ',280:

Total volume

Fuel n~lumt.' . Landing gear main

Eng:mes type

Thrust

Passengers @. 6 abre3...'it

@ 4 abreast

Seat spacing

I L_~ __

1..-,

...Ind f, ,

0&

_0

28() it.

24.:) ft

lOG. 8:)f) ('U ft

61. lOt; ('u ft

37 fL

Pratt &: V.:litnc)" STFnS.;!,;{t.\{;.,

;5,00.0 tb SL.S each

24 rows

14 ro'\\"S

.36 in.

9t}Ocu. ft.

130' _______ .. ______ _

I

Page 101: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

with the passenger compartment mounted on top of the blended upper surface so that the passenger floor provides the spanwise structural continuity. Five ~on-circular fuel tanks dominate the body volume. The structural concept iS,a nickel :-llloy hot structure with a nickel alloy tank liners insulated from the outer structure. The four turboramjets are mounted around the lower body and exhaust along the aft body. The main landing gear is mounted outboard of the engines and retracts forward. The droop nose provides adequate visibility during landing.

8.5 VARIABLE SWEEP, OVERLAPPING WING CONFIGURATION

This is shown in Figure 71. This configuration allows the vehicle planform to be dictated by transonic, supersonic and hypersonic drag considerations and to be independent of the take-off and landing requirements. The variable sweep wing panels provide the desired low speed performance and handling qualities. The wing area of the variable sweep configuration (which is less than the double delta) is dictated largely by the span of the variable sweep panels, the location of the pivot and the area of the elevons.

8. 6 AERODYNAMICS

The aerodynamic characteristics of the two blended body configurations were anfllyzed at several Mach numbers. Supersonic lift and drag ~1{~ estimated by breaking the total vehicle into components whose contributions were linearly superimposed; these components were:

1) upper surface - wing

2) lower surface forebody - blended wing-body

3) lower surface afterbody - boat tail

4) propulsion package and base

5) aft wing section - lower surface

6) vertical tail

Pressure distributions over each lift-contributing component were estimated using tangent-cone and shock-expansion methods, where applicable, over a range of angles­of-attack, with corrections to the integrated lifts and drarrs based on correlations with experimental data such as that of References 21 through 23. The subsonic character­istics of each configuration were analyzed using correlations with experimental da:a of low aspect ratio wing-body combinations, such as Reference 11, with corrections to account for the contributions oithe double-delta planform of the baselin~ configur'atio:: and the variable-s\'I"eep panel of the alternate configuration (with the panel in the forward

127

,

Page 102: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

\ /

-7"-- __ _

/ ~O·

I"nt> OF V1"'j'

Figure 71.

I ~ ,- .. \

~/

I COHPT

------1

\

I

<?oo ""SS€NGE<? ... ---~ - ------- - -----t---

------- -"------------------

--------~----

Blended Body - Variable Sweep Configuration

128

/ /'

/ x

----I··~~ !

-NOSTANK

(§) ~' I ---r

--_._-

f)~'l't (m.L"-)

Fu\!J \'O!Wl1c

Thrust

Cargo 0;..1\ Yvhune

/'iIi, lo

72v sq. i1.

13,1.11 sq It .

. H

2lSt.i II

2.t.::; ft.

lO-l. OO(J CU. it

.39 •. ')00 t."U. ft.

{our 66:dS tire:,.; I!t~l' "leo

twin 1 ~x 12 u l'{,.~

3i ft.

Pratt & Whitne.\ STJ'lC::i-23UA (../.)

•. ).000 lb. SUi C'H:!,

2-1 rows

14 rows

36 in.

900 cu. ft.

l--S7' ___ __

--------7(!j'

-------------- - 148' SPAN AT 2'0·

~

I

Page 103: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

, position). The resulting lift, drag and LID characteristics of each configuration are

shown in Figures 72 and 74. Figures 73 and 75 show the breakdown of the drag coefficient at a lift coefficient of .10 for each configuration.

The longitudinal stability characteristics of the biended-bodies were examined; ~~e configurations were found to ~e statically stable throughout the flight regime. The trim ~apability of the baseline configuration was determined at M = 4.5 and is pre­sented in Figure .76. It is seen that the elevons have sufficient power to trim the vehicle at an angle-of-attack near (LID) m~ximum.

8.·7 -WEIGHTS ...

Based on data generated under contract NAS 2-3025, weights for the two selected blended body-...configurations were determined. These are shown in Tables 14 and 15 for the double delta and variable sweep versions respectively.

8.8 DoUBLE DELTA - GEOMETRY VARIA TIONS

....

The effects- of planform loadIng on the double delta-blended body were investigated using the synthesis program. Plan loading was increased by essentially increasing the thickness ratio of the configuration. The' resulting effects on take-off weight are shown in, Figure 77. This configuration differs from the delta and variable sweep configur­ations in that it has an optimum planform loading. This bucket results from the trade-

, off between structural weight and aerodynamic eff,iciency, lift-to-drag ratio. The effects of planform loading on cruise LID and body structural weight are also shown in Figure 77. As the planform loading is increased, the lift-to-drag r,atio decreases since the configuration effective thickness ratio is increasing. Also, as the planform loading is increased, the wetted area of the configuration decreases resulting in a de­crease in body structural weight.

As with the ollier configurations, take'-off velocity considerations dictate an upper limit on planform loading. The subsonic lift characteristics and the adaptability of high lift devices is rather limited on the double delta blended body. For the take-off computations, a take-off angle of attack of 15 degrees was assumed and a take-off lift . coefficient of .46 was used. Incorporating the ten percent take-off velocity margin, a maximum allowable take-off wing loading of about 35 was obtained and is shown on , Figure 77.

8,.9 FINA L DOUBLE DE L TA CONFIGURA TION

A synthesis run was made for a final double delta blended body configuration having a planform loading of 35 psf. The performance· and weight/volume characteristics of this configuration are sho'WIl in Table 16.

129

Page 104: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

8.10 VARIABLE SWEEP - WING GEOMETRY VARIATIONS

The effects of wing area changes for the variable sweep panels on the take-off weight of this blended body configuration were analyzed using the synthesis and performance program. The results in the form of take-off weight as a function of wing loading are shown in Figure 78. The wing loading as used on Figure 78 is defined as the take-off weight divided by the area of the variable sweep panels extended to the centerline. In­creasing the wing loading decreases the take-off weight due to the reduction i:l wing area. The take-off weight characteristic,s of the blended body with variable sweep panels are much higher than the double delta blended body due to the fact that the veh­icle is carrying a large block of inert weight that is only used a small portion of the time. The sensitivity of take-off weight to inert weight changes is rather large which causes the weight to spiral up rapidly with the addition of the extra wing pane Is.

Take-off velocity considerations dictate an upper limit of 130 psf on take-off wing loading. This limit line is shown in Figure 78.

8.11 FINAL VARIABLE SWEEP WING CONFIGURATION

A synthesis run was made for a final variable sweep wing configuration having a wing loading of 130 psf. The performance and weight/volume characteristics for this final configuration are shown in Table 17.

130

Page 105: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

.25

.20 CL .15

.05 __ _

11.200

o 2 4 6 8

o 2

Figure 72.

10 12 o

4 6

.01

8

.02 .03 .ot .05

CD

'" IV

Double Delta Aerodynamic Characteristics

131

.06 .07

Page 106: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

.03

) .01-. II

o 1 2 3 Mach Number

6C Dlower surface afterbody pressure

6CD upper surface + nose + vertical

_tail wave

~ IoIi 6CDlower surface forebody pressure

6CD l~-: friction

4 5 6

Figure 73. Double Delta - Drag Breakdown

132

Page 107: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

.35 -')

.30

.25

.20 .20 C

L CL .15 .15

.10 .10

.05 .05

0 0 2 4 6 8 10 12 0 .01 .02 .03 .04 .05 .06 .07

(Y.o

) A = 20° .5 LE

6

5

LID 4.5 4 3.5 2.5

~E 80° 3 :=

2

1

o 2 4 6 8 10

) Figure 74. Variable Sweep - Aerodynamic Characteristics

133

Page 108: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

.04

.03

.01 )

0" o

"- ) "~

~ - "

,~~~ ~:~=~~=l~~:-~"~i-~:~~,~L~~ ~~ __ I 2 3 4 5

::vlach Number

t,CDlower surface forebody + nose

,-+ t,C : :~t::1 Dfriction

6

Figure 75. Variable Sweep - Drag Breakdown

134

Page 109: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

Figure 76. Double Delta - Longitudinal Stability

)

135

Page 110: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

AERODYNAMIC DEVICES WING + WING MOUNTED CONTROL SURFACES VERTICAL SURFACES HORIZONTAL SURFACES FAIRINGS,SHROUDS AND ASSOCIATED STRUCTURE

BODY STRUCTURE

o. 7684.

o. 1245.

STRUCTURAL FUEL{OR COMMO~ BASIC ENCLOSING STRUCTURE PRESSURIZED COMPARTMENTS SECONDARY STRUCTURE

PROPELLANT. CONTAINER o. 133442.

5193. o.

INCUCED ENVIRONMENTAL PROTECTION COVER PANELS,NON-STRUCTURAL INSUL ATION

LAND ING GEAR

MAIN PROPULS [ON ENGINES AND ACCESSORIES AIR INDUCTION NACELLES,PODS,PYLONS,SUPPORTS FUEL(OR COMMON)CONTAINERS AND SUPPORTS OXIDIZER CONTAINERS AND SUPPORTS PROPELLANT INSULATION FUEL SYSTEM OXIDIZER SYSTEM PRESSURIZATION SYSTEMS LUBRICATING SYSTEM

AERODYNAMIC CONTROLS

nn .... r rr. 11:0 cnllorc::c '. ''-.~ ,~ ~ ... ~ --~ ENGINE OR GAS GENERATOR UNITS POWER SOURCE TANKAGE AND SYSTEMS

POWER CONVERSION AND DISTRIBUTION ELECTRICAL HYDRAULIC/PNEUMATIC

GUIDANCE AND NAVIGATION

INSTRUMENTATION

COMMUNICATION

ENVIRONMENTAL CONTROLS EQUIPMENT PERSONNEL COOLANT SYSTEM COMPARTMENT INSULATION

o. o.

53813. 22500.

4259. o. o.

11731. 1556.

O. 4820.

160.

2368. 1268.

424B. 1239.

210. 2150.

o. 5214.

8929.

138635.

o.

19063.

98844.

6093.

5487.

800.

511.

2025.

7635.

Table 14. Blended Body, Double Delta, Baseline Weight and Sizing Data

138

Page 111: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

PERSONNEL PROVISIONS ACCOMMODATIONS FOR PERSONNEL FIXED LIFE SUPPORT FURNISHINGS AND CARGO HA~DlING EMERGENCY EQUIPMENT

CREW STATION CONTROLS AND PA~ElS

DRY STRUCTURE

DESIGN RESERVE

PERSONNEL CREW,GEAR AND ACCESSORIES CREW LIFE SUPPORT

PAYLOAD CARGO PASSENGERS

USEFUL LOAD

RESIOUA( PROPELLANT AND SERVICE ITEMS TANK PRESSURIZATION GASES TRAPPED FUEL TRAPPED OXIDIZER SERVICE ITEMS RESIDUALS

RESERVE PROPELLANT AND SERVICE ITEMS FUEL-MAIN PRUPULSION OXIDIZER-MAIN PROPULSION POWER SOURCE PROPELLANTS LUBR ICANTS

WET STRUCTURE

... ..... '" L""- ... ..,-=-::0-

FUEL VENT OXIDIZER VENT POWER SOURCE PROPELLANTS LUBRICANTS

MAIN PROPELLANTS FUEL

TAKEOFF,CLIMB,ACCELERATE CRUISE DESCENT LOITER LAND

OXIDIZER TAKEOFF,CLIMB,ACCELERATE CRUISE DESCENT LOITER LAND

TAKEOFF WEIGHT

-0. -0. -0. -0. -0.

-0. -0. -0. -0. -0.

4700. 308.

8116. 305.

1250. 25.

13000. 35000.

282. 1268.

o. 127.

o. o.

176. 83.

2036. o.

3512. 330.

271600.

o.

13428.

300.

305388 ••

o.

1275.

48000.

49275.

1677.

258.

356598. ,

r;;A77

271600.

634075.)

Table 14 (cont 'd). Blended Body, Double Delta, Baseline Weight and Sizing Data

137

Page 112: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

VOLUMES BODY STRUCTURE CREW AND PASSENGER COMPARTMENTS CARGO COMPARTMEN T LANDING GEAR BAYS PROPULSION BAY WITHIN BODY WING CENTER SECTION FUEL(OR COMMON PROPELLANT) CONTAINER OXIDIZER CONTAINER FUEL(OR COMMON PROPELLANT) INSULATION OTHER BODY VOLUME

TOTAL BODY VOLUME

WETTED AREAS GROSS BODY LOWER SURFACES{THERMAL PROTECTION) UPPER SURFACES(THERMAl PROTECTION) PERSONNEL COMPARTMENTS CARGO COMPARTMENTS

PLAN AREAS WING(OR LIFTING SURFACE) (GROSS) EXPOSED wING AREA BODY MAXIMUM CROSS SECTION BASE VERTICAL SURFACES HORIZONTAL SURFACES AIR INLET CAPTURE AREA

UNIT WEIGHTS WING VERTICAL SURFACES HORIlONTAL SURFACES BODY STRUCTURE (BASIC) LIFTING SURFACE MAXIMUM LOADING

DIMENSIONAL DATA WING

STRUCTURAL SPAN ROOT CHORD LENGTH THICKNESS RATIO

BODY LENGTH WIDTH hEIGHT

ENGINE SCALE FACTOR

cu FT CU M 15560. 440.

8645. 245. 903. 26.

1902. 54. o. o. O. o.

64040. 1812. o. o.

3762. 106. 17925. 507.

112737.

SQ. FT. 31120.29

o. c.

4831.66 442.80

SQ. FT. o.

-0. 830.91 111.16

1318.59 o.

150.00

lB/SQFT o. 5.83 o. 4.29

56.60

fEET

o. o. 0.05

287.81 o.

26.95

7.00

3190.

SQ. M. 2891.07

o. o.

448.86 41.14

SQ. M. o.

-0. 77.19 15.90

122.50 o.

13.93

KG/SGM o. 0.26 o. 0.19 2.57

METERS

c. o. J

87.72 O. 8.21

Table 14 (cont 'd). Blended Body, Double Delta, Baseline Weight and Sizing Data

138

Page 113: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

AERODYNAMIC DEVICES WING + ~ING MOUNTED CONTKOL SURFACES VERTICAL SURFACES HURIZCNTAl SURFACES FAIRINGS,SHROUDS AND ASSOCIATED STRUCTURE

BODY STRUCTURE

45468. 8663.

o. 1074.

STRUCTURAL FUEL(OR CGMMON BASIC ENCLUSING STRUCTUKE PRESSURIZED COMPARTMENTS SECONCARY STRUCTURE

PROPELLANT) CONTAINER o.

INCUCEO ENVIRONMENTAL PROTECTION C0VER PANELS,NON-STRUCTURAL INSULATICN

LANDING GEAR

MAIN PROPULSION ENGINES AND ACCESSORIES AIR INDUCTION NACELLES,PODS,PYLONS,SUPPORTS FUEL(OR COMMON)CGNTAINERS AND SUPPORTS OXIDIZER C~NTAINERS AND SUPPORTS PROPELLANT I~SULATION

FUEL SYS TEM OXIDIZER SYSTEM PRESSURIZATION SYSTEMS LUSRICATING SYSTEM

AERODYNAMIC ceNTROLS

PRIME POwER SOURCES ENGINE OR GAS GENERATOR UNITS POwER SOURCE TANKAGE AND SYSTEMS

POWER CONVERSION AND DISTRIBUTION E: L E C T RIC AL HYDRALliC/PNEUMATIC

GUIDANCE ANO NAVIGATION

INSTRUMENTATION

COMMUN I CA T lU N

EN~IRONMENTAL CC~TROLS

EQUIPMENT PERSONNEL COOLANT SYSTEM COMPARTMENT INSULATION

127093. 5193.

o.

o. O.

53813. 22500. 4259.

o. o.

12036. 1662.

O. 4943.

160.

2476. 1376.

4609. 1318.

226. 2150.

O. 5274.

Table 15. Blended Body. Variable Sweep Baseline Weight and Sizing Data

139

55205.

132286.

o.

20547.

99373.

6572.

5926.

800.

469.

2025.

7651.

Page 114: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

PERSONNEL PROVISIONS ACCOMMOCATIO~$ fOR PERSONN~l fIXED LIfE SUPPORT FURNISHINGS AND CARGO HANDLING EMERGENCY EQUIPMENT

CREW STATION CONTROLS AND PANELS

DRY STRUCTURE

DESIGN RESeRVE

PERSOf~N EL CREW,GEAR ANC ACCESSORIES CRE~ lIFE SUPPOR1

PAYLOAD CARGu pAS S E NGERS ft.fl/U

USEFUL LOAD

RESIDUAL PROPELLANT AND SERVICE ITEMS TANK PRESSUR.IlATION GASES TRAPP f:C FUEL TRAPPED OXIDIZER SERvICE- ITEMS RESIUUAlS

RESERVE PROPELLA~T AND SERVICE ITEMS FUEL-MAIN PRCPULSION UXluIZcR-MAI~ PROPuLSION POWER SUuRCE PROPELLANTS LUBRICANTS

wET STRUCTUKE

IN-r-LlbHI LU~St:)

FUEL VENT OXIDIZER VENT POWER SOURCE PROPELLANTS LUBR.ILANTS

MAIN PROPELLANTS FUEL

TAKEOFF,CLIMB,ACCELERATE CRUISE CESCE:NT LOITER LANC

OXIDIZER TAKEOFF,CLIMB,ACCELERATE CRUISE GESCENT LOITER,-LANe

TAKEOFF WEIGHT

-0. -0. -0. -0. -0.

o. -0. -0. -0. -0. -0.

687841.)

Table 15 (cont'd). Blended Body, Variable Sweep Baseline Weight and Sizing Data

140

Page 115: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

VOLUMES BODY S TKU C TUR E CREW ANC PASSENGER CCMPARTMENTS CARGO COMPAKTMENT LANDING GEAR dAYS PROPULSluN BAY WITHIN BODY WING CENTER SECTION FUEL(OR CCMMGN PROPELLANT} CONTAiNER OXIDIZER CONTAINER FUEL(OR CGMMON PRUPELLANT) INSULATION OTHER ~ODY VOLUME

TOTAL BOCY VOLUME

WETT EC AR EAS GROSS t30DY 00WER SURFACES(THERMAL PROTECTIDN) UPPER SURFACES(T~EkMAL PROTECTION) PERSONNEL COMPARTMENTS CARGU COMPARTMENTS

PLAN AREAS WING(UK LIFTING SURFACE)(GRUSS) EXPOSED ~ING AREA ~OOy MAXIMU~ CRUSS SECTION BASE VERTICAL SURFACES HORIlCNTAl SURFACES AIR INLET CAPTURE AREA

UNIT WEIGHTS WIN\;> VERTICAL SURFACES HORllUNTAL SURFACES BUD~ STRUCTURE teASIC) LIFTING SURFACE MAXIMUM LOAUING

DIMENSIONAL CATA kING

STRUCTURAL SPAN ROUT CHORD LENGTH THICKNESS kATIO

BUOY L ENGT H wIDTH HEIGHT

ENGINE SCALE FACTOR

CU FT 13429. 8645.

903. 2064.

o. 1079.

66506. O.

3858. 14290.

110774.

SQ. FT. 26d58.30

O. O.

4831.66 442.80

SQ. F T'. 3598.31 3598.31

795.01 147. 72

1303.23 O.

150.00

LB/SQFT . ~ 1.':'.0

6.65 o. 4.73

76.40

FEET

145.17 35.15

0.08

286.13 O.

26.19

7.00

CU M 380. 245. 26. 5 R. o.

31. 1882.

o. 109. 404.

3135.

SQ. M. 2495.14

o. o.

448.136 41.14

SQ. ~.

334.28 334.28 73.86 13.72

121.07 o.

13.93

KGI SGM ,.." """"' v • ..-

0.30 o. 0.21 3.47

METERS

44.25 10.71

'L~ •

87.21 O. 8.16

Table 15 (cont'd). Blended Body, Variable Sweep Baseline Weight and Sizing Data

141

Page 116: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

mm Take-off Speed = 160 kts. 700

)

:0 -0 0

600 0 M

..., ..c b.O .-CJ.)

~ '-'-0 500 I CJ.)

~ E-!

Planform Loading (psf)

) Figure 77. Double Delta - Planform Loading Effects

142

Page 117: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

AERODYNAMIC DeVICES WING + WING MOUNTEO CONTROL SURFACES VERTICAL SURFACES HORIZONTAL SURFACES FAIRINGS,SHROUDS AND ASSOCIATED STRUCTURE

BODY S TRue TUR E

, o. 5775.

o. 1389.

STRUCTURAL FUEL tOR COMMO~ PROPELLANT) CONTAINER o. BASIC ENCLOSING STRUCTURE PRESSURIZED CCMPARTMENTS SECONDARY STRUCTURE

INDUCED ENVIRUNMENTAl PRUTECTION COVER PANELS,NON-STRUCTURAl INSULATIUN

LANDING GEAR

MAIN PROPULSION ENGINES AND ACCESSORIES AIR INDUCTION NACEllES,PODS,PYLONS,SUPPORTS FUELIOR CCMMONlCONTAINERS AND SUPPORTS OXIDIZEK CONTAINERS ANO SUPPORTS PROPELLANT INSULATION FUEL SYSTEM OXIDIZER SYSTEM PRESSURIZATION SYSTEMS LUBRICATING SYSTEM

AERODYNAMIC ceNTROlS

nnT I: on ~.D Cr1IIDrl:c . £ - ~~, ~ ~ ~

ENGINE OR GAS GeNERATOR GNITS POWER SJURCE TANKAGE ANO SYSTEMS

POWER CONVERSION ANO DISTRIBUTION ELECTRICAL HYDRAULIC/PNEUMATIC

GUICANCE AND NAVIGATION

INSTRUMENTATILN

COMMUN lCAT ION

tNVIRONMENTAL CGNTRGLS EQUIP;'1ENT PERSONNEL COOLANT SYSTEM CCMPARTMEN{ INSUlATIGN

125213. 5193-r-

c.

U. C.

44374. 24200.

3817. n ' ~ ...

-(,. 12233. ~--1363.

o. 4001.

160.

2188. 1lH38.

3643. 1091.

183. 215(, •

o. 5274.

Table 16. Final Blended Body, Double Delta Configuration Data

143

o.

16j 5 72.

"----9C148.

5290.

3275 •

4735.

80D.

547.

2025.

76C>3.

Page 118: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

PERSONNEL PROVISIONS ACCOMMODATIONS FOR PERSONNEL FIXED LIFE SUPPORT FURNISHINGS AND CARGO HA~DLING

) EMERGENCY EQUIPMENT

)

)

CREW STATION CONTROLS AND PANELS

DRY STRUCTURE

DESIGN RESERVE

PERSONNEL CREW,GEAR AND ACCESSORIES CREw LIFE SUPPORT

PAYLOAD CARGO ---..". PASSENGERS

USEFUL. LOAD

RESIDUAL. PROPELLANT AND SERVICE ITEMS TArt"r; PRESSURIZATION GASES TRAPPEC FUEL TRAPPED OXIDIZER SERVICE ITEMS RESIDUALS

RESERVE PROPELLANT AND StRVICE ITEMS FUEL-~AIN PROPULSION o X I D IZ E R - MA I N P f<. 0 P U LSI 0 N POWER SOURCE PROPELLANTS LUBRICANTS

WET S TRUCTUR. E

IN-FLIGHT LOSSlS FUEL VENT OXIDIZER VI:NT POwER SOURCE PROPELLANTS LUBRICANTS

MAIN PROPELLANTS FUEL

TAKEOFF,CLIMB,ACCELERATE CRUISE DESCENT LOIT ER LAND

OXIDIZER t~ TAKEOFF,CLIMB,ACCELERATE CRLJISE DESCENT LOITER LAND

TAKEOFF WEIGHT

'7,3 74167.

0U8 82) 10953. 2239(".

5852. :z-05't4-1

-0. -0. -0. -C. -0.

13428. 4700.

308. 811Q.~

3U5.

300.

282298. ) .... ;,

o.

1275. 1250.

25.

48000. 13000. 35000.

49275.

1410. 213.

1088. ' .... :'1>.

o. 109.

250. o.

-0. 167.

83.

::<::<:l.?:l.? _ 1 -,..J-I'--''''''_ ..

5224. 1550.

-u. 3345.

330.

2(; 5340. 205340.

-0.

543797.}

Table 16 (cont'd). Final Blended Body, Double I;>elta Configuration Data

144

Page 119: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

VOLUMES BODY STRUCTUR E CREW AND PASSENGER COMPARTMENTS CARGO COMPARTMENT LANDING GEAR bAYS PROPULSION BAY WITHIN BODY WING CENTER SECTION FUEL(OR COMMON PROPELLANT) CONTAINER OXIDIZER CONTAINER FUEL(OR COMMON PRUPELLANT) INSULATION OTHER BODY VOLUME

TOTAL BODY VOLUME

WETTEC AREAS GROSS BODY LOI-lER SURFACES« THERMAL PROTECTION) UPPER SURFACESfTHERMAL PROTECTION) PERSONNEL COMPARTMENTS CARGO COMPARTMENTS

PLAN AREAS WING(OR LIFTING SURFACE) (GROSS) EXPOSED WING AREA BOOY MAXIMUM CROSS SECTION BASE VERTICAL SURFACES HORIZONTAL SURFACES AIR INLET CAPTURE AREA

UNIT WEIGHTS WING VERTICAL SURFACES HORIlONTAL SURFACES BODY STRUCTURE (BASIC) LIFTING SURFACE MAXIMUM

DIMENSIONAL DATA WING

S TRUC TURAl SPAN ROOT CHuRD LENGTH THICKNESS RA T 10

BODY LENGTH WIDTH hEIGHT

ENGINE SCALE FACTOR

LOADING

CU FT CU M 17359. 491'.

8645. 245. 903. 26.

1631. 46. o. O. O. o.

48449,., 1371. ":"0. -0.

3921. 111. 18244. 516.

99152.

SQ. FT. 34717.53

o. c.

4831.66 442.80

SQ. FT. 15423.46 15423.46

756.84 190.95

1210.41 o.

161.34

o. 4.77 o. 3.61

35.25

FEET

o. o. 0.05

275.75 o.

25.82

5.77

2806.

SQ. M. 3225.26

o. o.

448.86 41.14

SQ. M. 1432.84 1432.84

70.31 17.74

112.45 o.

14.99

o. 0.22 o. 0.16 1.60

METERS

o. o.

8 • 5 o. 7.87

Table 16 (oont'd). Final Blended Body, Double Delta Configuration Data

145

Page 120: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

T U~E ALTITUOE VELOCITY WEIGHT RANGE THRUST CRAG MACH Q GAMMA ALPHA CLAVAL COACT. coeOR CDO

CDL COF AlD PR SFC

1 PFC wA i'lF wax AE J FUEL OXIDIZER RIC DVOT VI

PTl CMl

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 19. 50. 3C5. 541916. 1.

372576. 71327. 0.27 110. 8.39 15.00 C.0793 0.0335 C.0335 0.0020

C.0227 0.t088 2.37 1.voe 0.980 1.00 3375. 101. -0. 3960.60

1881. -0. (0 47.BO 3.76 5944. 15.478 5.43

5 d. 5tOC. 659. 537930. 4. 3816Ul. 1(;0482. 0.60 444. 12.39

3.05 C.('738 O.Oi47 C.0147 0.u053 C.OOIC, 0.OC84 5.U 1.GOO 0.942

1.CO 33~2. leG. -0. 3960.0(; 5867. -G.00 141.29 9.91 5944.

15.599 5.43

101. 150li0. 846. 534049. 9. 342709. 133436. 0.80 535. 15.46

2.50 0.(604 C.0162 0.0162 C.(j(j69 0.0008 0.L085 3.74 '1.000 0.874

1.vu 2766. 63. -0. 3960.00 9748. - (j. U) 225.62 4.04 5944.

12.649 5.43

) 141. 2500u. 915. 531083. 14.

280069. 128628. 0.90 446. 14.0C 2.95 0.(,727 0.0187 0.0187 0.u085

(;.\.1014 0.(;(;88 3.89 1.000 0.828 1.( 0 2119. 64. -G. 3960.CC

12714. -l..'.0v 2<:: 1. 28 1.41 5944. 9.2~o 5.43

214. 37500. '::/tlts. ?L/V':JU. L?

203415. 117053. 1.02 323. 7.34 3.98 0.102(; ,(\.0235 0.0235 {J.OI08

0.0033 (;. vl;94 4.34 1.(;(.e 0.785 1.1.. U 1437. 44. -0. 3960.00

16707. -C.OO 126.27 1.17 956. 5.<;04 0.S8

248. 39500. 1085. 525602. 31. 2G265C. 134013. 1.12 353. 2.85

3.62 0.0937 O.U246 0.0246 0.0120 0.003.:> o.oe93 3.81 I.COG 0.778

1.02 1433. 44. -0. 3960.00 18195. -O.tO 53.88 2.61 986.

6.12U 1~ CO

287. 41700. 1162. 523949. 38. 196337. 145(;26. 1.20 365. 2.47

3.46 o.c906 0.0257 0.0257 0.0130 0.0035 a.GO'l2 3.52 0.999 0.774

1.03 139u. 42. -0. 3960.00 LS848. -0.00 50.18 1.77 1040.

1~

) 6.099 1.04

Table 16 (cont'd). Final Blended Body. Double Delta Configuration Data

146

Page 121: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

TI ME .ALTITUDE VELGCITY WEIGHT RANGE THRUST DRAG MACH Q GAMMA ALPHA CLAVAL COACT CDCOR COO

COL COF ALD PR SFC

) PfC WA wf wax AE

FUEl OXIDIZER RIC DVDT VI PH CMl

* * '" * * * * "* * * * * * * * * * * * * * * "* * * * * * * 382. 45CO\,j. 1356. 519888. 58.

20(859. 157560. 1.40 424. 1.38 2.90 u.C776 C.('241 c .• 0 241 v.Ol17

G.CC34 v.tG89 3.22 0.991 0.765 1.04 142 b. 43. -0. 396Ci.OO

23909. -C.00 32.55 1.91 i220. 6.828 1.21

46'1. 470uv. 1551.;. 516057. 79. a 562tl. 17CJ'::>67. 1.60 504. 0.88

2.'tb 0.C64<; 'j. (.1219 0.0219 0.0106 0.0028 L. UL 85 2.96 0.969 0.762

1.G5 1546. 46. -0. 396l-.00 2774J. -0.(,0 23.91 2.32 1495.

8.3,,(' 1. '::>2 '-

530. 48LCli. 1743. 512797. 97. 241f76. 1851i9. 1.Bu 608. 0.55

2.18 0.C534 0.0197 O.C197 0.0('96 (j. (-02(, C.l-vBI .2..71 0.951 0.763

1. -j6 1753. 51. -0. 3960.00 3100G. -C.lIC 16.79 3.25 1699. 1D.696 1. 73

588. 4870u. 1937. 5G9991. 113.

) 27102.. 2(;0267. 2.lie 726. 0.45

1.93 0 ..... '+45 (J.OI7S C.0179 C .0087 0.0015 0. Cu 77 2.49 0.932 0.770

1.06 2li(:3. 58. -G. 3960.00 33 8Do. -c. (,0 15.35 4.25 1899. 14.C86 1.93

674. 495(;C. 2421. 5lAC 13. 143. 353539. 24(678. 2.50 1<;91. u.7lf

1.47 0.0291 0.0143 0.0143 0.0070 0.0e07 O.l.O66 2.04 0.877 0.819

1.06 2849. b(;. -0. 3960.0C 3<;7 64. -O.lO 11.e5 7.05 2395. 29.605 2.44

7 3iJ. 50GOO. 2905. 498579. 168. 441661. 276989. 3.GO 1534. 0.21

1.16 O.GZC4 C. 011 7 0.0117 0.0(;56 C.O('J4 0.C057 1.74 0.816 0.935

1.Ub 4130. 115. -0. 3960.00 45218. -v.lO 10.85 10.51 2886. 62.145 2.94

757. 5040li. 33 7C. 494645. 182. 612723. 30624 '7. 3.48 2026. 0.29

U.96 C.<"'152 0.0(,98 C.()U98 0.0046 O. Cu02 O. CO 50 1.55 0.816 0.906

1.06 5390. 154. -0. 396U.OO 49151. -0.(0 17.01 19.77 3355.

123.046 3.43

Table 16 (cont'd). Final Blended Body, Double Delta Configuration Data

147

Page 122: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

TIME )" HR US T ALPHA

C0l PFC

FUEL PTl

AL TI TUDE DRAG

CLt~VAL COF WA

OXIDIZER CMl

VELOCITY MACH

COACT AU)

WF RIC

WEIGHT Q

COCOR PR

wax OVOT

RANGE GAMMA

COO SFC

AE Vl

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * 75 8.~

615203. 1.1.95

G. COQ2 1.06

493U8. 125.991

785. 568134.

0.94 C.00u2

1.J6 53279.

189.152

920. 400216.

1.15 0.0004

1.09 57487.

212.134

86b. ~utJ21.

1.36 t..O:J..Jo

1.12 61681.

254.445

';)28. 237151.

1.59 C.ODl8

1.16 66149.

303.448

1015. 188771.

1.76 0.0011

1. 2v 7128J.

379.324

tUill 108621.

3.6a C.0045

1.43 74167.~

179.812

;){., 5(.·J.

3(,62.79. r,• D151 V. 01,., 5C

54C9. -('.(,0

3.45

5640(;. 263 6l; 3.

('. C151 (.(.045

4977 • -L..CC

3.94

675tJL. Ib4vo5.

(,.\.;<:01 u.C044

3557. -t .l·O

4.41

7640u. 144574.

0.0245 0.(0-+5

2786. - U. (. 0

4.87

847liv. 121632. 0.0293 D. (T48

2225. -t..(;{;

5.32

913Uu. 113352.

<:.0328 0.(053

1836. -C.C0

5.77

'-U7454.] 89531. (;.(;678 0.0073,

lC43. -C.OC

5.51

3390. 3.50

C.vv97 1.55 155.

98.9;!

3674. 4.(,0

G.ULb5 1.76 142.

221.13

4363. 4.5(;

O.OC80 / 2.52 101.

264.62

4878. 5.UO

'j-;-OU7 3.16 so.

1b6.81

5396. 5.50

C.(;{'79 3.7C

64. 113.29

5913. 6.l.0

0.I..lL84 3.90

54. 61.11

5991.

L.0139 ~ \ 31. ) 8~

494488. 2039.

C.V097 0.816

-0. 19.16

49C518. 2009.

0.0085 0.816

-0. 18.15

48631J. 1496.

0.0080 0.816

-0. 12.36

482115. 1212.

C.UC77 0.816

-0. 9.7U

477648. 995.

('.(\(;79 0.816

-0. 7.11

472517:] 873.

L.CC84 0.816

-0. 4.81

46963C!.· ~-4r9~

c .,..'139 0.816

-0. 0.88

183. 1.67

C.0046 0.905

3960.00 3374.

199. 3.27

0.0038 0.900

396C1.CQ 3859.

222. 3.48

0.0032 0.912

3960.(.( 4345.

257. 1.96

0.0027 a .939

3961j.OO 4856.

310. 1.20

0.0023 0.977

396(1.0C 5370.

391. 0.59

0.0020 1.021

3960.00 5884.

4bO. 0.71-

0.0020 1.021

3960.00 5924.

Table 16 (cont'd). Final Blended Body. Double Delta Configuration Data

148

Page 123: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

TlME THR US T ALPHA

COL PFC

FUEL PH

ALTITUDE: DRAG

CLAVAL CDF VIA

OX ID I lER C 1-11

VELGCITY MACH

COACT ALD

\"IF RIC

WEIGHT Q

eDeOR PR

wax DVDT

RANG-E GAMMA

COt) SF!:

.0'1' A'E uJ. ~," VI ~

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * ,~-,

~ as 706.·

3.&9* 0.tO .. 5*

1.44* 166051. 179.796*

5149. 22240.

2.n 0.0(,29

1.30 166829. 130.5;'5

526L. 21178.

3.40 0.004':'

1.32 167517 •

75.857

5372 • 19231.

4.(;0 C.0058

1.34 168111.

42.3l:!6

1853 ... 4.27

0.V07L) 1.32

168b50. 25.5J5

559u. 19258.

4.1l7 O.0U68

1.26 16;188.

16.d99

56<;4. 19521.

3.91 0.0007

1.2(; 169722.

10.951

\ 112231~ 897(,6.~

C.0679* C.C074* 1044.· -v.tO

5.51 *

1030U(;. 74982. 0.0541 0.(,C62

1058. -O.tO

5.16

102500. 73174. C.('644 0.0060:.

940. -0.( 0

4.66

102(,00. 73850. 0.0762 0.0069

835. -D.Ot!

00 .'1 '

76649. (J.0868 c,. 0(, 74

794. -o.oc

3.7C

930(JO. 80920. O.C8b5 U .0078

831. -0.00

3.26

86600. 85863. 0.C880 O.()G82

871. -O.lO

2.81

5991 ... 6. 0.0

lJ.0139* 4.8_-1'"

,."- --.., 24. *:

5463. 5.50

C.0113 4.79

6. -70.36

4965. 5.00

0.0131 4.94 ,

6. -4.43

4467. 4.50

G.0159 4.92

S. -4.66

4. (;C' U.0182

4.76 5.

-28.35

3453. 3.50

0.(;191 4.53

5. -56.48

2947. 3.00

O.02es 4.28

5. -63.70

371745,. 419. •

0.0139 • 1.000 •

-0. -1.15· .!-~

376967. 430.

0.0113 1.000

-0.--4.04 .

376280. 363.

0.0131 1.GOO

-0. -4.42

375686. 301.

0.0159 1.000

-0. -4.64

273. 0.0182

1.0CO -,J.

-4.76

374608. 275.

0.0191 1.000

-0. -4.77

374075. 271.

0.0205 1.000

-0. -5.02

-433fw

0.0020* 0.975·

3960 .00 *~ '" 5923'. *

4458. -0.74

0.0023 1.016

3960.00 5412,.

4555. -0.05

0.0027 0.917

3960.00 4904.

4640. -0.06

0.0032 0.949

3960.00 4394.

-0.41 0.0038

0.936 3960.00

3884.

4783. -0.94

0.0046 0.941

396(;.00 3378.

4837. -i.24

0.0056 0.968

3960.00 2875.

Table 16 (cont'd). Final Blended Body, Double Delta Configuration Data

149

?~tI *i511# of Cruise

Page 124: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

(

)

)

TIME THRUST ALPHA

CuL PFC

FUEL PTl

Al TI TUDE DRAG

CLAVAL C[)F 'riA

OX ID I ZER CM1

VElUCITY MACH

COACT ALD

WF RIC

WEIGHT Q

CXOR PR

W[)X DVOT

RANGE GAMMA

COO SFC

AE VI

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * ,5786. 13851.

3.63 0.0062

1.15 17C339.

7.43d

'j 877 • 14<;43.

3.36 0.0057

1.10 170855.

5.337

5<;72 • 15<;77.

3.18 0.0052

1.06 171386.

4.338

6e 92. 1216:;.

4.3v U.C038

1.u0 172143.

4.068

&~U~ ~'t(.

4.24 0.003\..

1.00 172502.

4.618

7140. 60G51.

4.37 C.0019

1.tO 185671.

4.618

783 d. 59441.

4.17 0.0018

1.(;0 194892 •

4.618

7850~.

92299. 0.u871 0.(.086

447. -O.lO ~.35

69(:00. 99540. 0. \.;870 G. v{;90

417. -",.I)IJ

I.!:: 8

57500. 106354.

O.L893 0.(;1:.94

450. -\.i. 00

1.39

45(;00. 80967. 0.11 04 C.lJu98

5j5. -li. t l

1.l C

40UOG. TY(!vo.

u. Ie 71 0.01.97

620. -v.00

1. L (;

401.06. 6l 092. 0.1066 0.0103

517. -c. lIO

1.C.O

40(J(j\,;. 59441. 0.1015 0.0103

516. -o.ou

1.00

244~.

2.50 v.0218

4.00 6.

-9('.04

1941. 2.00..,

0.0235 3.71

5. -105.93

1453. 1.50

U.0Z57 3.47

6. -121.75

968. 1.CO

0.v2.42 4.56

7. -!:l2.94

872. V • .::tU~

(;.1.;212 5.04

B. -95.70

87L.. ",.90

0.<.,175 6.10

13. -95.70

872. (.;.9-)

0.0173 5.87

13. -95.7u

373453. 275.

0.0218 0.888

-D. -5.58

372941. 275.

0.0235 0.937

-0. -5.55

372411. 268.

e.0257 0.979

-0. -5.13

371649. 217.

0.0242 1.000

-0. -3.21

--/\ ( 3712:5. )

....... L-L~

0.0212 1.000

-0. -1.85

358125. 223.

0.0175 1.000

-0. -1.85

-(348705. "-. 223

O.1iT73 1.000

-0. -1.85

"'

4iH8. -2 •. 11

0.007C 1.541

3960.00 2374.

4911. -3.13

0.0(;87 1.296

3960.00 1874.

4937. -4.81

0.0112 1.316

3960.00 1378.

4961. -4.91

0.0106 2.030

3960.00 968.

4968;' --cT.--;;r<;T

0.0(,85 2.6C 1

3960.00 968.

4968.~

-6.30 0.0(152

0.789 3960.00

968.

4968. ~ -6.30

0.0052 0.790

3960.00 968.

\ \ Table 16 (cont'd). Final Blended Body. DoUble Delta ,Configuration Data

150

Page 125: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

TIME AL TI TUlJE VELOCITY WEIGHT RANGE THR UST DRAG MACH Q GAMMA ALPHA CLAVAL COACT COCOR COO

COL CDF ALO PR SFC PFC WA WF wax '.' AE

FUEL .. OXIDIZER RIC Dvor VI PTI CM1

• * * * * * • * • * * * * • * * * * * * • * * * • * * * * • 7939. 25000. 813. 347733. 4982.

13637. 90686. 0.80 352. -11.80

2.58 0.C625 0.0167 0.0167 0.0069

0.0009 0.(v89 3.74 1.000 3.988

1.00 1104. 15. -0. 3960.00

1960t3. -O.L 0 -166.25 -0.57 968.

8.325 1. (0

8C79. 5(UO. 659. 344403. 499Q ..

14499. 96518. v.60 444. -11.68

2.08 o. (;492 0.0141 0.0141 0.0053

0.0004 c. LO 83 3.49 . 1.000 8.116

'1 ~ 1.(,0 2047. 33. -0. 3960.GO

, / 199394. -v.ClO -133.34 -1.15 968.

15.5S9 l.lO

'" 8270. 50. 202. 338550. 4999. "'-

3185. 1.., o'/.n 0.20 486~ 4.00 .L' v..,.ve

2.v8 0.0492 O.U141 0.0141 0.UU53

0.OU04 O.b083 3.49 I.Ot,;o 1. I~/j

1.00 340. 2. -0. 3960.00

205246. -o.tO o. -1.15 968. ~~ 15.082 1.lO '!;;,,~

II )

Table 16 (cont'd). Final Blended Body, Double Delta Configuration Data

151

Page 126: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

17717 J TAKE-OFF SPEED = 160 KTS.

900

880

-;9 0 860 0 0 ~

~ be .... ~

840 It:: 0 I

Q)

'@ E-t

) 820 ' .

"

800 100 120 140 160 180 200

Wing Loading (psi)

Figure 78. Variable Sweep - Wing Loading Effects

)

152

Page 127: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

AERODY~AMIC DEVICES W I·o,JG + wING MOUNTEiJ CONTROL SURFACES vEkTICAL SURFACES HURILCNTAL SuRfACES FAIKINGS,SHROUJS ANO ASSOCIATED STRUCTURE

BOey STRUCTURE

73132. 10382.

o. 1254.

STRUCTuRAL FUfL(OR CC~MCN BASIC tiKLOSING STKUCTURE PKESSUKIlEC CCMPARTMENTS SECONUARY STRUCTURE

PROPELLANT) ~ONTAINE~ o. 154141.

5193. o.

INCUCED ~NVIRC~MENTAL PR~TECTION COVER PANElS,NCN-STRUCTURAL INSULATICN

LANDING GEAR

MA IN PROP uL S IJJN ENGINES AND ACCESSORIES AIR IN[)ULTION NACELL~S,PUJS,PYLONS,SUPPURTS FUEL(LR CGMMCN)CONTAINERS AND SUPPORTS OXIDIZER CONTAINERS ANO SUPPORTS PkOPELLANT INSULATIUN FUEL SYSTtM OXI0IZE~~ SYSTEM PRE~SU~IlATICN SYSTEMS LUdRICATING SYSTEM

AEROUYNAMIC CONTROLS

& ~ "'... .~ v ....

ENGINe OR GAS GENERATOR UNITS PUWER SOUkCE TANKAGE AND SYSTEMS

POWER CCNVERSION AND DISTRIBUTION ELECTRICAL HYDRAULIC/PNEU~ATIC

GUIDANCE AND NAVIGATION

INSTRUMENTAT ION

CCMMUN ICA TlON

ENVIRONMEhTAL CC~TROLS EQUIPMENT PERSCNNEL COOLANT SYSTEM COMPARTME~T INSULATION

o. o.

72820. 29838.

5149. o.

-0. 14421.

2057. o.

5923. 160.

2848. 1748.

5856. 1620.

282. 2150.

o. 5274.

Table 17. Final Blended BodY,Variable Sweep Configuration Data

153

84769.

159334.

o.

25687.

130367.

8229.

4"lq,;

7477.

800.

514.

2025.

7707.

Page 128: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

PERSONNEL P~JVISIONS ACCCMMODATIO~S FOR PERSONNEL FIXEJ LIFE SuPPORT FURNISHINGS AND CA~GU HANDLING EMERGENCY EQLIPMENT

CREW STATIUN CONTROLS AND PANELS

DRY STRUCTURE

DESIGN RESEKVE

PERSO,~NEL

CREW,GEAR ANC ACCESSURIES CREW LIFE SJPPURT

PAYLOAD CAKGO, PASSENGERS

USEFUL LGAU

RESIDUAL PkJPELLANT A~O SERVICE ITEMS TAN~ PRESSURIZATIO~ GASES TRAPPED FUlL TRAPPED OXIDIZER SERVICE ITEi"\S Rt:SIDUALS

RESERVE PR0PELL~NT AND SERVICE ITEMS FUll-MAIN PROPULSIDN OXIDIZER-MAIN PROPULSIUN POW ER SUURCE fiR GPElL AIHS LUoR I CAiH S

WET STKUCTURE

I N- F L I G H T L D'S S E S FUEL VENT OXIDIZER VENT PUWER SOURCE PROPELLANTS LUBRICANTS

MAIN PROPELLANTS FUEL

TAKEUFF,CLIMB,ACCElERATE CRUISE C E SC EN T LJITER LMW

OXIDIZER TAKEUFF,CLIMB,ACCELERATE CRUISE DESCENT LO ITER LANfl

TAKEOFF wEIGHT

100563. 222640.

19372. 23033. 4499.

-0. -0. -0. -0. -0.

4700. 308.

8116. 305.

1250. 25.

13000. 35000.

384. 1748.

o. 175.

o. -0.

199. 83.

2769. -0.

3989. 330.

369889.

-0.

«

13428.

300.

445232.)

o.

1275.

48000.

49275.

2307.

282.

497096.)

7088.

369889.

874073.)

Table 17 (cont'd). Final Blended Body, Variable Sweep Configuration DaUB.

154

Page 129: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

J

VOLUMES BODY STRUCTURE CREW AN~ PASSENGER CCMPARTMENTS CARGO CCMPARTMENT LANDING GEtR BAYS PROPULSIUN BAY WITHIN BuOY ~ING CE~TER SECTION fUEL(OR CuMMON PROPELLANT) COI'HAINER OXIDIZER CONTAINER fUEL{OR COMMeN PROPELLANT) INSULATION OTHER BJOY V0LUME

TOTAL BODY VOLUME

WETTED AREAS GROSS bODY LOWE~ SURFACES(THERMAL PRUTtCTION) UPPER SURFACES{THERMAL PROTECTION) PERSCNNEL COMPARTMENTS CARGO CUMPAKTMENTS

PLAN AREAS WING(OR LIFTING SURFACE)(GROSS) EXPJSEU wING AREA tiUOY MAXIM0M CRUSS ~ECTIUN

B,t\S E VERTICAL SURfACES HURIZUNTAL SURFACES AIR INLET CAPTURE AREA

UNIT WEIGhTS T .~ ., ~

VERTICAL SURFACES RORIlCNTAL SURFACES BOCY STRUCTURE (gASIC) LIFflNG SURFACE MAXIMUM LUADING

DIMENSIQNAl CATA WING

STRUCTURAL SPAN RUUT CHURD LENGTH THICKNeSS RATIl]

80DY LENuTH WIDTH HEIGHT

ENGINE SCALE FACTOR

CU fT 15681. 8645.

903. 2622.

o. 2048.

7 87/ 20 • ,r/ '-0.

; 4622. ;

~-\ 18031. .l!>

\

""-13,)771.

SQ. FT. 31362.00

o. o.

4831.66 442.80

SQ. FT. '6827.70 6827.70

928.32 17 2.49

1521.76 o.

198.92

LB/SQFT ,r. -'1 ~~- . 6.82 o. 4.91

83.21

FEET

199.96 48.42

0.08

309.18 O.

28.95

9.47

CU M 444. 245. 26. 74. o.

58. 2468.

-0. 131. 510.

3956.

SQ. M. 2913.53

o. o.

448.86 41.14

SQ. M. 634.29 634.29

86.24 16.02

141.37 o.

18.48

KG! SGM n /.0 ~

0.31 O. 0.22 3.77

METERS

60.95 14.76

2

94.24 o. 8.82

Table 17 (cont 'd) • Final Blended Body. Variable Sweep Configuration Data

155

Page 130: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

TPIF. ALTITULlE VtL,JCI TV WEI;HT RANGE THRUST iJK.:~G t-14Ct-t i,J GAMMA IILPHA Cl:'VAL COACT COCUR COO

) COL COl-' AL) PR SFC , PFC (iA flF wax AE

fUEL, LJXI U ILEf{ :<../C DVOT , VI PTl GMI

* * * * * * * * * -* ::~ * * * * * * * * * * * * * * * * * * * 11. 50. 290. 371233. O.

.)IGC36. 731:>C8 • 0.20 100. 8.84 1:;.00 0.17<;8 0.05:'.2 0.0:>b2 0.0166

0.0277 0.011 <; 3.20 1.000 0.979 1. J J 5519. b 6. -0. 3960.00

2E40. -O.CO 30. ,;1 2.62 1042. 15.':':)2 1.00

'-55. SOC O. 65.;1. 3650Sli. 3.

f>Zb22). 100934. 0.60 444. 14.08 :; .11 0.1::'>30 0.021 7 0.0217 0.0068

O.CO">:> 0.0114 7.76 1.000 0.942 1.00 :),+:;8. 164. -0. 3960.00

dS82. -O.JO 160.1'~ 11. 71 1042. 15.5~9 1.00

90. 15000. 846. d59846. 7. 5t2405. 135367. O.dO 535. 19.75

4.27 0.13(:5 O. 0241 0.0241 0.0088 o.con 0.0116 5.67 1.000 0.874

1.uO 4540. 13 7. -0. 3960.00 142.26. -0.00 285. ':14 5.12 1042. 12.b49 1.00

) 121. 2:;00,). 91S. d56060. 11. 459bO~. 14ld26. O.~O 446. 18.35

5.22 0.1~44 0.0303 0.0303 0.0112 :J.C070 J.Ol.21 5.43 1.000 0.828

1.00 3477. 106. -0. 3960.00 1 Q (11 ".2 -,\ Ilr) .., O:..} ""\~ , 0 I 1 "I . ..., .LI.,.:VLJe v.vu £.. U u • ..,;u ,l..U'"T l.v..,.c...

9.23b 1.00

173. 37500. 988. 850917. 20. 333819. 1bC710. 1.02 323. 9.13

7.61 J.2345 0.0474 0.0474 0.0146 J.Cl"7 0.:)132 4.94 1.000 0.785

C.':I9 235>3 • 73 • -0. 3960.00 2315..,. -0.00 156.72 1.46 97-0.

5.':164 1.00

205. 39500. 10dS. 848974. z:;. 332141. 1903E5. 1.12 353. 3.64

7.27 0.2165 0.0513 0.0513 0.0165 0.0217 O.OUI 4.22 1.000 0.779

i.03 2549. 72. -0. 3960.00 25C':I9. -O.vO 68.90 3.34 922. 6.114 0.92

235. 41100. 1162. 346865. 30. 321416. 214419. 1.20 365. 3.19

7.28 0.2093 0.0559 0.0559 0.0182 O.024b 0.0131 3.75 1.000 0.774

1.0 4 2276. 69. -0. 3960.00 27208. -0.00 64.74 2.28 936. 6.081 0.92

)

Table 17 (cont'd). Final Blended Body, Variable Sweep Configuration Data

156

Page 131: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';
Page 132: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

J

TIM£:. THRUST ALPHA

l-iJL PfC

FUt:l PTl

ALTITUDE DRAG

CLAVAL C'JF ·r/A

OXliJIlEK CMl

VElOC lTV MACH

COACT ALD

wF K/C

WEIGHT Q

CDCOR PR

wax OVOT

RANGE GAMMA

COO SFC

AE Vl

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * bO~ •

801317 • 2.06

0.C015 1..13

t3820. LiS.n,;,

bYte 74'71'70.

2.11 0.0015

1.15 09699.

189.008

(;74. 551C61.

2.90 0.0028

1.24 76IBl.

i 211.54J

728. 442:43.

3.65 0.0042

1.35 e3022.

2:2.531

BuO. 36568 7.

4.53 O.(j062

1.49 90th.l8.

2'n.e tlO

900. 319234.

0.C080 ~.64

10C298. 36t.G91

903. 3013 24.2 •

5.57 0.0090

1.69 100563. 340.906

50500. 34E620. 0.0358 0.OC72

7045. -J • ( ()

-3.38

5':1400. 311JJI.

0.0.359 0.OOc6 6563. -0.00

3.85

67500. 2 11353<;. 0.0475 O. CC70

"t8 <; 8. -0.00

4.26

16400. 214910.

0.0577 0.;)C75

4025. -0.00 4.64

d4700. 2C4767.

0.0089 0.OC87

3430. -0.00

4.97

91300. 20d752.

0.0768 0.0105

31 C:i. -0.CO

5.30

':12689. 208630. 0.0815 0.0110

29<;5. -o.UO

5.25

3390. 3.50

0.0163 2.20 201.

813.48

3874. 4.00

0.0148 2.43 187.

193.62

4363. 4.50

0.0155 3.06 140.

229.46

4878. 5.00

0.0169 3.42 115.

143.08

5396. 5.50

0.0196 3.52 99.

96.24

5913. 6.00

0.0228 3.37

91. 54.67

5919. 6.00

0.0243 3.36 87.

442.25

810253. 2039.

0.0163 0.825

-0. 17 .14

804374. 2009.

0.0148 0.825

-0. 15.89

797891. 149b.

0.0155 0.825

-0. 10.72

791051. 1212.

0.0169 0.825

-0. 8.32

783265. 995.

0.0196 0.825

-0. 6.04

773774. 873.

0.0228 0.825

-0. 4.30

773509. 819.

0.0243 0.825

-0. 1.76

142. 1.50

0.0076 .0.905

3960.00 3354.

160. 2.86

0.0066 0.900

3960.00 3838.

187. 3.01

0.0058 0.912

3960.00 4313.

228. 1.68

0.0051 0.939

3960.00 4813~

289. 1.02

0.0046 0.977

3960.00 5313.

382. 0.53

0.0042 1.021

3960.00 5814.

385. 4.29

0.0042 1.021

3960.00 5811.

Table 17 (cont'd). Final Blended Body, Variable Sweep Configuration Data

158

Page 133: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

()

,r ')

/

T IMc THRUST ALPHA

CDL PFC

FUF.:L PTl

ALTITUDe l)RAG

CLAVAL CDF WA

OXIDIZER GMl

VElOC I TY MACH

COACT AlD

wF RIC

WEIGHT Q

CDeOR PR

wax DVDT

RANGE GAMMA

COO SFC

AE VI

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 514' •

21l92d. • 5.66 •

0.L09j· 1.70·

323203. 340.20d •

5232. 47S57.

5 • .3 :) 0.((;84

1. SC) 324360. 183.132

5314. 44679.

(:.20 0.0115

1.6.2 32541<3. IDS .S4 2

53n. Lt07't2.

7.27 0.0164

326.313 • ;)0. ·'vv

:5 463. 36(5).

8.64 0.02'1-5

1.68 :3 27.C27.

; 1. 362

5525. 30t54.

10.50 0.0392

1.70 3275(:5.

15.945

5590. Z" 738.

lC.04 0.0395

1.54 328(84.

10.574

<..9:>92.. 2111328. * o .OdZ8 * 0.0111·

3014. • -G.ro

5.24 •

"5)00. lSU,j20. 0.0801 J.U1UO

2234. -0.00

4.88

945CO. 14"188.

0.')953 0.0105

20C7 • -0.01)

4.3>3

940()0. 1533'77. 0.1156 0 .. (J1l5

1778. -O.CO - ,,-. .• v

93500. 1£::2725. 0.1430 0.0130

1550. -0.(;0

3 • .39

93JCO. 178937.

0.1843 0.0152

1323. -0.00

2.88

86600. 180468.

0.1875 0.0150

1327. -0.00

2.51

5919. • b.OO

0.0246 • 3.36 • 57. •

5434. 5.S0

0.0231 3.47

14. -52.04

4938. 5.00

0.0271 3.51 12.

-6.14

4443. 4.50

0.033 7 3.43 11.

-6.63

394':3. 4.00

0.0442 3.25

9. -7.47

3453. 3.50

O. )620 2.97

8. -8.74

2947. 3.00

0.0634 2.96

8. -99.07

:;50869. 819. •

0.0246* 0.825 •

-0. 1.76 *

549712. 619.

0.0231 0.825

-0. -5.67

548655. 523.

0.0271 0.825

-0. -6.09

547760. 434.

0.0337 0.825

-0. -6.57

547046. 351.

0.0442 0.825

-0. -7.39

546508. 275.

0.0620 0.825

-0. -8.64

545989. 271.

0.0634 0.825

-0. -7.80

4':>14.

0.0042" 0.968"

3960.00 " 5809. •

4595. -0.55

0.0046 1.016

3960.00 5333.

4665. -0.07

0.0051 0.977

3960.00 4819.

4726. -0.09

0.0058 0.949

3960.00 4300.

4775. -0.11

0.0066 0.-936

3960.00 3774.

4813. -0.14

0.0076 0.941

3960.00 3236.

4847. -1.93

0.0090 0.968

3960.00 2742.

Table 17 (conttd). Final Blended Body. Variable Sweep Configuration Data

159

·Start of

Cruise

Page 134: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)'

)

lIME ThRuST pLPHi-I

COL PFC

fUEL PTl

ALTITUDE uKAG

CLAVAL COF

OXIJIIER CMl

VELOCITY MACH

COACT ALl)

,oiF R/L.

WEIGHT Q

CDCOR PR

wax OVDT

RANGE GAMMA

COO SFC

AE VI

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\..:5o.

272C? S.27

O.G377 1.39

32Bt7o. 7.30"t

572(;. 27644.

8.60 0.036<;

~.26

329508. 5.2Bd

5tOl. .:::896"t.

" ... ' Ce,-'-

0.0.383 1.13

33C2<;7. 4.30';

5S 13. 16C82.

7.63 0.G190

1. UO 331457.

4.068

5<;68. 1348b.

7.24 0.0136

1.00 332092.

4.618

oS68. 61846.

6.87 0.0057

1.00 3456t:3.

4.618

7666. 60S18.

c.64 0.0053

1.00 355126.

4.618

7E5CO. 181416.

0.18Su 0.0145

755. -0.(,0 ~.12

69000. 185030.

O.LE54 D.(H42

702 • -v.LO

1 • ()s·

:>7:>LiO. 19lCt:5.

0.1900 0.0140

752. -o.uo

1.20

45000. 100945.

0.2365 0.0138

861. -0.00 1.00

40000. 8963L. 0.2295 0.0135

10C8. -0.00

1.00

40000. 61846. 0.2281 0.0141

480. -0. (.0

1.00

40000. 609ltl. 0.2204 0.0140

478. -0.00

1.00

2442. 2.50

0.0629 2.95 11.

-121.25

1941. 2.00

0.064G 2.90

9. -134. d4

1453. 1.50

0.0682 2.79 10.

-150.2Q

968. 1.00

0.0470 5.03 11.

-75.02

872. 0.90

0.0383 5.99 12.

-80.51

872. 0.90

0.0264 8.64 14.

- 80.51

872. 0.90

0.0260 8.47 13.

-80.51

545197. 275.

0.0629 0.913

-0. -7.52

544504. 275.

0.0640 0.954

-0. -7.07

543776. 268 •

0.0682 0.992

-0. -6.33

542616. 217.

0.0470 1.000

-0. -2.91

541980. 223.

0.0383 1.000

-0. -1.56

528410. 223.

0.0264 1.000

-0. -1.56

518947. 223.

0.0260 1.000

-0. -1.56

4876. -2.85

0.0107 1.388

3960.00 2253.

4901. -3.98

0.0129 1.207

3960eOO 1758.

4922. -5.94

0.0159 1. 239

3960.00 1232.

4944. -4.44

0.0142 2.405

3960.00 9-68.

4953. -5.30

0.0112 3.311

3960.00 968.

4953. -5.30

0.0066 0.790

3960.00 968.

4953. -5.30

0.0066 0.790

3960.00 968.

Table 17 (cont'd). Final Blended Body. Variable Sweep Configuration Data

160

Page 135: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

-)

TIME ALTITUDE VELOCITY WEIGHT RANGE THRUST DRAG MACH Q GAMMA ALPHA CLAVAL COACT COCOR COO

CDL COF ALD PR SFC PFC WA WF WOX AE

FUEL OXIOIlER RIC ovaT VI PTl CMl

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 7tl03. 25000. 813. 516476. 4972.

13E03. 91727. 0.80 352. -8.00

4.31 0~1378 0.0248 0.0248 0.0088 0.(;037 0.0122 5.56 1.000 6.170

1.00 1774. 24. -0. 3960.00 357596. -0.(;0 -113.21 -0.39 968.

13.325 1.00

8014. 5000. 659. 508464. (,997.

13657. 90927. 0.60 444. -7.42 3.31 0.1079 o. 0195 0.0195 0.0068

0.0014 0.0113 5.53 1.000 13.763

) 1.00 3319. 52. -0. 3960.00

365b09. -0.00 -85.09 -0.73 968. 15.5'::19 1.00

8203. 50. 261. 503964. 4997. 5127. 14534. 0.26 486. 4.00

3.31 0.1079 0.0195 0.0195 0.0068 . ~~~ , 1 1 0

U.UU1't U.Ul1~ ??~ ".vvv ~."'.LV

1.00 263. 2. -0. 3960.00

370108. -0.00 o. -0.13 968. 15.359 1.00

:', J Table 17 (cont'd). Final Blended B'ody, Variable SWeep Configuration Data

161

Page 136: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

9.0 PROPULSION EVALUATION CRUISE MACH> 8.0

See Report GD/C-DCB-66-004/2A.

)

)

162

Page 137: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

10.0 COMPARISON OF CONFIGURATIONS

From the data shown in Sections 6.0, 7.0, 8.0 and 9.0, a comparison of the delta wing, variable sweep,blended body and scramjet configurations can be made. Each of these sections is consistent within itself; however, continuous updating was done throughout the study so that much of the data shown in one section cannot be compared directly with that of another section. Near the end of the Phase I studies, all configur­ations were checked for relative consistency and revised computer runs were made. These are the full computer printouts shown in Tables 10, 12, 16, 17 and 2l. Data from these tables are summarized in Tables 22 and 23.

Table 22 shows the final data for the four candidate configurations for the cruise Mach number regime from 3 to 8. The take-off weight of the blended body/variable sweep configuration is considerably higher than that of the other three and this con­figuration is therefore eliminated from further consideration.

Table 23 shows the four remaining competitive configurations of delta wing, variable sweep wing, double delta-blended body and scramjet. Included in Table 23 is the sensitivity to take-off weight of various key parameters. For the delta wing configuration, it can be seen that the addition of a passenger plus baggage (weight = 215 lb) wlll Increase the take-off weIght by 1800 tb ( 8. 5:1). Also, It can be seen that take-off weight is 5.5 times as sensitive to an increase in subsonic range com­pared with an increase in hypersonic range (830 compared with 150).

Before selecting which of these configurations would be best for the Phase II studies, it was necessary to consider sonic boom, mission analysis and cost effects. Selection was therefore held in abeyance pending the outcome of the results from these other study areas. (Final selection is made in Section 14.0.)

199

Page 138: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

l\:) o o

'----'

, V ~

BLENDED BODY

DELTA VARIABLE DOUBLE VARIABLE WING SWEEP WIN,G DELTA SWEEP

~ ~8- ~ -c:-> WING/ PLAN WADING tH/ - 1::::::>/- -/35 130/82

ASPECT RATIO 1. 45 1. 47/6. 5 1.5 .67/6.1 THICKNESS .06 .05 - -SWEEP 70° 70° 80°/65° 80°

BODY FINENESS 12 12 - -

PROPULSION M=0-3 TURBOF ANRAMJET

CRUISE MACH NO. 6-7

TRAJECTORY TRANSONIC L1P ~ 3 PSF (M = 1. 4 @ 45,000 FT) q 2000 PSF

INLET PRESS. 130 PSI DESCEND ::::: L/D MAX LOITER M = • 9 <g 40, 000 FT

100 N. M. + 1,000 SECS.

TAKE OFF WEIGHT (LB) 537 040 602,483 543,797 874--,-0.-73

Table II . Com parison of Configurations, Cruise Mach 3-8

Page 139: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

t-.:> o ......

L

WING LOADING

CRUISE MACH NO.

TAKE OFF WEIGHT ~----

SENSITIVITY TO WTO:

RANGE (LB/N.M.)

PASSENGER (LBI PASS)

SUBSONIC RANGE (LBI N.M)

SUBSONIC LOITER (LB ISE:C)

Table III.

\~

DELTA VARIABLE WING SWEEP

~ -<Bt 81 125

6-7 6-7

537,040 602,483

140 158

1,700 1,900

830 660 90 72

Final Configuration Data

J

BLENDED

BODY SCRAMJET

~-::}- ~ 35 35

6-7 8

543,797 846,927

145 200

1,750 2,400

920 1,300

98 138

Page 140: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

11.0 MISSION ANALYSIS

The final objective of the Phase I studies is to select configurations for detailed anal­ysis in Phase II. Number of passengers, cruise Mach number, and design range are important parameters to be selected for these Phase II configurations. A mission analysis was conducted to:

(a) Consider the implications of a hydrogen-fueled transport.

(b) To define, or at least to bracket, the design range, the cruise Mach number, and the passenger capacity of the vehicle.

11.1 SELECTION OF DESIGN RANGE

The range for which the vehicle should be designed is principally determined by the geographic/passenger densities of the future.

11.1.1 PASSENGER TRAFFIC 1965-2000. Lockheed, Reference 12, as part of their study of a suborbital global transport system, completed some extensive pro­jections of future world population, gross national product, and trade for each country from 1965 to 2000. Lockheed's assumptions and projections form the basis for many of the conclusions of this study, since their data appeared to be the most consistent and extensive set available.

Figure 96 presents world total annual two-way air traffic from 1980 to 2000. The low and hfgh estimates are 95% confidence limits about the mean. As can be seen, long range projections are subject to an order of magnitude variation. The total traffic, P ,between countries is assumed to be proportional to the products of their per caPitaTproducts (GNP divided by population) and the sum of the imports and ex­ports (E A + E

B) between the two countries.

i. e., P T "" (PCP 1) (PCP 2) (E A + EB

)

By studying actual data from 1953 - 62, Lockheed derived a correlation coefficient of 7.3 x 10-5 , thus

PT

= 7.3 (PCP1

) (PCP2) (E

A + E

B) 10-

5

giving the annual two-way traffic in millions of passengers.

202

Page 141: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

200 11--1-.--. -·I~·t:-;-III--II-IIII ~:- ...... t-.1

• ~ ~-~=~-~~ ---+-----

~~_I--_L .. f-.-- . ~ - - ... ~- - -,: _ L_~_._ _ .. _. ___ _ ,

p:--.:=-"-~c , " ._~~:. C;T-:-: ==-j~_~ ~--~-~ , .. _--- ---.... ---

, -------;.-~~-I--- - -'--S~- ~ I - _~_ .• _!~._L ......... _. _~-~:.-.~ , I ,: ': i . -=-=-~-~ ~:~.=-:~ .... ~---.... -~.-~ 100 + 20 HIGH

.:""'" ...... • •. --'- -··:;':'·i-cc. ::' t..~ .. ~: .. ,i.E·. : .. c.~ C 0

.. , ::_z- .~-...• _._ .. . -~;.i'::.:'-: ~; .:,. c.

• - _ _ _ *_. , .• _._ _ _ : -4 .~: ~7.. -: .' ~ ... 'n

~ ~

80 .'= '."'"'. . .... _ .i-~ === -:-"".-~ ~:'~ =.:~L···

E-~ -=-::~.E:!: C:-~.:=~..:..": .. -:':-~: .-:: ~ ;==_'~:i.·: _

u 'n CH CH cd ~

E-i MEAN

) ~ :?:

I 0

~ r-!

~ ~ "" r-! cd .p

~ 'D r-! ~ 0 ~.~ --

, , , :7 .,-

V I

! , If I ,¥ ! , '.-I', , !

I I , , , I I

i I I...,. I I , ! !

10 1960 1970 1980 1990 2000

YEAR

) Figure 96. World total annual two way air traffic

203

Page 142: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

It is interesting to note that due to a lack of data, Lockheed excluded from ') its estimates the Soviet Union, the European Communist Block, and Communist China

which represent about one-third of the world's present population. It is possible that by the latter part of this century there will be significant traffic between the Free World and parts of the excluded areas. Table 24 shows the countries included in the various world areas by Lockheed and the selected principal terminal in each area.

)

At this time in the study, it was not known what the economics of a hydrogen­fueled, commercial transport might be. It was peSSimistically assumed that, at least in the early phases of operation, this type of a commercial transport would mainly benefit businessmen and government o(ficials who would be attracted by short trip times. (This basic assumption has been questioned and will be reviewed in Phase n.)

In Reference 12, Lockheed estimated the percentage of the total traffic be­tween each world area pair that would be for business and government purposes. Values from 30% t? 75% were estimated for each area pair. The lower values were assigned to travel between mature, well-developed areas and the higher values were assigned to the emerging, under-developed area pairs.

Figure 97 shows the business plus government traffic as determined by Lock­heed. The curves show the business and government traffic between the major world areas during the years 1980-2000. The most Significant feature of Figure 97 is that North America to Europe will have by far the heaviest traffic.

Figure 98 summarizes the passenger traffic for the years 1980 to 2000 and shows that:

1. Of the total inter-area passengers, 65% will travel between North America and Europe.

2. Of the total inter-area passengers, 37% will be on private or government business.

3. Of the total business and government traffiC, 53% is between North America and Europe. The right-hand block in Figure 98 also shows where this traffic orig­inates.

The data shown in Figure 98 are valid for all years between 1980 and 2000 and are essentially independent of the level of the estimate; i.e., low, mean or high, as shown in Figure 96.

11.1. 2 GEOGRAPHIC DISTRffiUTION OF PASSENGERS. It is clear from the fore­going discussion that the North America to Europe route dominates the flight frequency. Since the purpose of this analysis was to determine the design range, Figure 99 was constructed. This shows how the 1980 mean level of two-way business and govern-

) ment traffic is distributed with range and shows that New York to Paris provides 42%

204

Page 143: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

WORLD AREA COUNTRIES INCLUDED AIR TERMINAL AT

North America U.S.A. New York City, Canada Los Angeles Mexico

Europe Austria Paris Belgium Denmark France Germany Iceland ireland

) Italy Luxemburg Netherlands Norway Portugal ~n~in -,..

Sweden Switzerland United Kingdom Finland West Berlin Yugoslavia

South America Argentina, Bolivia, Brazil Rio or Sao Paulo Chile, Columbia, Equador, Paraguay, Peru, Uruguay, Venezuela

Japan Japan Tokyo

Oceania Australia, New Zeland Sydney

) Table 24. Global Transport Air Terminals

205

Page 144: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

.. r" i/

10 9

8 h~itdjj4~t$!l!$~~4~8~~~j NEW YORK - EUROPE (PARIS)

7

6

5

4

r.I)

3 Z 0 ::3 ~ ..... ~ I

u 2 ..... r... r... <: 0:: E-< E-< Z ~ I'I~~IIIIIII~II'I~II LOS ANGELES - EURO\P)~.,:p.,::s) NEW YORK - JAPAN -

~ Z 0:: ~ 1.0

·····-,-~+-,--l-~NEW YORK - SOUTH AMERICA

;> 0 .9 0 r.I)

.8 0 EUROPE - OCEANIA

~

) 0.. .7 EUROPE - JAPAN Y:;;:'

EUROPE - SOUTH AMERICA .6

.5 NEW YORK - OCEANIA d:P), ~'-;-J

LOS ANGELES - JAPAN

.1

1960 1970 1980 1990 2000 YEAR

Figure 97. Passenger Traffic Projection

206

Page 145: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

L

NOTE

100

U < ..... 0 !:xi ..... !:xi P:; < IJ:.l IJ:.l p:; ~ Pot E-; <00 80 P:; ~ t:r::E-;~ < E-; IJ:.l ~ P:; I 0

0 Z ~ E-; ....:I 60 < ;:J ~ N z 0

-.J < ....:I < E-< 0 40 E-; 0 ....:I P:; 0 ~ ~ 20 0 E-< z IJ:.l u P:; IJ:.l 0..

0

."-.-/ o

THESE DATA A~E ESSENTIALLY VALID FOR EACH PROJECTION LEVEL

(LOW, MEAN, ~IIGH) AND FOR ALL YEARS 1980 TO 2000.

E-; Z IJ:.l ~ Z P:; IJ:.l :> ~~ 0 l') 01J:.l U) p:;~

....:I ~ ~Z < 1J:.lp:; E-; 01J:.l 0

E-;6 E-; <0 0 UU) ....:I ..... ;:J P:; P:;....:I 0 ~Pot ~ <U) U) t:r::1J:.l E-<Z p:; ..... ou) Z~ f PARIS TO LOS ANGELES TO I'AllIS _4U71 LOS ANGELES TO PAIUS TO LOS ANGELES

PARIS TO NEW YOHK TO PAHlS

I NEW YOHK TO PA HIS TO NEW YORK

Figure ~)~. DistriiJutiun of passenger traffic

Page 146: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

0

....

>::j N ..... ~ '1 (D

:.0 ;-c

~

~ ,/ I7.l

5' (D I7.l I7.l

'C -~ ..,. 0 c <: (D

8 S (D

= ~ <:J1

~ '1

~ ~ > ..... Z n

<: Q I7.l tx:1

( ~ ..... ....,

~ .... 0)

= 0

'\% 0 0

Z :~

~ ~ ;-' ..... = ~ -.J

0 =

\ ft 00

\ ......

CIJ

to

.... 0

o

80(;

PER CENT OF 1980 MEAN ANNUAL TWO-WAY

BUSINESS PLUS GOVERNMENT TRAFFIC

o

I I

N o

~ o

I

..,. o

<:J1 o

NEW YORK - EUROPE (PARIS)

I i I I ~ NEW YORK - SOUTH AMERICA (SAO PAULO)

i I I I ! I

I

I

~EUROPE (PARIS) - AFRICA (JOHANNESBURG) I I LOS ANGELES - EUROPE (PARIS) I - .

........ EUROPE (PARIS) - SOUTH AMERICA (SAO PAULO) l EUROPE (PARIS) - JAPAN (TOKYO) I

I I I , i I

NEW YORK - JAPAN (TOKYO) i !

/

I I

I

- NEW YORK - OCEANIA (SYDNEY)

. I I I I EUROPE (PARIS) - OCEANIA (SYDNEY)

(

/

,/

~.

C

J

Page 147: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

) /

of the total traffic at 3,150 nautical miles. The data of Figure 99 are then accumu1.<1ted and shown in Figure 100 for the twenty-eight most important pairs of terminals in the transportation system. Figure 100 provides a fairly rational basis for selecting the design range; e.g., 5,000 nal!JjJ:!Jtlrniles will permit nearly30o/(LQLthe .. .totaLbus.iness /-------.----- ------- __ " __ ___ . __ . _____ ~._~ __ -._.; .. _._·,f~· ,,-

and government traffic to be carried non:stQI).._.5 .• 5.0.D.-nauJical mlies~l1 include 8010., 6,000 nautical miles will include 86%-:· ;;~d7, 800 nautical miles will in~i~~90%:-'---A range of 9,200 nautical miJes is required to carryall of the business plus government traffic.

Figure 100 includes a recommendation that 5,500 nautical miles should be the design range. This is based on four things:

1. It is at a knee of the curve shown in Figure 100.

2. As shown in Figure 99.5,500 nautical miles will provide non-stop flight between all the most heavily traveled routes except New York to Japan and flights to Sydney.

3. Table 25 shows great circle distances between New York or Los Angeles and major European cities. (It is most likely that in addition to the principal terminals listed in Table 25, more will be required for Europe and other areas. However,

the ground facilities that will be required to support a hydrogen-fueled aircraft may limit the number of terminals. )

Table 25 shows that a range of 4.870 nautical miles is required to reach all European cities and Cairo from New York. However, a range of 5,500 nautical miles will permit non-stop flights from Los Angeles to all cities in the first category except Cairo. The other heavily traveled routes are North America to South America and North America to Japan. It is seen that a range of 5,500 nautical miles covers the principal cities ill South AllIer ica fr om both New YOl k and Los Angeles. Also, non-stop flights to Tokyo are possible from Los Angeles. It is not possible to fly non-stop from either North America or Europe to Oceania with a range of 5.500 nautical miles. In addition, some service between Europe and South America and between Europe and Japan can be accomplished without stops.

4. Table 26 shows some other possible non-stop routes within a 5,500 nautical mile range. However, the traffic flow on these routes will be rather small compart:;d to routes in Table 25.

A possible route structure for the hydrogen-fueled transport is shown in Figure 101.

11.1.3 RECOMMENDED DESIGN RANGE. In view of the foregoing discussion, a design range of 5,500 nautical miles is recommended. This will cover about 80% of all business and government traffic with non-stop service. This recommended design range does not reflect additional constraints such as take-off gross weight restrictions due to runway limitations., allowable sonic boom restrictions on take-off weight, passenger load factors, and economics.

209

Page 148: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

00: 00' ~i

Z' 90 ta

:;:J': ~;

, ;>4 80 < ~ I

RECOMMENDED RANGE 5500 N. Ml. 0 70 ~ , ,

~

~ < 60 :;:J Z Z < Z 50

) < ~ /

~ 0 40 00 ~ .-t

~ " ,

0 30

~ Z , , ~ 20 0 ~ ~ .,. , , O-t 10 ~

> .... ~ 0 < ~

~ 3 4 5 6 7 8 9 :;:J ~ i:l

RANGE (1000 N.M.) 0

Figure 100 .. Cumulative traffic vs range

)

210

Page 149: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

~

tv ~

~

New York Los Angeles

New York Los Angeles

Los Angeles ~.

Paris

Paris

(Ran

North Americ

Madrid 3110 5030

North Amerio

Santiagc 4460 4860

North Americ

Tokyo 4760

Europe to Sou

Rio de J 4950

Europe to Jap

Tokyo 5240

Table:

---------~--~~--~

~

" '--..j

.~

(

ked by Traffic)

:I. to Europe

London Paris Berlin Rome Leningrad Moscow Cairo ~1000 3150 3440 3310 3720 4050 4870 N. Mi. 4730 4900 5020 5500 4960 5270 -- N.Mi.

I

i to South America •

Buenos Aires Rio de Janeiro 4600 4180 N. Mi. 5320 5470 N.Mi.

-to Japan I

N". Mi.

h America

aneiro

N.Mi.

n

N.Mi. .

5. Possible Houtes With a 5500 N. M i. Hang-e

Page 150: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

\,-----,

tv I-' t-.J

Los Angeles

Honolulu

Paris

Tokyo

Paris

Table 26.

,

\.J ,J

Seou Peking 518 5430 N. Mi.

Los Ang;eles New York Sydney Manila Hong Kong 2240 4130 4420 4600 4822 N.Mi.

Joha p.nesburg 4710 N.Mi.

Sydn 'Jy 442 ) N.ML

Kara chi Delhi Peking Seoul Bangkok Hong Kong 33 0 3552 4430 4820 5097 5201 N.Mi.

Other Pc ssible Non-Stop Houtes with a 5500 N. Mi. Hange

Page 151: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

LONGITUDE

PEKING •

)

30"S. ----------r-------1:~~~~~~S~Y~D~N;.E;Y;=~----====------

6 hrs 6 hrs

90"W I .

I

I

SANTIAGO

6 hrs

Figure 101. Route St ructure

11

6 hrs Time Difference

213

Page 152: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

") ) 11.2 CRUISE lVIACH NUMBER

Since trip time is dependent on the cruise Mach numb~r, the question naturally arises, "What cruise Mach number will make the hydrogen-fueled transport most attractive? II To answer this question, several interrelated areas were studied:

(a) Block Time (b) Local times of arrival and departure (c) Airplane scheduling (d) Utilization

,.-/

This analysis did not consider any technical or economic constraints. These combined effects are discussed in Section 14. O.

11. 2. 1 B LOCK TIME. A primary factor in determining the best cruise Mach number is the time to accomplish the trip. Block time (take-off to landing) shows how much time is saved by cruiSing at higher speeds. Because of short trip times, the ground time to get to and from the airport becomes relatively significant. Table 27 was therefore prepared to show typical ground times and to define three Significant incre­ments of time for non-stop and for refueled trips:

Block Time

Air Travel Time

= Time from start of taxi until wheels stop at the destination.

= Time from arriving at the departure air terminal until leaving the destination air terminal.

Total Travel Time = Time from leaving horne until arriving at the destination hotel or business a,wointment.

Figure 102 shows unrefueled range vs block time, air travel time and total travel time for various cruise Mach numbers.

From Figure 102 it can be seen that for a 5,500 nautical mile range, tbe sig­nificant times are:

It is evident that increasing the cruise Mach number brings diminishing returns in re­duced trip time. Beyond Mach 6.0, the absolute gains in trip time are small.

214

Page 153: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

t-=>

01

'..,/ .

!

Home to Airport

30 Min.

...

Home to Airport

30

.......:

- .

"

Check-in, Buuru

20 Min,

il ... -

Check-in Taxi Board

20 5

1--........--.

- ----

,

V I .. V .

,

TIME r'OR UNRJ..:l<'Ul!:I1<.:D 'l~UP

I,,:> "-Taxi Aec¥erate CC'uL;c IJ.:t-liuwn liulu Tu.xl r;xit aircraft, Airport

& Clilllu C 1111 In Uaf',F,I1~e, to . r (M) r (ralle.'e) - r (M) AI' nill[:'.e ~:.rowld Hutel

\ 'rnlfl'; lJu T'Lti t ion j J Min V:iri"3 ... ) Hill. ) Mtll. 1') Hili. 30 Min •

" liI1XK TIME .... 1

I -Am THAVEL TIME ....

_ '£CYl'AL 'l'.MVEL 'l'IME - .... -

'rIME FOR m.:r'UEU:D THIP (OVER ~500 N. MI.) -Accelerate r.ruise li~t. Hull 'l'u.xi I(et',.;_el 'l'axl Ac:ce lerti te CruiHe ~t- Huld Taxi Exit \Airport & Climb DUll! I & Climb Down Aircraft, to

Claim Hotel Baggage

r(M) f(raIlGd f( ) r(H) f(range) f(M) Arrange

____ I __ ~_ I Gro\ll1d

--- --- Transp. • Varies ___ ,.

.... 5 20 5 ... Varies-- :> 5 15 30

,~~

... 1 __ - 1:1UXK 'rIME --.

A]J{ THAVEL TIME .... ._---- 'lUlU 'l'Hli.V EL TIME --------_._--- .....

__ it .

T:[ lle27. DefinitilHI of T.'r1Jicai ..

..

-- - ------- ----- - ----

Page 154: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

tv ~ cr.

\~../ 14

12

III

1:1 £ ~

W -rl E-l

d

~ al H E-l

d al ~)

Pt

10

i3

6

)/-

r) '-

o

1') ",

10

b

III

~ III

~ ~ ~

~

~ 6 ~ ~ E-l ~

rl E-l ~ > ~ al 0

0 ~ ,··t \:4

~ <

~f -~ ~

;~

o

\J

1;~

11'j" ,It': ,ill i''1 ',i; ,i"lid 'I" ",j ,I"" '~"1 j": 'I" "" 'iP 'J" ,,[' "tt '~I" "I' '1'" 1 I, ::' ,,' II':' '.'" ,,,, Ii; "', , ;, "t' 1 ~r ~:t '1' 1 4 I ." j'f f'" i ,. , .. I 1 f '1" j tH '. H" 'I .• ; tl11 :l;tlll:1 ::1: !l:~f;li ;.:~; j.itil;1 ! ~Ih ~:'I: !i t ,t-q tl+ !':~l ".:ti·j t'-.tl t- ~l !1~t- ~f1 !+~-l

Li! I jl ill, I"l' :j:'UtW"': it I: IlL, tllttW:'iiJ4 "'llt,:,j'llj'H'tttIT:1;li./ 1 Iii' 'ft,mti! rlq lili: ill: il'ildt! ' " : I, 'H, 'ii' 'll l l:W I!r.: 'ii, ;Will+! pI)tJ' 'lf HI/Itt' lH'rT i' 1,1, tttn +fti-~f+ f'+t+ H~H~ ;,; k-tnh' lf~} t, , 'I :;.J [ : ;" ri;n::;+' [n~'n ~ . ,t:: :"f "I' ',qn:'.1 "i: 'Hl ,,),ttl) pl.: 1'1' rttr It:·! t llll' II, "tl [ttij! trlifl i, ,:j'ld! I,WLJ 1 U'f' ~i. i lndl~tr~jO, 1.t-1- 'j ! Htl It.-l .-1 1+' nt~i" ·tr! JH t ";! ttl:· i~-U·J.th au ~ -t~ ". -1 L ~t~

10 'I' ali Ltil I" I "1' " ,pi ;1"1" 'ikJ' ' 'l~ 'jj' rnn .i.1. lUI il"llill r):" ltl~ i,," j"t! " , ' fi i'{' j ," ~,." j'l 'I:;' "" , "\' '" I. tllil \[ .i', '"'I'' ii''' I' I"·' ~~ 111' . 1~"'" 1'1' rt"t .... it" 11' '[';;'" 'ii' '-"il' " I ' r "., '11 '~ltt· ftj'l .\" I '." ", t:.:J' .. I", , , ""., ' , I 1;, ""'" ' , . t f't ' ,~ ". , H r~tTT.~ ,- .'. . - t t r) -t. r. . - i- !+T t .' ~,+:"'"" 1'"j: > I ' t t ' - t +t . llli' lin, j:tll11:] Hi' HI' It:;tHj Iq, 'iH l'lt:. lh! dHIl}l ~L!~ ~dt t~tf 1141 jjrr ~hm ;t:il H.I·tti .. J" il,1 'qj ",,~In [It :Itt ,,, ~HI I,. t .... t.t • ..f, 111,j~tf· !It·dl, ,jm

J"~' ,'. 'ill '!'I 1"li*1 I 1":' I'~ IMJ nit ,. lilli' 'ltW, till' !1 I I' t'li liP I" '''I' f+ Ij" '·Iil' tH 'l't' I' 'I! lti! i .~' 5500 n mi ' 'Ii' 'II 'jii d 1 tt:l qu lUi +1.:' il ~B:.l ~,.t ~-~.' r I ttH ~ .. 4-8.- L++r:i . . ,1: llit 11.t~-·~~tt ,,~ ,...l,' . ! • :;-r ~1~; ,,' .. -l~ -·-t'l ~. It"' -~+~ .. , 11" +,,1 "'I' Itt::' ~>- I - ,. +. j - • :'~;~m

[,II "II iI.l, 'I .. il:' ;. I .... "".IJrl- 1 /;111 It:TlTil!i. lttl lit\· ",1 ,." j-jt' lIt!. ,W dl, !I"'I" !~ .• ',-' '." , " iii! :: "i;! :.t·rr.. :. _In ttt "11, iI! t~,~ tt-~: -id'! r " 11:-: :;~ •. ilr! :.;\

ij ." CrUlse ,,, ."., "I'M' It"ltll1" ""'1 'ill I'!"'" " .. 'II [ID"" .,!, ii" "I' tH'~'I"'" ii-: • -l.:;: ~.';! 'i:1 1: ./ dtl tV t'.L - !tt ~t·tt V-;-t ~{t-i ~I- r '~.~-'-' ;.+~~ t"·.t dJ~ .. ;:.1 Mach No . .:.tl1-8:-: Irtr I" ',i, •• 1,:1+ 1 ltID1"llb JJi,fl;.;.:,:1 • I,ll F ,.it H,I. i<

II' ) 9 It;1 111; ;1:1 .11ltHlliJlr t'll IH f!~il Rf" I'll j", I ~t'ii t·p tlU'tX\ :trr ~4 ( . i '" "', '1 " ,," • , "l" 111 h" --" .•. It , " ,t:, 1.+ I l;;t; ;-r~ I'f[l.l,.. "" 11 "1/"tt lPI I • j.", +.;. t ", -+.--,.t ~'I'- '-1'''' tjt ~ .. -f"!- t tifT It' tr!

,,' "" .. , ... ,., TI1+' 'i, llW' '" l' :w1'j-t II' Ill.' I, "in I-t '1") "'11m ", Jm .!~. ;"i ,q '!'i j r +ti~rt ~.~, I 1+t' l~ +iI'~' .".--.. H-I!lt i ".- y: ,Jit· '1Q t ~ .• -t~1i'\'" PI! ~1:1 ';11 ;',; +4 ti-w.t !:-~Jl .~~. -!:r-r.l:_t -'~1: :~~nt : -i .iji; i'-~' '-~1'L:- ~I tt- tim t

" • i" t .,".. T ~" ., t I ~. I I. .I:!! tt ~' ,. t. , ,.~ t f-';·f· 'I +-4 t

"" 'ie, !Ij' ,,,, "11 'tl1'~'l' .... 1 .. ' !i11'l:;T" f!!·ru;j,· tt~!U~+j It offt tl[f 111;l; tl~. t)'ij '" I " j """ "" ~j , "'I r~l rjj!l : I" ttl IT"I'· ttdt±' If it t .! 1~1'f rt +11

G;t: ~, ::;: :, .. ::: ~ ::.: :. ~ ; :: : .. 't • I h' .~ i +~ t I '.... - _ ~ <; t- ,T .. + I'~ 'li, 'I" I'"~ "c' I "r!~' , ~t:I' -I'll j~l< I';! ~lfr;,;.:11 . 'jtltlM'1 1:!1;t r ··,~lJtjl lllJ ; fH ItiJ";iH·l .J~.;1 .. -4 L ! ~J±l' tt ~r ·1tt~ tl ~ Hn:' t·'~rd. :~ H- 1 1~l ,·:1 rr!t'll~, t I ., ;-TT7 Tnt -tttt Ttl-! .... t·, t 1 ! ,:-:::-:--: i - .. ,. -t t .. - I·' 1 .. t - i- - j- ~! 1 , .. , ",. "t· It" j:11L ,,,, +ttt "i! ffHr i'ttl let +t :1[J bi-'l'llll ft,i; 1'f'! 'e i 'f~f Ii' :!t~ :;~; :l·.;~ t It ~!!/·~rt1 :-·ttH ltd '+1, !\ +i t •.•. :-H.t 1t' t r;; 1.1- ~ "11 ~: "!t i :tnJ d' 1:',. "" ')' 11'1~' ,,,i 'I" lIllII!!: i'" I' [fT" 3 0 nn'~ .. t· tIt 'xU "If{ {ntlJtftt :::it::'; 1,;1 '·l,' t!~j ;.1] flf*·j1 \li W'll:,\t ~, "l1rr~ttN·l. ,nltj!1 HI il 'liEF •. ;;1 !.,,;~~;~tl:.;.:,u"JJ.iI~~l'·-4 I:L;.' •. " • t ,.,., ,'~. "I'll' ~4-'-lj "!" ;. I ~ ;. , .• r t ~ I ~; • 1 I ' : :";1 1'1 I I ~ rn; + ,t' ~. ,! J' • r t . I' 1 f -\-, 1 .-:;. r - 1+' -, r ' • , • j ".', .". ,I t ,. ! • ; .. . ~ I I ;. • Ii" ! -.. y ~ -. - • It'" I ., ...

j" ,'" :.,,11 ,1., !"'iri1':" ,t. ,IRnIT, "bJillWTIjl ;;" Itlt IE J~ .. .ill +-thHjj h -"t.'h ;: ~: ;: ; .:: ' +T+t ++: . ~! ::: t , 1 •• : ", ; ~. ~~.: ~ ~:. 1 t . :; ~ r :' ~ t -~ t t· ~.. ~. ~ I ~ 11-: ~ .: :., ,,,' .," "j'il" "" "'.' il;'~", 'er ;1;l~~" f.H~.,. ·rl":I' Ill]1:!.·!!!') 1;[1 IJ+' ,1-,1. '1·I't·l(1) 'tj'eil tf" 'e" ,", ,,' ;" ,; ,,' l' ~, ,,' ..rr·;1 • U' .,. , q , .. II 4~L'" 1 <,. +j' ., t • , ... , .,' '" ... ~'" ""t"'" , ,H' , '" ,.",,, t t <t.' 'I;' , 6 0 ~"lj, :·~T. -;-:-;-i~" !-:-r-:i~, ~~-:~~ ;""'r'; I:; -:--:-r iU.~t I ~-~1:r-r-; ~!i!"" to • • ~m :-t-;:.~ ,! -,f i'

... ,,', "II"" ;,,, 1''' ,j, "'1 ~".{-f:J. I; III, .,,' '", I'i' I", "I, "" ,·,·,tti:i.;,;.w.r:'f1.l1 l~;j :;1: ;t:/ :l~~ -::;1 d:~ "I!;; ;1<-" !.;..(- :7: .. ij ~~j! \!-~. i~,:i ·;i: ~ .;J: Jtt-~~ L~~-(I;;! jj.tiJ

!." , "Wf,1 'I" " , j"""'~' t[. "I '''I "" ,," 'Til' Jw-;- Ii" ~ ~ '11 'ii' ...... I, t : 1-1 t'" "1 '1".' ~ .. >-i,- ,tl. ·H' "r'~' t ·f.!-r.Tl..L,-t ""-iq r l't-l1 .. 9 0 ~4: ,l~J.) '-~l tEi J~um.:l!1~:l!-f ,~ .. +~ JJ.h.~l~ ;y;~ :ld !LJl r¥F~ ~ it ~p, -;J-r-- Lr~ . " •. ·,1. '!~. 'i" 1." ~ ,i,., 'Jt lit :rJil""'~ 1".1 .-.,.T(u -I t--'. T'" ~:rt .,J, ~~.,. -+1 i : ~ t :;: t ':, ~: : .!: j:::' i -, ,,; i 1 !; 0 r : + .: ': t:; : 1 ~ t ; -+. ifTTt 't ~ 1 !_; L !' ~ ~ j:, ~ 1 ';'-1: I •• ~ - .~ ~ I 1 t ?-.t;:!';'~i:j ::;; h ;'::',; +H.s+':'L' ,!~~L!l :", ~::,: ~:;' ::" ,t1II:'!~~~ ", '11 1 ,,!l ;t;'-X;;~" ii' I" i:!l!i;ptf ,Irl ",,:]1; ;;~j~~~T:Tl'~li~tl !.1;'; llL .:.:: u.-r~ S.J.; JJ.1. !:L' ~~ ~ ;;Jl! ~ri, '-:a~ftt!"'I~:! Pl~ HI ••• 1 i 61J ", ""0' ;.ft"." I ''''+H'' ...... 'diLI Jw.l' ¥.ft,. rtm·'"l'".i ' ',:11>1 'I" ,ttll · 1. , • 't ., '," " I I; ,'".. - '1 ! i- ~ j- ; t .; 1 t t j i • "r ~! "" t ~ 1 t "if '1/.< ~;.i.f ,d, 'i L ~ ." I' 'i," II.. ' , ++tt T, ,wT]I' ",' ~ I " ,. r, , li !"; j' tt ~.", 1;_' ;,;. :"i .I

t• .;-:.1':: :',_ : .. ,~ .. +.~~~+.+~~n+~ ':f~:' ~ :.:~ :.J_ .~: >~

J4;~~.fl1t'fTii.ll.-"I'''iI'!: .... "eI '" ,,' .' ",I I--!,' "1 'II' "~'#HJr "Jtt I"~. I- f - .: ., " ';" •.• ~ , " , •• ; ,." .,.; "" "t I ' I" "', 't': t· . ! -t l' ..j, j

. • 4.j..C +..;:., ~.;,>: J.~tL ! ';;C:l.c~ .:.:.:;..,;,;.,U ~-i-l.: ~J.W ,', ~,.:.;, .;.:W ~ I t+ W- " ',l":'.;.if" ," ,i j' i'.' , .. I;' I .; l. +;T TfI~ ~ ;. '.,' '" I .~., mr " , i'" fj t t· ,. , ;; l -.' I ; ~mrT::!" ,li, 'j" '". " , " 'I'''! ,.' :"1' j1" "\' " . i';'ffii Itt~' "II 'lj'll J;I' iHiTJ; ii" ill'f~I':l,j" j i;;_:+ ~tll -t;, ':'; I, •• "'1 I" 'It !,t; rr,~ ",~ " .• I 'It ,-+, .. 1 t. l !. j!.~ ~ +-~.

()_ "\ ~ . ':i I • "" t~, 'II.·, •.• I , f·t···, I -,-t )-+1 *- .. j ~-; ., . .!..

o 2 4 6 8 ,10

Unrefueled !'UllGe -- 1000 n, mL

0'

MACH 3 CRUISE WITH A I-HOUR STCP AT 3500 n. mi.

Figure lOZ, Trip Time vs linrcfueled Hange

,

Page 155: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

11.2.2 EFFECTS OF LOCAL TIME. Referring to Figure 101 on page 213, it is seen

that the air terminals for the hydrogen fueled transport are located in three clusters around the world.

From Figure 97, it can be seen that most passengers are traveling East/West rather than North/South. Figure 101 on page 213 shows that these clusters are widely spaced in local time. Tables 28 and 29 were therefore constructed to indicate these local time differences. Table 28 shows which cities are on the same time and the time between groups of cities. Table 29 selects nine cities which are on the West edge, near the middle, and on the East edge of each of the three clusters. When it is noon in the city in the left-hand column, the local time in the other cities may be read .

To further study the effects of different cruise Mach numbers, Tables 30 and 31 were constructed. These tables show typical schedules for Los Angeles/New York/ Rome and for Los Angeles/Tokyo, respectively.

D~artures are timed to bracket the business day in the ,?ity of ori~in. Air travel time is used (the middle ordinate in Figure 102). The local arrival times are shown, together with an indication of the day of arrival. Both schedules show re­ductions in air travel time (and a consequent reduction in passenger fatigue) with in­creasing cruise Mach number. For all speeds, the associated departure and arrival times result in some inconvenience for the passenger.

By studying Tables 28 - 31, it can be seen that local time is a sjgnificant factor in scheduling and that the higher cruise :Mach numbers offer only limited ad­vantages in arrivatdepartnre times Over the complete route structnre, the higher cruise Mach numbers are expected to provide scheduling advantages and give reduced passenger fatigue by having shorter trip times. However, for the densely traveled / East/West routes, the ad'yantageof higher speeds is less Significant because of local tI­timeeff~cts-. This will be investigated further in Phase II.

--~-----

11. 2.3 UTILIZATION. Cruise Mach number has a strong influence on the daily utilization and, therefore, the revenue generating capacity. To determine the time required to complete a typical trip, Figure 103 was prepared. Three cruise Mach numbers were chosen for comparison. The air travel time is plotted for the passen­ger/range data of 1980 business plus government traffic. The curves begin at the left-hand side with the New York to Europe (PariS) air travel time. Compared with the subsonic jets, Mach 3 reduces the air travel time from 7.2 to 2.8 hours while Mach 6 further reduces the air travel time to 1. 9 hours.

From 45 to 75 percent of the traffic, the Mach 3 and 6 time lines rise slowly. Beyond 75 percent, the curves rise rather steeply due to the longer distances in­volved, as well as the ti~e penalty associated with refueling which is assumed to occur after 5,500 nautical miles. The bulk of the unrefueled Mach 6 trips can be completed

217

Page 156: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

I:-.? >-' IX'

< . ..--.

Cities

lDndDn Madrid, Paris, Rome, Berlin Johannesburg, Cairo Leningrad, Hoscow

Karachi Delhi Bangkok DJakar1~ Hong Kong, Peking, ~il.a. Seoul Tokyo Sydney

Ikmolulu

IDs Angeles

Mexico City, Chicago New York, :~ntreal Santiago Buenos Aires, Rio de Janeiro

~ 'J

IDeal Time (Rel.a.ti ve to lDndDn)

l200 1300 1400 1500

1700 1730 1900 1930 2000 2030 2100 I

2200

0200

0400

0600 0700 0800 OC)OO

Table 28. Local Times

-

Page 157: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

I~ ..... <t::

'~

W11"1l it in 1 Ilul,l, in Ulili ,:1 Lj

K.!\HACiII

!!orm KONG

0lDllt:Y •

1.;\

NY

HIO

WNDON

Hot-IE

MOfX;OW .,

K.i\l{j\,:lIl

NOON

O'J()O

0'( )0

0100

;~200

2000

1'(00

l()OO

11100

.

\--..J

-Locul il'illll~

HONe; KOIJG ~;'[DNKi U\ .

.l~OO l' (OC) ~' SO()

NOON 140(; <!OUll

lUUU Noon 18(11)

Oil 00 O(JOO rJOO]J

0100 0300 u;;OO

:2300 ()JOO (!'(('U

2000 2200 oil U()

1~100 2100 0500

1'(00 1)00 0100

Table 29. , Local Tilw's

,

. J

NY HI',.! LOIJlI0N HOt>1f<; MO~JCOW

0, ,h' (Ii, ,J,' 'i( JC! cXlO(1 woo

;'jCJO (11)0 ()1100 0;'00 0700

2100 230() u;~oo 0300 0)00

l;,UO l'(oO ~:uoo 2100 2300

NOON 14()O l{OO .Woo 2000

1000 NOON l:,OU I(JOu 11300

U(UO Ui}O(1 NOON 1300 15(X)

o(,uu O(!(Ju 1100 NOON 1400

().i,O() (J()UO 0')00 1000 NOON

.i

.', -

Page 158: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

tv tv o

~.

CITY OF ORIGIN

lAX

ROME

NYC

R<l4E

Departure Data

DEPAR'lURE TIME (ARRIVAL AT OOIGIN AlRPOOT)

0800 1200 1700 0800 l'{OO

.0800 1700 0800 1200 1700 0800 1200 1700 0800 1'rOO 0800 1200 1700 0800 1700 0800 1'{00 0809 1200 1,{00 0800 1200 1'(00 0800 J200 1'700

.

\ ,'-"

Arrival Data

CRUISE MACH DESTINATION CITY DEPAR'ruRE TIME Am '!RAVEL NO. (AT DESTINATICfi TIME, HOORS

... CITY)

0·9 Ra.m 1700 ll·75

t (5500 N .Ml. ) 2100 ~ .

j 0200

3 1700 4.1 3 0200 4.1 6 1700 '2·5 6 0200 2.5 0.9 lAX 230Q 11·75

~ (5500 H .Mi.) 0300

~ 0800 3 2300 4.1 3 0300 4.1 3 0800 4.1 6 .2300 2·5· 6 0800 2·5 0·9 ROO! 1400 1·50

+ {3310 D.Ni.} 1800

+

j 2300

3 1400 2·9 3 2300 2·9 6 1400 1.9 6 2300 1.9 0·9 NYC 0200 3·50

t (3310 N .M1.) 0600 ~ liOO

3 ,I 0200 2·9 :3 oGoo 2·9 3 1100 2.9 6 0200 1.9 6 0600 1·9 6 1100 1.9

.,

'J'abl ~ 30. Typical Schedule - Los Angeles/New York/Rome

'--.-/1

ARRrI AJ... TIME

0445 X 0845 x 1345 X 2110 X 0610 X 1930 x 0430 X 1045 x 1445 x 1945 x 0310 X 0710 X 1210 X 0130 x 1030 x 2130 x 0130 X 0630 X ],655 X 0155 X 1555 x 0055 X 0930 x 1330 X 1830 X 0455 x 0855 x 1355 x 0355 X 0755 x 1255 x

Same Jext • De.y Day

Page 159: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

I:\:) I:\:) .--'

~

CITY' OF' ORIGIN

LAX

TYO

Departure Data

DEPAR'ruRE TIME (ARRIVAL AT ORIUIN AIRPORT)

0800 1200 l'{OO 0800 1~!00

1'700 Woo l;~()O

1'(00 0800 1;'00 1'(00 OaOO 1'{00 01300 1'(00

CRUIS!<; MAC I NO.

0·9 . ~ 3 3 3 6 6 6 0·9

~ j

3 6 6

Tat

',,-,,' J

,

Arrival Data ·1 DgSTINATION CI'l'Y DEPARTURE TIME AIR TRAVEL ARRIV AL TIME

(A'l' DESTINA'l'ION TIME, HOURS CITY)

TY'O 0100- 10·3 1120. 1 (4'760 N .M!. ) 0500

~ 1520 X 1000 2020 X 0100 3.8 0450 X 0500 3.8 0850 X 1000 3.8 1350 X 0100 2·3 0320 X 0500 2.3 0720 - X 1000 2·3 1220 X

LAX 1500 10·3 0120 X (4'(bO N .M1. ) lYOO

J8

052Q X

j

21100 1020 X 1500 1850 X 2ltOO 3.8 '0350 X 1500 2·3 1'(20 X 21100 2·3 0220 X

Day Same lIext Before Day Day

Ie 31. Typical Schedule - Los Angeles/Tokyo

Page 160: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

~~

"" "" ""

CIl

~J 0 ~ , .~ 8

rl

~ oj

t:l ;,

.,-1

<t:

\-J J

tli '. ' , .'._f=!J. 11: . _(. " ••.. ~.. ..·t .-: ....• ~.: ··'-·'··1 ,. . I .1~ftlltl !11~lflljijf~liffifN mill: ni tt J ! ' f th, -,1 f t 11 t" r i .+ t.~ . 1 1 T H· t 1 f r

,.

12 _ '!J Ujl:IllHr'H(~,f::~ ... .::t; u

. rlttl'1·tlji iltltHHLittifj'liIfllmJ1IffiTfffilltjl:tfj !tft·qUttJltH1TtlHTtlrrr fj ;inp i,JtiW! IIIttYHWlfffinltm.fRlffllillT t+IH1. 11tu tt-H-t1W+ ·,t·,tlii1-iitltlltm ~tHtt,H trI1tt.t·l.,H,t qt' tt,·lt ·t>HHr.ft,-ImmH t, .. J fl,1,+1 tt f

lO~~~~~*ffi~W#~~~~~mffi*ffi#ffi~~~w.4ffitlmffiffiffi~~*ffi~ttm#ffiffi#ffi#ffi#ffi#ffi*mtt~rmfffirnmill

6

!~

2

0

0

,tt

It HH+I+HH ,'-tt

·t . i ttUjjJu-tUHt{:itt{tl:lHltt itt' w ttttil!:l:H ~f tl:t.11 H~t #t#t1tf.1ttittf1lfil i ttHmtt1:it-tt1=!:tH

··H,~ITfIT.m·j ~:r:riJ· t Poj'. +. If.m.rffWf ~jn,;· !cPT TI.ITl- .~·,.~j_.lti,ti 1+ 11.'1 tw .. ; 1.:j· I.il+ tH.ltt.)1 t~.:; rnTI.;'.l·· .fill- .rUllif.;.' U. t-l" l;.t· IU .fj.]T.f ttfTTlf r 1. ~ IT 11 [:fe, :'1 i ·,.Llitllli\l-rlllctttl. ttWH iHl·\W;jfl+hntit'cttrPt#h±l~:t:Hlq. t-trtHtr!IH ·lMl i fl tt

tHl,·,tt lJ . .} r .t:l-IJI H:Jffilt,f{,'im ~tr tG1lq~tlllt:j f Hfl I ti{t iHt:;11 ~tJrriJff,l~ l'trtL_ltHH .11: . l' . l· it itr t " mH Lt-· ,i: .+, iml;. 11 It I tli j crmilt, HH 1 r FH· m;, ,;[ 11<11 tr I·Hi ~r , -In,·· !f <,

rill! '1m 'iJ t-j. ]. i1 '11! II·'! !f:lt . '." ttti "j j,rtll"H r"" ·'J·ltJlH 1H '.'. .. f H' r, I-t <. ,

iff nWHtt j!,J . \,: i ,IHm :J: ftb~~ l,t: I!Hlrnt L:l\ Iti#';fU1FH+H "iJfrITl; 1\~Hfttnil t\1\ ,1.· _ I: 1.1 : .. l,./ j r+~ L j Illt'it : !!'ilFI; : tillt:1Hl mt, '- t.11t l'tl hl;'lii11ttrH l!hlfti,. 11JHI1jt,f!-11iJ:-l·i.'il: ,WIltu:tt).l 111··11·tt ff-rliT ,I. I . 'Itt L).: I~I I' ,j·it li-tt .+ innll. ,j L _r,_ LILli till.1.- ."j.' If; H-,I"lll~tlt! ",Jj ·1; 1 ( .. -11 t . rrllJ It r - H

11f' ~:f I·.i' .. itt!. Hr·"· · .. ·'·ti 1 Jln· . ~l',l.l!tt c .. r.Ui~e .!\,1:aCh,= 3.,' 0 ~rl.n;' Il .. } '''',·I1:!!'·tJ.:.]:," ·:t'1 t:.j,lt . ·~HJ l·ljJ' ·j-t ~,.\ t 1·-1 ,t ... ~ ., .. jll.. r·l· t. E'· 11 g' .. . I . + tl' ++1 - rt- ,-- lf

ti t: . t .j~l. LlJ~ttl:Hl~r::;_tt/.T-: li:tl-~~"~ -d':'- 1- - - .~ ttt t .,-~. ~-, .t.:", :t- -m . _ . t- .f ~

I t iii, ,Ll! Ii ··1 ,.,., , . jill , ,,,''', '·"H"",jI14 ,II, ;11"' 'l!:i' .".,.,., I·· til - '., ,+ ,Tt ' ill j.. . "

tit ~ lit FH I iH~cfm~ln Ii lJJ. -tlmtii1JtltJHl:Hdt +1:Hll cHirlfr::tji, tlLrr' ,Hl~!P It -111 ~l fUli -fd!trt 'n 'If , H 1) ItFl fn.t·t· ·Ift it . tlllH#'~"·. CrUl~e Mach::: 6.0 1~!t.1 'IJJnl~1 iji·'lfl·r·t I, ·1 ,lllltHl ·tt ·l·j: ·t1. '4.· j.llI11IrU- lit-1 .·t·:1

I n~i_:.l.t1 Tl: 'f.!if,ltW., U.oorr·.;lrtl~ ftlf'Jfl[ffftrL! '.mt_+.Yfl~l !~t: m.h,;iift+rtli.·11H;~, ::'.t,l"·· 'I··. t 1 1H 11!lftt. flllt!+ fil .. iI,'} Iii ·WHI r·· .. . II l' ! 11,!11 + !,t, lit, '11 "tIl t~, r I .,It!: I ,I t ... Uti - .. - 1 1 [UtW.h ~J [titJt."Hd,J!11 1;1!!'lf1.jdr11!lfLrl1~!;j+ijllf.hhrLdLdH~!iljihtd,hlftl Hhmtrtttm[m~rMIillr",h ffh I

10 20 3C 11.0 50 60

f±HttH±H:ttHtH:ffltHtH'tJll+UhlltH1Jtmtlr!rBt I .... UdUUfll1mnui ~ .( .. , H-

70 80 90

Cumulative Per Cent of 1980 Bean Annual TIm-Hay Business Plus Government Traffic

Figure 10~L Trip Time

100

Page 161: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

within an air travel time of 2-1/2 hours. This corresponds to a block time of about 2 hours (c~f. Table 27).

Figure 104 shows a measure of daily aircraft utilization as a function of block time and turnaround time. The greatest unknown is the turnaround time required to r:efuel and service a liquid-hydrogen fueled aircraft. If this time is long (i. e. , 4-6 hours)! much potential revenue per aircraft will be lost, and a large fleet of aircraft ~ --

will be required to provide a given level of system service. If turnaround time is

independent of cruise Mach number; e. g., 1. 5 hours, the~Mach 12 cruise will give J' 30 percent more trips per day than Mach 6.0; i. e. , only 75 percent as many Mach 12 aircraft are required to give the same leyel of system service as a Mach 6.0 aircraft. Conversely, the Mach 12 vehicle can have 3;~2. 4 turnaround time, compared with 1. 5 h~~ the Mach 6_!1"Jl"ehic~d still fly the same revenue miles per day.;.:..

At this time, i1Js conjectured that turnaround time for a liquid hydroge~ fue led_

t:':~SP?E!~will?_e~-=--s-=--e-=--n:.::.t:..::i..:.:a:..::ll~y~in:..::d:::,e=-:p,=-e===n=-d=-e===n=-t~o=-f-=c-=-r-=-u=i=-se-=--=M~a:-=c~h=-n::::.u=m::.b=-:e,-,r,--,(beat flux time~tLIDe is approxir:r:tately the same, so !he heat to be removed from the cabin and fuel ta?k __ insulation will be about the same). Figure 104 therefore, shows that Mach 12 will give a Significant advantage in utilization.

It should be noted that a high cruise Mach number will im.prove aircraft util­ization more for westbound flights than for eastbound flights. As an aircraft travels West, local time is gained. Thus, an aircraft traveling from East to West will arrive "earlier" in the day. This gives greater flexibility in scheduling flights beyond that point (either westbound or eastbound) as more potential passengers are available dur­ing the local hours of 0800 to 1700.

The conclusIOn on utllIzatIOn IS that the hIgher I\Iach numbers show significant gains, with possibly large effects on system economics.

11. 2.4 BEST CRUISE MACH NUMBER. From the above data, it seems that the J * choice of cruise Mach number will not be primarily decided by mission analyses. Technical feasibility, sonic boom and economics will have to be combined with these mission analyses in order to establish a firm basis from which to choose the cruise Mach number. This is discussed in Section 14. O.

11. 3 PASSENGER CAPACITY

An examination of the traffic estimateb from Reference 12 for all twenty-eight area pairs considered by Lockheed reveals that New York City will be the busiest terminal. Figure 105 presents the business plus government traffic leaving New York each day from 1980 to 2000. The dashed curves represent the mean, high, and low daily one­way traffic estimates from New York to Europe (Paris). The annual two-way New

'\ York-Paris-New York traffic figures are converted by dividing by 2 x 365... The solid .~ curves represent business and government daily one-way departures from New York

223

Page 162: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

. III 1:\ ......

"' ~ .~ E-i

~ ()

) 0 rl r:q

6 65 4 3 2 1 0 Turn Armmd Time, Hrs.

5

4

~ ..J

2-

Range !II

5,SOOn.mi.

Typical for

Mach 3 cruise

~+ .,

Typicai for . t::!:;.~ . . J: • +. p.~i-

Mach 6 cruise :.;.~:-.,. +

'~-:-t

.-... + - "---:-t-. --: ... .,.

i,~- iti.. ~ , , ; '-LL •.

Typical for

1 - Mach 12 cruise ,,' , r . ,

o o 2

"f~ ~:;r.:t

::+f:j= +i- J-+--r

.ry -4-1--'-++

,~t± Typical turnaround time 1.5 hours • t" " •• , • , •

t

.. t-

~-;

4

utilizat.ioD) One-'viay T~'ips

Figure 104. Uiliz;:uion

224

Page 163: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

~

I-rj .... aq C >-i CD ~

0 c.n

1:1 III rn rn CD ;:I

aq CD >-i rn

tv tv t-I c.n CD

III <: .... ;:I

aq

Z CD ~ >-<! 0 >-i 'T, "---tJ III {~

• Cj

\~

BUfincsf> Plus C'.rOvermnent Pn.ssenr.;cn; Ien.vin¢ Ire\! York City Each Day_ Thousands

1-' \.J: o I-'

,;] ['(:

o f\.) ".

(~-nnr~Trr~~~~~!rr~~~~~~~rrTrtH~~~~~~~~~~n+rl

~ ~J~,fRfH~H+H+~~~+R'~fH~H+~H+~~+R+H+H~~HfHfP ~ o

,~H-' H+, l,~l;t 'L, "lnl~,Lttl"l' l','~lft,j fi i ' j' t '~l~ ,.II; 't,il' H,'ilill' t' q,~fL!, 'tll,t!-I'l',~hTltfffi' If ",-'t"' 'rl' HIT 1}1, "j ~~ ,,01 tilt I' t Ll" ,p, ~it' it 4'W- ' , ... ,~ IHl ~i; ~!i. :r..t1 iii + ! fqt +i i it'lil' t ttl, t tltlllt,· t:rt

:+:

t rrm+l' ·.-d tt :rtlittt 'Hltf ru

r

HIHt ~,

'0~~~~~~w+~~hl~t~~~h+4+~~~+rt~i4~f4f4+414~~~~~~~ o o

f~ _. , c! \{) o

r0 O~~~~~~~~~L~~~~~~~~~~~~~uu~~uu~~uu~ o o + +

1\) ro m' cu' f\) f\) q Q p-J § Q Q

,::5

b S' ~! ~ f-', 1-"

~ .... '£} ~ '"

~

H :r. ilj' ~ =<: I-'

k! H

0 Co~

>-i ~ 71

0 k! 0

1-" >-i c+ ~' ~

0 c:+ 1-" 0 c+

~ tTJ

~ ~ 0 'd to rJ (1J '1

(t-----. ~ 'pV (D >-i ~~ 1-', m

0 ~ f'-' ~,:

f-:J h I-- ~ ,

Pl ,~ 1-1) () I-~ f-~' 1-'. o 0 ~

llj (I)

c+ ~' c+ CD

Page 164: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

to all eight world areas: Europe, South America, Japan, Oceania, Far East, Mid East, South ASia, and Africa. These solid curves show that the number of daily passengers could vary from a low of 2456 in 1980 to a high of 24,440 in 2000.

Figure 106reiates the number of passengers leaving New York each day to the total number of seats required e~ch day. This figure is valid for mean, high, or low levels of traffic estimates and is independent of any year.

Two levels of patronage for the hydrogen-fueled transport are shown: 25 per-J cent and 100 percent of all business and government passengers. Every departing airplane will not be completely full of passengers so that load factors of 50, 65, 80 and 100 percent are included.

The multiple abscissae show the numbers of aircraft leaving the New York area each day as a function of their size. The number of a given size of aircraft re­quired is the number of seats required divided by the seating capacity of that type of airplane. It should be noted that many of the aircraft leaving New York each day will have arrived earlier in that day and been turned around for another trip.

It is concluded that a large transport is desired with about 300 seats because}" ? this will limit the number of flights leaving New York each day to a ;;asonable value. It is expected,· however, that passenger capacity will be dictated more by economics ~ take-off weight and sonic boom.

11. 4 CONCLUSIONS

... ~ mission analysis ·of a hydrogen-fueled transport operating in the 1980-2000 time period has revealed the following characteristics (these characteristics do not jnclllde

any constraints on take-;:off weight, sonic boom, cost, etc.)

1. Businessmen and government offcials comprise about 37 percent of the long range air traffic between the major population areas of the world. More than half of these passengers will travel between North America and Europe.

2. Based upon traffic estimates, a design range of 5,500 n. mi. is recommended. This will enable 80 percent of all business plus goverllil1ent travelers to be carried to their destinations non-stop. (Consideration of take-off weight, sonic boom, and economics may modify this choice.)

3. Incre~sing the cruise Mach number from 3 to 12' shows rapidly diminishing re­ductions in trip time.

4. Because of local time effects, no one particular cruise Mach number offers any Significant convenience for passengers.

5. If turnaround time for a liquid hydrogen fueled aircraft is essentially independent ) of cruise Mach number, the higher Mach numbers will enable Significantly greater

revenue miles to be flown per day.

Page 165: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

6. Selection of the best cruise Mach number will be dictated by technology and eco­nomics.

227

Page 166: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

N tv 00

~ v ,~

One-Fourth of Bus. Go Gov't. All Business and C'"overrunent. Passengers Pass. __ ----~ )l~ ______________________ ~

100o/c1J0% 65% 50'~ Load fa 'tor: ioo:: LO:~ 65", Load factor 5~ iil 1111 ffiTI IjJln! liN' ~r-I1{nl; . lilj~l for : rUt l i-HltU ~lflirjmnH '[1 ~pnH-H fti[l! rl ~l'i:'j! , for ,i;HhfHfH l4lfffil

mil f:il Uli ll!) t t5 iT, - IH eft 1 - irtilj hyperso lic : I~ill t j Hitlj,ell!f lL4f t~t!'rH m Il-P !H tH Hilt t!ll, 1 H,hype~sonic tranSI)Ort tIm 'I';': ,'" :;t: :m~llt: 111' lj' trmm-jJI-, -f: - ;::~ 'transpo t ~11!;~tttN:,m,r, 'f'::{! Yittl tlr ~t:~~:l'!1r:lo!'l~ mtl ffHllil,1 !!t'ljjttfnrmll.(t ,j'lirjlJ'I-l;H~IJH'I_'!l' ,;:; :::tH:u 1If+~llirlHI-'lJ-m-IH'I";-lrUl+H t1 ;,. j"l d-h. jt-· _. t1 f. . I·t, " ,. .., t t! . 1" +1- t,j.jlft.,- "I" j I -I -!t-:lii !~~ tl- jHt If!· t,· I:t 'I '

25

-r'il ,r:: 't:j\HiJ :, , ' 'il r itt! iii! 1::; itr;l~U -Ii· ' j't: l;tl ;tn r j. L ttl' iJ:ll 1-1l lif4 I tl -1 ittr -ttl crt' ~ ,I j

1 lil,j, ;"1 n11tr1t-;J ~Ir.tt 1liltr II fil rt:t iiI: i,;! ;::; I: ;':;101,::-;-11\ tlt:i:.u~liir t!:i ttl :tr,t.dJjitl f1iJ I-I+j Ifr: ,[1; tfltliIG...J.tf 1;t1HtHll: j~jll~lii:i ,:q 1 11 ')0 Ui;~ P1.' f U· i··li t.L'~.~ij H! ~-n·tl [lr- Lr!~ ; :~1 ff!: tt,; ;~·11 i;11!A"lP -+-1-( ~t;l ;·1~t"~1! :tl~ :-~n' !t, 1\1"' 7. .. t ,t 11 fifH Tr; d'i ~:;; ~rr~;n: u;l t ~_L It+ !loU tTl·

U) ~ '--- :!!~ ilil ;'ltltl!jt~wl it: ;!P I'" hr l'fl :I:j :iti j'i! T:'rlijl;~X :iH~ I:t! :!rLI Uti +ttl !tjl! Ii;, jlLtf-rtH I"tl 1111tiH trii 't. !iJ~f.lnu HI, ~!!_;~~lh~lll!t!l j,;,U tti H:j ;~:.! ; •. ,. ;- it· It,:1 ~ll +~d··· I, " :~!~ :~;, l;~L~L~:~lf.w.n! -fll' If,1 UJ l~ m.:il~ ,ct:! tJ.r: t I. rl!t'lit·"ltilll~.1J.ltl ~; p'n rill :ifi rr+d1 '11. ttt rmlLr t+~i j;;j t1 . Q) b t +1 "t-l •. j • 1·1'~ l-~'i' lUi j.lll J! 'Hi·, Ij .... ,'" I' .. :-!>~~::'-'l ~:-.:;tjll.~.;: 1-"-1-< til t m·t -- ;-; ;tTi- r.;:-;:-r-:,-1.!' H·I' ~I,', ·r t !·' tTr~ ," . IjfQj·t ;,.M' ·t-+; fHt; 1+1' , lrt ·Ift -,t! .+1 '1-1-.. -:-r-t ti-1il tlD.c1 ""I 'j," "'1-' ,-, Hh,!; t ,"I I" '1" -f', + "]'" -::rt'-f!-lL n~ ,'" ,," !;:'--""-" '1'1' '~r' 1 " 'ij ft", T'-P' -'t-' ;j - I ,," 'I" it ," ''', I", Q[-t r1:'1,~+tlitii:"!-1.·!.~ t"tf-·d1 ~~tfr!;:':;~:ir~il::;-i; ,.!!-i;,lhf.l.~lil ~t-:I~t11j~{:q~j-i ~~.i!·t .. :rt·t~.+t-~L!i,j:'~ li:- --~ "-j If,tlt-\" ~q:t·.1" 'nn'~-l1il;r··+

~ ( iii; i l:T IHi:llll, lA;l~Y1I!; litJ~n Unltll, i1;T~I\.i' H;;1~ ,il';,lU ftj '}111 i -IHlll;~-iJ.';f!, iliil~;I;·,n ~'Pi,i~ju.\tTJ-rJ t, t" lilt :Ij: l~ii!W Ilmq::~rlht,Hi~lt;tH ~ J ~i'll -~~ j-t···;-1IP ltHtiU+ T:.ft -1:; !-~1' ;:.!n r 1 J! :t!'?' !t:~:: m~!;t i- ; i-t~ iJ+ . :~t ·tt~ r~r:' ~-~r: -H-t .;:n-t· ":r 'itrt ~~rtlF ' 1-' ~ '~ n~~ In~ ~t .. : P-t-f ~t-P illt't ttl ~J~~. 4-1+41 rJ :>. -'" ""-I! 'Ii IJ't liV" +1 r.tl}ft' I , , l"t trW; '+1 ;-'1 'I': ~~ '1;= Tl +1 um H-!· 'll·~i IH"l ~ It-+- 1'1 -t- , ~f 'l't j, r , '" m'!+ ;-'1 it1 tn' ilr-' " ' tIll'" "'! ,;I P ro .,\ 'tt!...·I.!_1j_~ 1.~1. tt 'i' + ·t~ ~'T- <-. -. '" l-. 'j 1--1 1. t-~ ,.t·t <-I" -",~~~I t:<-~ -hrlttH -I~ l.r-+ ttl-or ,- lit- -\ rl" t ~t-rl! -t t~t! 1-'1' r tit~~1i~ I in . ,t, ::11 lin n-, -: :t t ,t' ~~l -', :1::1 'r:!lJll! ;r.,+q.- - ',' It r j + IIii' ilt: l'"ilJ.f'f ,- ,.:;tt~;!:,-- :~ :,'t; IH ;1" -illl 1 'n P:'fr-q: 'tHi

ti.-<-1 1) : lit i ill, [1,1 'PIf tt ltj~:r~ii H,+ t~JJ !ttT; ; ~11!i, f~ i i;: \: r -I;.rr : Hi,t i1H v-t j 1; fdt tTtj titi, '.Uftt 11, Ii il !iilllq 1 t',lt It.l'-; Ilj t .j.i-tlW-P1i 11,1+:I!U: et!!.t",ttttl QJO ~-+'.j.;' 1 I"/J 1J~1j1l:lliit,d !It''':ill.f1l-~'H'tf 1+ti .. t Jt!"ri j ''+Hd,~IHlt,t'Tj,lh!nl 11 lr±trlif It'Hil-~:t\ It -,1 "11,'lt ~ ~ qjj! ltiU t!~iP P~nH !lltF· ilm! ~liill fi~~r t Lil~lill IJIM 1m -WWmJl!tt fWHHlUi rm Ill' ~~ .. F1JW1 1hl11mHu 1I11 tiff ·llHHHll ~ t· til,i, iihljll-ti :11.( trW!)!; tHI1lJIJ'1 tJ t'!' H,t; [rH1.i'n!IWt:t.~nr: t 1 ilii l-±TL ', "-1!111q-i~ 111: IH1IU!lmrl It I iWitil! ;-ijH 11Hlq!!I!tlt1J~1l'! HdtlH IUl !.;:m t Q'rl '-" ~f·,nlH :tltJ~1t+ t, j't !:! II .if·",:·Ltftc-H, 'j'l ~ru-r.r~~ ++ ·Hl......:rr .-:J~+ -=-nr!l::t IUtlt~lt-t!-.·~tltr; II 1·11 r -I~!t Ht.t:lr-t I!ttn lt ll It ·Htt, ou ,~ll:d;tI/1 t~ilti\Htt t~i' I:I'! I: ::1 .. : -lflJ rfjirw, ;1~Lw.lfl Pfl/Itt nil ~1-ml !till/ttl lh L~iHL;J-' ~tJ1 it: l! !ttj i!'1'14~'i f l11J ll"lt fHI tt(dW ttll(t14 tnt DIH ·litlt1h ~t110 ,:-10 P-f ~H

,,,,.I:Hf+~1 tl-+~ln,·!H:-ti nl!'f-llt;J~:f~,-j.:j,!t~ttl! U!~!·l ~rL't;t! Ht-Hnfrrn·+"-H(·H+-~I+:1.;J!,.j-.; .H.t-,t·!·~Htd l\'I:tt·t!tPHlin~-+ .q In I.~t#

Hl ~ 1; I~, 1 ttl_ 'ttl !lItH;! um; : :.r,tlll·~ ,:, i ::,; rr. :l-~ ,t ; j!;"~;~ • i'Utili! tt ·HH" lIfli; 1 'it P [1 l-,:; 1j1-l- 1 til. ,Ht1:rl! "I:7f1 I,lll 11:; t'.r I, nit! lli(f' WI !i rr : lil : tti I., El~tJ 1 il'~iJJ- !-U.l·+-~rt 't:tJtlt:Tti nq_~>":r<.!l;.llils, ~ 1ft~. ~;4+ffffi"1. tit.U ~j:t.: t:,; ,t:~ H--H 'tid t.,:+ q·t'-~I-H lHt ott! 1,i' UtI ! .. :! !tL ~'tl+ ~ft+·ljt1+ili~:l~~ 1+-4.,

If) ~~ Ul Q) (lJ ~-;

,~ t4J {j) ~ .. ; or, (q :>

r:j

,~

:;:: ~:tll- l ~iJ;: H~t :1"!i ,. ~'~-;,~! ~~i~ ~1~j 7': :;;: '1:~;irr-TliLl;-:-;~"t- ;l"l.·- !"h~ ~.t·~~-t·t.t: ~i:'; +l"iltJn-I-~!~~ ,i-!t ~+"'11: .. ,ttt ,:1-+.: tn;lt:'~ :;t; li-,! I:t~"m~ 'Tlr. l-~tl' :!'~ t~q -;" ',/tjr: '/~:1 '-ji :t1' r; 'U-r 'l-j\j.if-"- ""~rr," "" "t' Lr 'to. ':[1 '-H, tt" ""'·1 t:!t 1" 1il1 d" I) j l~jlrl" I,t.-hr., ,,1. ,.",. I'" I I, ,! I "I'l1'l, , mt;i~'~, ' ilii ;;1;1;4: i;,,J~U iU1 ;irt,:t~~p; :;;: ;:; iii;;;!~ i;~:iiii !tH i/i,; I;;; ;;;; ijrl ii~l d: [;f~ j~I;,Vli i;!~i i:fn~;;i,; i~;~ ;;~;f1ti'i;~'--!I;_ inlfi-~i 1:1f ilif ~j LI.'~' +itt j;+r~l;· ~tt t·n~,~ 1- ~~ +h+~~~~~' l~t~ :.'-<-+ -':~' H" ,!-----. ~-I. : It" ~~-I-l + 1 .:..t../,...;.~ tt r-h " Irp~ '<-j'1 ~ "f ·tt" H~ ')fh tltjf+lrHr t ~'p, [fr· , 11-~' i'!

1 :j' +. ~I. n':' .;r"< -i .ll~; ~j.-; ttj t nf"l}+ rrtfj'-' : j:~ ~; 'j 1 :Yl tr ; ; tlt t:; i ~ q t: r:-ti t f~ -t:tl~ !_pt .1-4 r; ~-L:t .jl!-\ fH-l'l' 1-1 tl+-rft-rt~ tt .j jijt I:;' tt!'!lt-' t; f "r~ III "j' i-"l· tJ-~ -+tllt ~j.t1 _~;t1' _ 1'1.1 , ,-",' .IT r~tl" ,t r, ,-" ,;j ""', J I'"'! "'" ,1",1;", "I'!-'--" ,1" dH-,J'-1 ;"lllH;;' ltt :; ··r,ft- ,it t .. ,H h,-,,,~, ,+ 11 ,t 1, t" • ,.. • . -t. t .f,i-.-+t I"ft- :. +tl'l-' '+" ',., ,tl-I" ., ,~~t ~tt-·"t~lt). ... ··t· -I,)' .. f-: .~., ,.1.\ -'1.1" 1_1- 'It" ~l' i~ ~ +-·.I It " ~t ,-. .. ··tt'r-orJ'1·-. + .. !! tl

) Hi"F1 ~IL rtjf l~r' M': ~m, U; i!i: i,lh fiW :!:: :,1:; i~!L i:::tp r,?J 'f:~ iii,; rl'!FfHH :flit,P: £jirl:W~Hi fir Ith,lJint tulIP, Hi :m dWtlt1 tlHHH II: Ipl ;fl1 rH!tl ~ 1 j i :, ,n1 •. I f I Wf' ., + t l t t r~ Fp:--w-:- ~~::. ~ ~ I~ +Hf. !..~ rr I p., t~ 1 ' ~-+~+rWt ; t t H I +., - r l' t t r-1.tl ~ ~p ! 1 ,tt' tr ,-1 , ~.. t " t t· , t ~~ +t:ttri1J1 I il t t - tt- ·t' ir l't!li1'.xl <"l1';~l.i-rr.t! l 11tn ;lrq ttl 'l:- ::;1 :::; 1:I~i ['::j' I;i~ 1,:',1::; :tI!t1il il:, "l'i ,:t,li1f I"iil\: ::i;_ ;-111 t'l' ti;: :~!l :11' t i 1. ::1', :-1+'\ tlllti-ijili-!Il ::;'1 ;:, ,- 'd~;I'pt'J.¥lr:!:t"f "Ti _1. ";'" ".: 'il"'" j' "1'1" ", I++-' ,,: l!e;'" ;"T ,~" ~ll'-l+-H'j" '[;1'1" Ili+ll~j' 'ijl d, 1'1':I:ljjj!1 Hi!"'II+'

I' 1_' [Hj,'i -~; 1!~:IH-l:; ,i;; ::i: ;J':;-~r;: ~f:Y:: ~~:: ;,::; :til ~"ri ' ,;" :;,;" ;~,:; ;;:1 ;;;; ;:, ' ;'r::t:1:;ll tt'!l ,IT,'I' !;::;:;~, ;jl~ tr; ;it!iilili!IH"j: ;;:1 :'t;1 ili! ;'j'i'f,ll!!it:ltll':;;;. tit. ~i. -, ,", 'I,' I' .,.",,, , j, -'" ",,1" ,,~ - '" !,:". ", 'rl' .", ,J" I"" ,-, - ',-, '1"" i'" --" , " "" '11" ""It "Hi"'" III Ii'" ~ll III U ~'II;; ifj~. iifihitttnf i;;; ;;ii :;;; :;~: ,;:;;;j;::);i ;:ll'{;];;Ir~HrHfit7~~: 1: lui ;r~:I;it:i0;ltli; ;:;;tt;tl {:;il~ml' r rtti-rj~t;!tf;;ltlb Jjti~tt;;lltll1)I;j

o • r~ d- ~:;~: 'I. i.! 11:.iL>+~ ~.il ttl! t~_~! "-H :11., : "'-;,Hj~j rti: ~H-'iH+; tt(r+~t~~'tt-H[!:J+-;1 t,t-f~ 'j-tF t~.-t-tHtll+t-t I·H~:++-l~ ~tt~lt~·t~ .·!:nft i"ttnfatH-t+i~ ['11 ~tn-~iHt· ttU

o

I o

o

)

~~j

~~

10 I',; 20 2',; 50 35 40 45 50 Totp.l [ieats nequired Per Ihy 'l'housal1lis

50 -(5 100 125 150 17') 200 22,) 250 , I I ,-- I -, .~ I I

Number of 2(;0 PassenGer lIST Ale Required Pel' Day

I ',;0

r '()

-1 100

number of' jOu P'.ipsengcr W3T Aje Hequired Per DD.y

Figure lOti, Passengers Leaving New York vs Number of Seats Required

I 125

I 150

Page 167: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

SECTION 12.0 SONIC BOOM

12.1 INTRODU CTION

The sonic boom problem associated with the hypersonic cruise vehicle is recognized a s fundamental in any study of the feaSibility of such 8. concept. On the ba ,:;is of fairly recent work performed by Harry Carlson of the NASA/Langley Research Center, computer program methods have been developed for exploring the sonic boom intensity for various vehicle shapes, particularly from the standpoint of the "near field" effects. This program has been used in this study.

There exists substantial literature on the subject of sonic boom,e. g. , References 14 through 18. The problem is one of subjecting people and things on the ground to an essentially instantaneous overpressure caused by the passage of the shock wave over the ground. A cha:racteristic "N -wave" is developed, as shown below:

For this study, the sonic boom problem re:-;olves itself into the determination of the magnitude of the overpressure for various configurations, speeds, and altitudes, and also how this N-wave changes character during the early portions of the flight (near field effects).

229

Page 168: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

12.2 METHOD OF ANALYSIS - FAR FIELD

In the far field, the various shocks originated by the body are given sufficient oppor­tunity to coalesce into a single bow shock and a single tail shock. The classical theory, originated by G. B· Witham, (Reference 16) has been used to provide a convenient method to determine the intep.sity of the far field overpressure.

The following approximate expressions have been developed to obtain, rapidly, a first approximation of the sonic boom overpressure:

.6P = v

The total overpressure is

(M2 -1 )3/8 W1/ 2

h3/ 4 M Z 1/4 w

+~P 2 1

(1)

(2)

(3)

It should be noted that the K2 of the vplume expression and K3 of the lift expression are functions of the vehicle shape, but vary only through a faIrly limited range for practical vehicle shapes, with K2 = .62 and K3 = .59 being representative values.

The general expression for overpressure presented in Reference 16 has been non-dimensionalized in Reference 18 to yield the following expression:

~ p =

where I (T ) is'the maximum value of the integral of F (7) o

and F (1)

230

(4)

Page 169: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

')

A machine program has been developed by NASA/Langiey Research Center to determine F(T) and the integral of F(T) using the vehicle shape as input. Using this program, the procedure used to determine overpressure is as follows:

1. The chordwise lift distribution is determined for the vehicle. For a simplifying approximation, it can usually be assumed that the pressure coefficient is constant over the entire wing area, result­ing in a simple quadratic expression for a delta wing.

2. 'From J. plot of vehicle cross-sectional area (using normal cub for simplification rather than cuts along the Mach line which would be necessary for an entirely rigorous analysis) versus the non­dimensionalized vehicle length t, entet the area at each station as program input.

3. From the lift distribution data of (1) above, enter the vehicle lift at each station as program input.

4. Determine the Mach number range and altitude range for which data is desired, and enter the corresponding C L parameter as program input.

5. The resulting maximum value of the integral of F (i) from the program out­put is used in Equation (4) to determine the sonic boom overpressure These values are plotted agc;tinst altitude according to the CL parameter used in the program.

12.3 METHOD OF ANALYSIS - NEAR FIELD

When the vehicle is flying supersonically relatively close to the ground, the individual shocks do not coalesce into a single bow and tail shock. The individual shocks which are felt at ground level are, therefore, of lower intensity than the single shock felt for the far field case. Again, the classical theory has been used to analyze this problem. Carlson has found that this near field effect can be measured with wind tunnel experimentation and he has further developed the classical theory to predict these near field effects. Correlation with wind tunnel results has been good. Also, measurements of sonic boom overpressure reSUlting from low flying aircraft have been in good agreement with the analytical results.

The analytical method consists of using the F( T) values generated in the far field calculation described earlier. These values are plotted against the non-dimen-

231

Page 170: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

tionalized vehicle length parameter t, as shown below:

F(T) A

I

A line having the ~lope 1/k(h/1,)1/2 is passed through this curve in such a way that area I equals area II. The intercept "Aft above is then used in the following expression:

~= p

2 K y M F(T)

r (see Reference 18)

to determine the bow shock overpressure. The tail shock is computed in a similar

manner.

12.4 DISCUSSION AND RESULTS

Far field and near field sonic boom overpressures were determined for the following

configurations:

l. Delta wing

2. Variable sweep wing

3. Blended body

a. single delta wing

b. double delta wing

4. Scramjet

5. Supersonic transport

Far field overpressures were found for a Mach number range of 1. 2 to 6.0 and altitude range of 30, 000 to 95, 000 feet. Near field values were determined mainly at M = 1. 4. A vehicle weight of 600, 000 lbs was assumed for all hypersonic config­urations. Due to the critical nature of the overpressure problem during the climb part of the trajectory, near field and far field vaiues were examined at a representative climb condition of M = 1. 4 and altitude of 40,000 feet. A cruise condition of M = 6. a at 95, 000 feet was also studied ...

232

Page 171: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

12.4.1 DELtA WING CONFIGURATION. Sonic boom oyerpressures were determined

for the delta wing _configuration, shown in Figure 3. Overpressure values are shown

in Figure 107 as a function of altitude and Mach number. The dashed curve shows the near field effect at M = 1.4 to give an overpressure of 2.98 psf at 40,000 feet which

is a reduction of 0.27 psf over the far field value. The F (T) function used in deter­mining the near field overpressure is shm\Tn in Figure 108 for M = 1. 4 and 29,250 feet.

12.4.2 VARIABLE SWEEP CONFIGURATION. Sonic boom overpressures for the variable sweep configuration of Figure 59 are shown in Figure 104 as a function of

altitude and Mach number. At Mach 1.4 and 40,000 feet a far field overpressure of 3.65 psf is obtained, as compared with a near field overpressure of 3.50 psf. This configuration differs from the delta configuration as far as sonic boom is concerned, primarily in the lift distributions, which are shown in the following sketch.

Unit Lift

Delta Configuration

Length of wing

Unit Lift

Variable Sweep Configuration

600,000 lbs

Length of wing

The F (T) function for the near field calculation is given in Figure UO.

12.4.3 BLENDED BODY CONFIGURATION. Two blended body configurations with

different wing planforms as shown in Figures 70 and 71 were analyzed for sonic boom overpressures. The results are shown in Figures 111 and 112. Overpressure values

for the far field and near field of 3.22 psf and 3.00 psf respectively were determined for the Single delta planform configuration, as compared to values of 3.35 psf and 3.0 psf for the double delta planform configuration. These values are similar to those

obtained for the delta configuration. Typical values of the F (T) function for the blended body vehicles are shown in Figures 113 and 114.

12.4.4 SCRAMJET CONFIGURA. TION. Sonic boom overpressures for the scramjet configuration shown in Figure 84 were determined and are presented in Figurel15.

233

Page 172: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

o 1

7

6

~ 5 rn ..... 2

0.. 4 <l

2 Q) I-< 3 ;j CI) CI) Q) 1-<' 0- 2 I-< Q)

> 0

1

0

o 10 20 30

------ -------------.------_.-

• .. H-4- ... o-~ • J • ~ ?

+~ .... -t.,j, ..... ..~+-t·~ ...... .4--. !: :i. I'" ~~-+- --t.l-t" ;. . !J t.l. .. +

" +- +++ ~ .:. .;

... " ~ ~ .. ;. I .. fl ...

tt.ti ,a..+t- i .... +> .. t' r!i: -!!~ ~

2 3 4

Mach Number

40 50 60

Altitude ~ 1000 ft

~t~ ;l .. . ..... !1ti· j._ ••• l .... .l._.

~i~] :! t: "'t 1 .,

~#! .. , ;

5

70

1~+: n:t i tl.-:

..-i-• .J.

~ f-:!

6

70,000 ft 80,000 ft 90,000 ft

80 90 100

Figure 107. Sonic Boom Characteristics - Delta Wing Configuration

234

Page 173: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

r

)

)

1 Slope = ---=----

K (h/2)1/2 = .01598

where K =

K = 6.7

{y + 1) ~

/2 (33/2

o .1 .2

?\ear Field Effect

~ p = ~ y M2 F (r)

p ff~ (h/e )1/2

~p

p .00378

P = 1173

~P = -1. 4:3 PSF

.3 .4 .5 .6

t - x/i,

Figure 108. F(r) Function - Delta Wing Configuration

235

.7 .8

Page 174: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

)

7

6 +

~ rn 5 ~ l + ~

4 <3 +

I (1) ~ :l 3 til til (1) ~

eo 2 Q)

~ 1

ti .. ++1 •

0 o 1

6 +-

4 ~

3- Near @M

2

i

o o 10 20

.w-

~+tt .. :¢ ±tt •. , >~ .

t!+i- ++ ~~. f$l Hn :PH ill =p:p:

... ~n: ~:±p +

• .++. 't H+"" i++t+ +-> . ,. "-' ~ Alt . 40,00

~ • ++ f++-H

o H+

fHH t tint fH + ... +' +~it ~ tffil . . tht Ht

+ • +Hr

'+-Ht . HH ~

.+ . , ~+ .... ~ . +H ·I ~

., .H.+

f- t"; ii·i,

.I .+ Hj .: +H~ffi:

, t '±i±!;

f~ltt

2 3 4 5

Mach Number

30 40 50 60

Altitude - 1000 ft

,

-t+++ ::@.

l±= 4 ..... .4.-+ ....

tit ,-\i+

~~ ±t±:± -::tti

r& t!-

6

70

50,000 ft

60,000 ft

70,000 it 80.000 ft 90,000 ft

80 90

Figure 109. Sonic Boom Characteristics - Variable Sweep ConfigUration

236

100

Page 175: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

Slope --: .0161

\1:= 1.4 [(129.250 [1

o .1

Near Fie ld Effect

6P

P .00·11:;)

r 117:1 [}P - ,).:2:! P~F

.3 .4. .5 .6

Figure llO. F(T) Function - Yariable S\\·cep Configuration

?:17

Page 176: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

I ')

)

J

7

6

~ 5 0.-(

0.- 4 <l

Q.) ... 3 ~ Cf.l Cf.l C) ... 0.. 2 ;;.., C)

b 1

0

o

7

6

~ r.n 5 0.-?

0.- 4 <l

Q.) ;;.., ;:::: 3 Cf.l Cf.l C) ;;.., 0.. ;;.., 2 Q.)

:> 0

1

0

o 1 2 4 5 6

Mach Number

.. ~.~ ~"-i,- r:-c-tTf:: ~~~~~l~ -~~:J~~ ~~~]~-£~~::: ':J~f+?

70,000 ft 80,000 ft 90,000 ft

" .~h+ ~~-;-;-'i~~~~-::~:::~ ~~~J:;i;~~~~~~:~;-

10 20 30 40 50 60 70 80 90 Altitude ~ 1000 ft

100

Figure 111. Sonic Boom Characteristics - Blended Body Configuration Single Delta

238

Page 177: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

f

012 4- G

:\Iach ~umhcr

)

o 10 20 30 ·10 50 GO 70 80 90 100

Altitude ~. 1000 fl

) Figure 112. Sonic Boom Characteristics - Blended Body Configuration Double Delta

239

Page 178: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

(

)

)

K = 6.7

Slope = .0150

M- 1.4 @ h~ 29,250 ft

. 018

• 016

.014

.012

. 010

i=' -~ .008

.006

;;~

~ 0 .1 .2 .3 .4

t = x/Po

Near Field Effect

tiP --=.00396

P

P = 1173

tiP", 4.65 PSF

........

.5 .6 .7

Figure 113. F(r) Function - Blended Body Single Delta Configuration

240

Page 179: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

(" ~-.- .---- .. -. .----~--------------------------------------------------------

K". 6.7

Slope: .0150

Near Field Effect

M -,1.4 @ 29,250 ft 6P

P .00392 -- ..

..... "'" .-.......... ... :, ............ . i4 • ~ .... !-

"fl' ;.""; • L • .L .... +-

' ••• r"" .- ... ~ .. ___ •• , •• 1 •

• " . .;...!J 1:--,.

.0150

)

o .1 • 2 .3 .4 .5 .6 .7

t ". x/t

J Figure 114.. F(T) Function - Blended Body Double Delta Configuration

241

Page 180: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

{ I

)

)

7

6

~ en 5 ~ !

~ 4 <l

! (lJ 1-< ;::1 3 en en N (lJ 1-<

@ 0. 1-< 2 (lJ

> 0

1

o o

7

6

~ en 5 ~

!

~ 4 <l

(lJ 1-< ;::1 3 en en (lJ 1-<

fr 2 (lJ

> 0

1

0

0 1

.... " , .• , . I; ,. I I

. idt., - ~O, 000 ft

+

f+-'-4-<- ;::;:~1::r;:t -'-" r++++-

2 3 4

Mach Number 5 6

50,000 ft

60,000 ft

70,000 ft 80,000 ft 90,000 ft

2.0

i-i-+- ..;;; 1.4 ,-c-; I-iM- 1.2

, ,

ear Field Effect M- 1.4

I

10 20 30 40 50 60 70 80 90 Altitude - 1000 ft

Figure 115. Sonic Boom Characteristics - SCl'amjet Configuration

242

100

Page 181: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

f

1

)

)

--_._---" ------------_._-

At the typical climb conditions of Mach 1.4 and altitude of 40, 000 feet far field and near field overpressures of 3.42 psf and 3.05 psf respectively were obtained. This configuration is similar to the blended body configurations and therefore exhibits similar overpressure values. The F(T) function for M = 1. 4 and 29,250 feet is shown in Figure 116.

12.4.5 SUPERSONIC TRANSPORT. For the purpose of comparison a typical super­sonic transport design was used in the analysis at a weight of 450,000 lb. The result­ing overpressures are shown in Figure 117 as a function of Mach number and altitude. At M = 1. 4 and 40,000 feet a far field overpressure of 2. 29 psf was obtained and a near field value of 2.25 psf. These values are in general agreement to those shown by Carlson in Reference 19 for a similar supersonic transport design where he indi­cates that for a 400,000 Ib vehicle/far field and near field values of 2.5 and 2.2 psf are obtained at the same climb conditions.

12.4.6 CO.MPARlSON OF CONFIGURATIONS. The far field and near field values of sonic boom overpressure at a representative climb condition of M = 1. 4 and 40,000 feet for the configurations investigated are shown in Figure 118. There is little difference in the sonic boom overpressures for the delta, blended body and scram­jet configurations, however, the variable sweep configuration shows higher near field and far field overpressures. This is thought to be primarily attributed to the differences in lift distributi'On between the variable sweep and delta planform configu­rations. The supersonic transport is also shown. As can be seen, the hypersonic transport configurations show far field and near field overpressures that are, respec­tively, 1. 0 psf and 0. 8 psf greater than the supersonic transport configuration.

Far field sonic boom overpressures for a representative cruise condition (M:: 6.0 (a)

95,000 feet) are also shown on Figure 118. There is little difference in overpressure

among the configurations studied with b. P of 1.25 psf being a representative cruise value.

12.4.7 CONFIGURATION VARIATION. In order to determine the effect on sonic boom overpressures of variations in configuration, the delta"configuration was chosen as representative and the following parameters investigated:

1. fineness ratio 2. body shape 3. wing loading 4. wing aspect ratio 5. take-off weight

The effect of each of these parameters is discussed in the following paragraphs.

12.4.7 .1 Fineness Ratio. Body fineness ratio was varied from 7.25 to 15.5 _about

the baseline configuration fineness ratio of 10.9.

243

Page 182: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

M = 1.4 @ 29,250 ft Near Field Effect

K= 6.7 llP .00396 -= p

.020 P = 1173

.01" llP 1173 (.00396 :w 4.65 PSF

.01l!

.014

.012

.010

.00 0

) .006

o .1 .2 .3 .4 .5 .6 .7

t :: xli

Figure 116. F(T) Function Scramjet Configuration

) t-• 244

I

Page 183: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

! -)

(.J

p.. <l

7

G

5 ~ [fJ p..

I 4 p.. <l

') C,) v .... ;j {fJ (fJ C,)

2 .... 0. .... ill > 0 1

°

:::L:~'. ::: j"i __ ~_ ~r .. :[:: -+-: _:-J.:j_:~_::+._;:_: .... 11 : ....... oj..:.\ l~. ::' 3-01""-, (--)(--+)0-'--f~~t_.-. =:.=-:=:1:,'=::::

:.:.' :.' '.1'.' :.:. ;.:.::::.;V' .:.:::. i :. i J.. J t :.;;:~~ .. I. . .• _ .. , .. ' '. . .-

: I :: ;-~:::... ' ~ : 40, 000 ft \ . . ;.,L • • ~.--=50,OOOft--l::lfij~' __ .~_ ~ :60, 000 ft ~._

'11 ... : '.: ~. I : --: \::: 70,000 ft .. . :i· Ii i .. I . . : 1 :::.. . t

l, I .: I

I" I I I. , +--- . ·-·-t- -- __ ._1 ~-

.. j......... I .. ' ;: :.;: !

0 ') 6

... ... ':'::, ::, .... : il ,..:', , . I 7 _.--:.,:::: .:.(. . , ~ I I

L-~-4--+--+--+-~~~~: : : i I .- .. . . j. :-r-:---:-'" ---4·--- -: 1-' ---!-----I-_. , .. . -+. , -.. -. +--t---..t

6 -... :.::: ....... ". .::: I: Ii' I . -\

5 t-~-.~:+-: -: : :+:-; :-+ .•. -.' .-tOo -: . .....j:: 11-:-; ;+-' :.-' "+--V7-1 +-, +_ ...... :-. -t-. -!I-+---.-:-.: . -+. ---Li-': .~:.: ~~~i~~~ ~:~ :;~; ;.:i~ :::~ ··--1,· 11·\-:-:

Figure 11 7. Sonic Boom Characteristics -- Supersonic Transport

24~

Page 184: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

------~--,

.~ v J

Overpressure,..,.. 6P ,..,.. PSF

o ..... 1:\:1 c,., tJ::.. c:.n 0) -l

~ ...... ~ Delta Configuration I-j C1> ..... l-' 00 . en 0 ::s ..... ()

to 0 0 s

I ~ ~ 1/ 1/ 0) ..... . . 0 tJ::..

Variable sweep8 @ @ Configuration ~ to Z "rj tJ::..

Jl) c:.n C1> Jl) 0 I-j

~ I» I-j ~

0 I-j "rj 0 ":tj 0

~ 0 .....

0 ......

0 C1> ..... C1> (") ::r'

~

..... ~ C1> ..... .....

0.. ..... 0.. ..... 0..

Blended Body Jl)

C\:) () .....

tJ::.. C1> Si ng le~~~! t_~_g~~!~!:ati on

m I-j ..... 00 ::1: () 00

I Blended Body (") 0 Double Delta Configuration ::s ....., .....

(Jq t: I-j Jl) ..... ..... 0 ::s (')

SCRAMJET Configuration 0

~ Jl) I-j ..... 00 0 ::s Supersonic Transport

If

Page 185: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

( ) The total volume was held constant while the body length and cross section were varied to provide the fineness ratio variation. The far field and near field sonic boom over­pressures are shown in Figure 119 as a function of fineness ratio. Increasing fineness ratio produces a slight decrease in both far field and near field overpressure.

)

12.4.7.2 Body Shape. The effect of body shape was investigated by holding the total volume constant and reducing the maximum cross sectional area and redistributing this volume in the front of the vehicle, producing an effective cross sectional area distribution as shown in the following sketch.

Effective Cross Sectional Area

reduced maximum

Vehic le Length

______ --"base line"

The maximum cross section was reduced 10 and 20 percent, which, when redistributed in the forward part of the vehicle effectively "blunts" the vehicle. This effect on sonic boom overpressure is shown in Figure 120. There is little effect on the' far field over­pressure; however, bluntness is seen to produce a significant reduction in the near field overpressure, wIth most of the reductIOn occurring over the first 10 percent reduction in cross sectional area. This is a significant effect in that near field sonic pressures of less than 2 psf are realized. Carlson, in Reference 19, records a similar effect for the supersonic transport.

The resulting increase in take-off weight due to an increase in body bluntness and con­sequently the increase in drag is shown in Figure 121. For a 10 percent reduction in maximum cross sectional area, the take-off weight increases by 2.7 percent while the sonic boom overpressure is reduced by 41 percent.

12.4.7.3 Effect of Wing Loading. The effect of wing loading was determined by holding the weight fixed at 600,000 lbs and increasing wing area. Overpressures for wing load­ings of 60 and 70 psf were determined in addition to the "baseline" vehicle with a wing loading of 80 psf. Figure 122 shQws there is negligible effect of wing loading on either the far field or near field overpressures. This is attributed to the small change in effective cross sectional area distribution associated with these wing loading variations.

12.4.7.4 Effect of Aspect Ratio. The effect of wing aspect ratio on sonic boom far field and near field overpressures are shown in Figure 123 to be small. Wing aspect ratio was varied from 1. 0 to 2.0 for a fixed wing area. The wing position relative to the body was also held constant.

247

Page 186: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

I\:l

'''" 00

'---'

~ rn Il1 l

@j

Q)

6

5

'4

~ 3 rn Ul Q) H

e 2 Q)

6

".,..,../

Far Field . . ___ . Near Field

.& • Baseline Conf guration M :: 1. 4 @ 40, 000 t <

..

,J ... , + '. :j:'" ' .. . f' fftJ . . ,

... "1:

IlJ s: .... ,

rt- ,.

t. ,.

.,

, .

i :1' r

J i

It 1· ~ J. t

:rJ I ., ..

'~' r ilfH~ it' t j . t . Ht '+ rl 1r :t. . . +-' ' ·t'

. .. rtfl!f rTf" . Hi' , :t . . Itti .. ,j + . i .j., .. J ~r, . -1

·l :1' .• .. t.· ,;: +' t, ,.

5 6 7 8 9 10 11 12 13 14 15

Body Fineness Ratio

Figure 119. ~ffect of Body Fineness Ratio on Sonic Boom

J

o'

H .. In . ' ~'ntjf! tl-

.,

. ,

16 17 18 19 2 o

.. ,

..

Page 187: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

700

600

TAKEOFF WEIGHT

(1000 LB)

500

o 10

Percent Reduction in :VIax. Cross Sectional Area

Figure 120. Effect of Body Shape on Sonic Boom

~ /l ~ .-

<: ~ " '\J 7

~2~:::=:::: -=--~r-~~~t:~;_ i~~~: ;~::~t:::: ;-::.- -,'1---:- -:- ,-r-:---'" - :~.r:-:: ::-:-: :~:: :~~: -=-:=-G:--:::

f----"- :-::::. ~:::- :-. -.. . •. : r:- : ..: :: -- t ...:.~: ::.: .. :: : -:: -:. . ... .. - -

~~~~~~;~~J2~~~ !i:~ _~1~~ ~~~ :::~ ;~:~ ~ ;~: J~ E : ~.-. ::: "~ ~~_:;;~: :::?~: ~~J:~::::: ~¥~~-:

:::: ;:: :::-~ :~~? :-~ ~~~:~:~K~ ~: :f:~: ~:::r:: ::t< :: :~r~j~'1 2. 9 ~~ ~ ~~:- -~ ~~J 1. 7 :::0 :.::>~:: 1 ::. : - 1. 6

~=-:l?:.~ ~~~:~:~-:::-:;-:::::;~t=~~f:== -~=::::: ~::ir=: :~~~J I

o 10 20

% REDUCT! ON IN MAX. CROSS SECTION

Figure 121. Effect of Body Shape on Take-off Weight

249

20

SONIC BOOM ( PSF)

Page 188: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

~ rn 0.;

( 0.; <l

~ Il) ~ ;:l [J) [J) Il) ~

0-

) ~ Il) :> 0

J

Delta Configuration

Far Field

_ _ _ Near Field

7

6

5

4

3

2

1

W". 600,000 lb

£ • Baseline Configuration M = 1. 4 @ 40, 000 ft

, .

o ,llllll iii II ! i III II! II i ! ! IIIIII111 ! III i!lli i! I i I ii Iii i i! Iii! II! I! Ii! I iii Iii I! ! i ! II! ! ! I! i I ! Iffl#l 60 70 80

Wing Loading ~ W /S '" Ib/ft2

Figure 122. Effect of Wing Loading on Sonic Boom

250

Page 189: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

Delta Configuration ___ Far Field

-Near Field

.& • Baseline Configuration M = 1.4 ((1.; 40,000 ft

7

6

5 ~ lfJ p... 1 4 p... <l

Q) 3 ... ~ CIl CIl Q)

2 ... 0.. ... Q) :> 0 1

° 1.0 1.2 1.4 1.6 1.8 2.0

Aspect Ratio

Figure 123. Effect of Aspect Ratio on Sonic Boom

251

Page 190: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

12.4.7.5 Effect of Take-off Weight. The sonic boom of the delta wing configuration for take-off weights of 700,000 and 800,000 lbs was calculated. Figure 124 shows that increasing take-off weight increases both far field and near field overpressures, with the overpressure being roughly proportional to the square root of the weight.

12.5 MISSION SONIC BOOM CHARACTERISTICS

The sonic boom overpressures experienced along three typical cruise trajectories were determined and are shown in Figure 125. A 5,000 n. mi. cruise ra.."lge was assumed at cruise Mach numbers of 3.0, 6.0 and 12.0. A 600,000 lb take-off weight blended body was used as the vehicle. The figure shows far field overpressures of approximately 2.9 psf during the first 150 miles after take-off and overpressures of approximately 2.25 psf just prior to landing. For all three cruise Mach numbers, overpressure levels during cruise were less than 1. 5 psf. It should be noted that the values shown are far field values and, therefore, near field effects during climb and letdown will reduce the overpressures somewhat. For instance, as shown on Figure 112 at M = 1. 4 and 40,000 feet, a reduction of 0.35 psf is realized. Although values of overpressure of less than 1 psf are shown during cruise, it should be pointed out that the theory used in the analysis at these hypersonic Mach numbers has not been verified to date with experi mental data.

12.6 CONCLUSIONS

The following conclusions have been reached as a result of this study:

1. The far field sonic boom overpressures for hypersonic transports are approximately 1 psf greater than those obtained for the supersonic trans­port during the climb segment of the trajectory.

2. There is little difference in the overpressure level for the configurations considered. The variable sweep configuration had the highest over­pressure and also the least near field effect.

3. Aspect ratio, wing loading and fineness ratio have little effect on over­pressures. These parameters will therefore be selected for minimum take-off weight or to meet runway requirements for take-off and landing.

4. Bluntness of the nose of the body has a pronounced effect on the near field overpressures. Near field overpressure levels of less than 2.0 psf were obtained for the representative climb condition, with only a small penalty in take-off weight. This is an area for futher study during Phase II.

252

Page 191: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

5

4

3

,) 2

o 600

:-+*

'TI-+

700

Delta Configuration

Far Field Overpressure

'++t r-"

r+-' I

r ,..;.

-j-1-

:;..::± --T+!- --1=+:;:!:

~. 0+:

i-+---t-i::!; . .;.::±::. ' +-i---i- ~-:-

. f+-7 ,-"-'-. -1-,. j:~ .:..::r:: ~,+- ++-:- ltt;: .-:J:::tt

800

Takeoff Weight ~ 1000 Ib

Figure 124. Effect of Takeoff Weight on Sonic Boom

253

Page 192: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

\,--, \-/ J Blended Body Configuration

Mach 3.0 Cruise @ 80,000 ft

___ Mach 6.0 Cruise @ 110,000 ft 4~nn~~~~~~~~~~~~~~~~~rrh~'~nn~~~~~~~~~~~~~~~~~~~~~~~~~

~3 P-4

P-i <l

? Q) H ~2 Ul Ul Q)

H I'V P. 0. H ..,.. Q)

?

I 0

1

:tillllflHtlHlllliHllnmllUlHtlnHUUttHlHHlltHUHHtnnnJlllmtHlHltJUlfnalWnnmH1HlHtH1i

-

o~~ww~ww~~~~ww~~~~~~~~~~~~uw~~~~~~~ww~ww~ww~~~

o 1000 4000 5000

Range - n. mi.

Figure 2. rYrission Sonic Boom Characteristics

Page 193: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

A e

A(t)

A " e

B(t)

d

F(T)

F' l

h

I(T 0)

) Kr

K2

T.T

l'..3

i

M

DP v

DP i

6P . t

6p

P

P a

p 0

q

)

12.7 NOMENCLATURE

A(t) + B(t)

2 Cros:-;-sectional area/ ~

Second derivative of A with respect to t e

2 q:Cx2 f; , dx o i

Diameter of equivalent body, ft.

__ 1_ j T Ae" d ~ 2rr 0 FT-~

Lift per unit vehicle length, lb/ft.

Altitude, ft.

Maximum value of integral of F(T)

Reflectivity factor (taken as 1. 9) = (y+ 1) M4//2 S3/2

Vehicle shape factor in volume expression (.62 is representative value)

Vehicle shape factor in lift expression (.59 is representative value)

Vehicle length, ft.

Mach number

Sonic boom overpressure due to vehicle volume, psf

Sonic boom overpressure due to vehicle lift, psf

Total overpressure, psf

Total overpressure from general solution, psf

Reference pressure = -rp-T, psf ""a -0 Ambient pressure at flight altitude, psf

Ambient pressure at ground, psf

Dynamic pressure, psf

255

Page 194: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

t

w s y

Tand t..

NOMENCLA'IURE (CONTINUED)

xl t, non-dimensionalized distance aft of vehicle nose

Vehicle gross weight, lb.

JM2 - 1

Ratio of specific heat for air (1...: 4)

Dummy variables of integration, in same units as t

256

Page 195: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

13.0 COST

Although for a hydrogen fueled commercial transport costs are a fundamental con­sideration, during Phase I, the extent of the cost analysis was to help in the selection of the configurations to be used during Phase II, rather than to be a detailed analysis of a hydrogen fueled transport. The analysis was, therefore, based on extrapolations of the supersonic transport, XB-70, and subsonic jet transports and not on engineer­ing and factory estimates or specific route combinations for a particular design.

The main effort during Phase I was to establish the methodology and obtain typical values. A computer program was established to enable these comparative costs to be obtained rapidly.

13.1 COMPUTER PROGRAM

Reference 24 describes an approach to a cost program for multi -stage boosters that uses a weight/sizing routine to "drive" a cost program. Changes in a performance parameter which changes the weight and size of the vehicle is then reflected in changes in .cost. By using the weight/sizing "parts list" plus appropriate mathemati cal re­lationships, changes in a performance parameter can then be evaluated in terms of its cost. This same approach was used for the hydrogen fueled transport cost model.

Figure 126 shows the flow of the program which consists of seven sub­models, as follows:

1. Weight/Sizing. The output of this sub-model is a self consistent list of weight and size data. This sub-model is the same as that used in the over-all vehicle synthesis program and which is described in Section 3.2. 1.

2. First Unit Cost. The output of the weight/sizing sub-model becomes the input to the first unit cost sub-model, and uses cost estimating relationships such as dollars per pound or dollars per square foot to determine the cost of each com­ponent. The aggregate of these costs results in the first unit cost. This esti­mate is re-evaluated as required to be consistent with changes and refinements in the vehicle's design.

3. Research, Development, Test and Eva Iuation Cost. The first unit cost is then input to the RDT and E sub-model according to the requirements of a deve lopment

257

Page 196: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

WEIGHT /SIZING SUB-MODEL

FIRST UNIT COST SUB-MODEL

RESEARCH, DEVELOP­MENT, TEST AND

EVALUATION COST SUB-MODEL

NON-RECURRING COST SUB-MODEL

RE CUR RING COST SUB-MODEL

OPERATING COST

SUBMODEL

BASIC PARAMETERS SUB-MODEL

Figure 126. Cost Program, Flow Schematic

258

Page 197: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

j

schedule. This schedule is organized to reflect the manpower and materials re­quirements necessary to attain some predetermined operational goal; e. g. , 0.95 mission reliability, Mach 6 speed, etc. A typical development schedule would show the manning and material requirements for appropriate time intervals of development for each of the vehicle's components. The aggregate of the RDTE cost elements is the first major system cost component, and the completion of this phase of system development is a prerequisite to the operational phase.

4. Non-Recurring Cost. For the operational system, the RDTE facilities are expanded and new ones added to meet the needs of the operational system. This expenditure constitutes the second major cost component, or non-recurring cost, and is esti­mated as a function of vehicle size, complexity and the projected use rates of the vehicle.

5. Recurring Costs. The final component of system cost is the recurring, or oper­ational costs. This cost is based on estimated schedules for use and production necessa.ry to attain the ;mission objectives. that is, the transportation of a quantit.y of cargo and passengers between points A and B within the operational constraints of the vehicle.

6. Operating Costs. The accumulation of the annual operating costs over the system lifetime is the total operational costs and the sum of the RDT and E noh-recurring and recurring costs is denoted as the total system cost. The operating cost is :si.mply 3 + 4 + 5, with the addition of certain administrative and operational expenditures associated with a commercial transport operation. The resulting total cost structure is divided into two parts--indirect and di rect costs. The indirect costs are the RDT and E and administrative costs associated with the operational sys-

irec cos s mc u e a e recurrmg an non recurring costs accumu lated in the previous models with the addition of insurance to account for losses of primary mission equipment.

7. Basis Parameters Model. This prints out the assumptions that are made and en-· abIes the results to be interpreted qUickly and clear ly.

13.2 ASSUMPTIONS

In order to establish approximate costs and so help in the selection of the Phase II con­figurations, several broad assumptions were made:

1. A successful supersonic transport is assumed as the technological baseline from which to deve lop the hydrogen fue led transport.

2. An independent turboramjet engine design and development program.

3. A 15-year system lifetime.

259

Page 198: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)\ / )

»)

))

4. Typical development and production schedules.

5. An operational fleet-size of 50 vehicles is accumulated over the system lifetime to the year 2000 A. D.

6. "Learning" effects are considered on vehicle use and production rates.

7. Scaling effects on vehicle weight and size (volume and wetted area) are used when appropriate.

8. Total flights for the system are based on a vehicle having an average block-to­block speed of 2500 n. mi. per hour and an 8-hour per day use.

9. Mission re liability is assumed to be unity.

10. Vehicle losses and replacements are accountable in the form of 100% replacement insurance for the primary vehicle and ground support equipment. ( Current jet transports use 12% initially, reducing to 5% at the end of 15 years. 17% to 8% were assumed for the hydrogen fueled transport to reflect higher state~f-the-art.

n. System costs reflect the operational and implementation development for one city­pair only.

13.3 TYPICAL COST

USing the delta wing baseline configuration as a typical example, the print-out of the computer program is shown in Table 32. This table shows the print-out for each of

iscllssed'in Section 13 1 Included in the operating cost prjnt-ollt are three cost effectiveness parameters; i. e., cost per flight hour, cost per flight mile and cost per seat mile. These are shown for both the direct cost and for the total system cost. Direct operating cost as computed by the 1965 A TA formula is also shown on page 264. The DOC computed by either method is similar. The Convair method is about. 1% higher because of the inclusion of some ground fueling facilities.

As mentioned previous ly, the values shown in Table 32 were obtained from extrapolations of the cost of XB-70, SST and subsonic jet aircraft, solely for the pur­pose of helping in the selection of the Phase II configurations. A more rigorous

analysis will be made during Phase II.

13.4 COST SENSITIVITY

To help in the selection of the Phase II configurations, va riations in three ba sic parameters were investigated; i. e •• range. passenger capacity and fuel cost. The re­sults are shown in Figure 127. This shows: (a) that DOC is very dependent on the cost of the hydrogen fuel and (b) that the knee of the DOC curve occurs at approximately

200 passengers and 5,000 nautical miles.

260

Page 199: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

ROT+E COST $M 4670.36 /J tESIGN AND DEVELOPMENT 1600.94

/ AIRfRAME 495.43 PROPULSION 705.01 ASTJ~ {ONICS 26.44 MISCELLANEOUS SUBSYSTEMS 316.25 SUPPORT EQLIPHENT 12.50 SYSTEHS ENGINEERING 45.32

TOOLING AND SPECIAl EQUIPMENT 35.6Q AIRfRAME 35.60 PROPULSION o. ASTRIONICS -0. MISCELLANECUS SUBSYSTEMS -0.

SUBSYSTEMS TEST HARDWARE 2074.68 AIRfRAME 200.01 PROPULSION 1334.01 ASTRIONICS 6.58 MISCELLANEOUS SLBSYSTEMS 485.62 SUPPORT EQuIPMENT 48.47

SUBSYSTEM TEStiNG 65.74 AIRfRAME 25.90 P~OPULSIGN 16.40 ASTR IONICS 0.94 MISCELLANEOUS SlBSYSTEMS 11.25 SUPPORT EQ~IPMENT 11.25

STAGE STATIC TEST HAROWARE 177.72

) AH~FRAME 66.67 P~OPULS ION 22.23 ASTRIGNICS 3.29 MISCELLANEQUS SLBSYSTEHS 69.37 SUPPORT EQUIPMENT 16.16

STATiC TEST ANt ACCEPTANCE 41.51 OPFRATION 7 'iO

TRANSPORTATION 0.00 PROPELLANTS 2.51 TEST SUPPORT 31.50

FLIGHT TEST HAROWARE 511.01 AIRFRAME 200.01 PROPUL SIGN 66.10 ASTRICNICS 9.86 MISCELLANEOUS SlBSYSTEMS 208.12 SUPPORT EQLIPMENT 32.31

vEHICLE FLIGHT TEST 151.16 OPERATION 28.12 PROPELLANT S 117.20 TRANSPORTA T ION 0.00 RECOVERY o. RECONDITIONING 5.84 M ISCELLANEOU S o.

(J Table 32 (cont'd). Typical Cost - RTD & E Costs

262

Page 200: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

OPERAT leNS CCST HARtIoORE

AIRFRAME PROPIJL S leN ASTRICNICS M1SCELLANECUS SUBSYSTEMS

ACCEPTA~CE OPE~ATICNS PERSCNNEl PROF ElLAN T S SliPPOR T

LAUNCH OPERATI(~S PERSCNNH TRAI\SPORTAIICN PROPELLANT ~ SIJPfOR T

RECOVERY OPERAIIChS IlECONCIlIONlNG

INSPEC TICN REPLACEMENT EXPENDABLES wEARGLT/OVERHAuL/REPlACE upon ING SFAR ES

SUSTAINING ENG[NEERING AIRFRAME PROPULSION ASTR ION Ie S MlseELLANECuS SIJBSYSTEMS

TOOLING AIRFRAME PROFI..L SICN ASTR leN ICS MISCELLA~ECUS SLBSYSTEMS

~ I SCElLANEOlJS

FAC IL IT lES ~ANUFACTURING fACILITIES

AIRFRAME PROPUL S leN ASH ION res M!SCELLANECUS SLB5YSTEMS

TEST FACILITIES . ~ ,~ ... ''-

PROPULSION ASH ICNICS MISCELlANECUS SLBSYSTEMS STAGE TEST FACILITIES

(EVELOP~ENT LAUNCh FACILITIES PAD RELATE£: ASSEMBLY BLILDING ANt CHEC LAUNCH CENTER RELATED AND G~O~ND SUPPORT EQUIPMENT

OPERATICNAl LALNCh FAC. A~D EQ PAC RELATEC ASSEMBLY BLIlDING A~D CHEC LAUNCh CENTER RELATED AND I GRCLN~ S~PPORI EQUIPMENT I

RECovERY ANI: RECGt\OITICNING FA~ RECCVERY FAC. I RECCNDITIOhING FAC. I

~ISCELlANEOUS FACILITIES TRAINING I SIT E AC TI ,.AT ION [

Table 32 (cont'd).

i I I I

I I

-I Typl

I I

I

,

Page 201: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

OPERATING Cd>TS

MAINTENANCE PRIMARY VE~I.ClE

SLPPORT EQUIP~ENT

fACILITiES fLIGhT OPERATIGNS

fLIGHT PAY ANC ALLOWANCES PROPfllANT,Oll, LLBRICANTS

CAf ITOL ACCOlNT 5 INSURANCE (EPRECI~TI(N

TOTAL SYSTEM ~IRECT AVERAGE A~NUAl OIRECT·

IN_DIRECT COSTS SALES AND SERVICE

, ADMINISTRATION ReTE

TOTAL SYSTEM INDIRECT

TOTAL SYSTEM COST

COST EfffCTI~E~ESS COST PER fLIGHT tR(UCLlARSi COST PER FLIGHT ~IlE(D(LlARS.

COST PEK SEAT ~IlE (CENIS)

A TING COST AS CALCULA TED lULA (1965) ,

CPSM

trIONS 5.409 W Ca:lTS 0.027

3.997 r;a:lTS 1.385

iENANCE 0.159 IPMENT 0.t59

I

0.826 I 0.826 IPMENT I EASICPARAMfTERS SYSTE:M LlfE

MISSION RELIABILITY 1 [ING COST LESS (RDT&E) 6.394 I

RClTE TRIP TIME fLIGt-:T TIME:

GRGtNO M~NEuVER TIME LTILllATICN USEfUL LeAC CARGO NU~BER Of PASSE~fEKS

LC,:lC fACTCR CR E w I.

FLIGHT CREW

ATTENDANTS CESIGN PRCPEllA~1 FLIGHT PRGPELLANl GReSS TAKE-Off ~T.

e A SIC 11'4 V EN TOR Y

EX,RA vEhICLES REPLACEMENT VEHICLES

TOTAL NLMEER VEbICLES FLIGHTS PER YEAR

TOTAL FlIGrTS TOTAL PAYLOAD

1.(C0001 .679 I 1.(.CO(,OijrING COST INCLUDING RDT&E 7.073

5COO.Q 2.0~

.1.75 I 0.25

8.0 n

5001C.O 1 '1-' AI (8 I 13(.00.0 ut! lzatlOll per C hrs day) 16t; • 0 tion period

O. 8 abin crew 8.0 H2/flight @ $.20 per pound

4.00 ~perA/C

~le city-pair range 4. CO ~hic1e ~~-g-' -" ~LL 1~:~~r~_to_-_ru __ OC_k __ s~ __ e_d ________________ ~1 5'.1 9419.9,

1 .~)( 42.0l o. G. O. i

50.0j 1460.0

61320.0 6e7660.0~

34301.8

Table 32 (cont'd). TYP1i

264 I

,.

Page 202: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

-Q) .... ..... e .... ro Q) [Jj

,.... Q) 0. [Jj .... c: Q) u -.... [Jj

0 U be c: ..... .... ro ,....

) Q)

~ .... u Q) ,....

Ci

12

10

8

6

2

o 4

100 o

TYPICAL FOR FINAL DELTA WING COr\lFIG.

+ H+H

5 200 20

Figure 127. Cost Sensitivity

265

6 300 40

Range (1000 n. mi. ) No. of Passengers Fuel Cost (cents/lb)

Page 203: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

l

) J

)

)

14. a SELECTION OF PHASE II CONFIGURATIONS

From the data shown in the previous sections, an over-all system comparison can be made and the Phase II configuration selected.

14.1 PASSENGER CAPACITY

Table 33 shows the significant data which influences the selection of passenger capacity. 100, 200 and 300-passenger vehicles are shown. The first line shows the take-off weight (the delta wing configuration was used as being representative) and the large growth in take-off weight as the passenger capacity is increased from 100 to 300 passengers. The second line shows the number of flights per day leaving New York (the busiest terminal) in the year 2000. This is taken from Figure 106 (broken lines)

and assumes an 80% load factor. The third row shows the total operating costs 'and the

fourth line shows the approximate values of sonic boom during climb at Mach 1.4.

From the values shown in Table 33, a 100-passenger capacity is too costly and will impose significant air traffic congestion problems. A 300-passenger capacity is the best from these two points of view, but has higher values of sonic boom over­pressures due to the heavy take-off weight. These data suggest that a 200-passenger capacity is a reasonable choice

14.2 DESIGN RANGE

Table 34 shows design ranges of 4, 000, 5,000 and 6, 000 nautical miles and the factors that influence the choice between these values. The first line shows that take-off weight changes significantly between 4,000 and 6,000 nautical miles. The second line shows what percent of the total business plus government passenger traffic can be carried non-stop at these design ranges (from Figure 100). The third row shows a large increase in operating cost at the longer range. The fourth line shows'increases in sonic boom because of the effects of take-off weight.

From the values shown in Table 34, a design range of 4,000 nautical miles is too short to carry an appreciable percentage of the passenger traffic non-stop while 6,000 nautical miles results in high costs per seat mile. A design range of 5,000

nautical miles is a fairly good compromise and will accommodate routes from Los Angeles to Europe and Tokyo, as well as from New York to South America (Figure 99).

266

Page 204: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

NUMBER OF PASSENGERS

100 200 300

TAKE OFF WT. (LB) 402,000 571,000 732,000

FLTS/DAY (NEW YORK) (Fig. 106 144 ~')

1- 48

y/SEAT MILE 9.9 h,4 '), 8

SONIC BOOM (PSF) 2, 7 3 .) . ~ 3.4

Tah Ie 33. Se Iection of Passenger Capacity

) RANGE

4,000 5,000 6,000

TAKE: OFF WT (LB, . 11-:11 fififi C::7i 000 765,000 I , I

J

I I

PASSENGERS NON STOP 43% 69% 86)0 I 1 ~/ SEA T l\ULE 5.6 6.4 I 9. O~,

I I , I

f I

ONT BOO I k'\ 2. 9 3. 2 3.45 I S Ie

Table 34. Selection of Design Range

)

267

Page 205: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

)

14.3 CONFIGURATION SELECTION

Table 35 shows the four candidate vehicles as finalized in Sections 6.0, 7.0,8.0 and 9.0 and compared in Section 10.0. These are the delta wing, variable sweep wing, double delta blended body and scramjet configurations. Table 35 shows the necessary data required to select between these configurations.

The delta wing and variable sweep wing configuration show comparative data for these two competitive wing shapes. For the subsonic cruise and loiter require­ments established in Figure 44, the delta wing is chosen over the variable sweep con­figuration since it has better all around characteristics. This choice could be changed if more subsonic range is required (Table 23 showed that the variable sweep is less sensitive to increases in subsonic range requirements because of its better subsonic lift-drag ratio). The variable sweep configuration is, therefore, retained until air traffic control requirements and mission failure effects have,been defined in the Phase II studies.

The double delta configuration is shown in the two right-hand columns of Table 35 for turboramjet and turboramjet/scramjet propulsion systems. The higher cruise Mach number of the scramjet gives shorter trip times and better utilization; however, all other features weight heavily against the scramjet. The costs are nearly 50% higher because the high take-off weight requires more fuel. The scramjet con­figuration is therefore dropped.

The chosen configurations are, therefore, the delta wing and the blended body", with the variable sweep retained until the subsonic cruise requirements are better defined. These configurations are sufficiently different to give depth and meaning to the studies to be conducted during Phase II. Table 36 shows the areas to be studIed in Phase II and the configurations that will be used.

268

Page 206: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

I~

~ O"l to

I

~

.,

CRUISE MACH NO.

TRIP TIME (5000 N. M.)

UTILIZATION (FLTS/DAy)

TAKEOFF WEIGHT

SONIC BOOM (M = l. 4)

APPROX DOC (~/ SM)

SELECT

RETAIN

Table 5.

0 ~

"

VARIABLE

DELTA SWEEP BLENDEr

WING WING BODY SCRAMJET

~ ~ -cC} --CE}-!

6 6 6 8

2.23 2.23 2.23 1. 97 I

7 7 7 8

537,040 602,483 543,793 846,927

3.2 3.7 3, 1 3.4

6.4 7.2 6.5 10.1

• • •

Selection of Phase II Configuration

-

Page 207: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

) DELTA VARIABLE BLENDED WING SWEEP WING BODY

~ ~ ~ ,

AERODYNAMICS • • SONIC BOOM • • AERO HEATING • INLET/ENGINE MATCHING • INLET/ENGINE COOLING • STRUCTURAL CONCEPTS • • INTEG. /NON INTEG. TANKS • A TMOSPHERIC TEMPERATURE •

) ENGINE FAILURE • • FUEL RESERVES • • TAKE OFF & LANDING • • FUEL SYSTEM • GROUND FUEL FACILITY • . POST FLIGHT • AIR TRAFFIC CONTROL • • FINAL CONFIGURATIONS • • •

) Table 36. Phase IT Study Areas and Selected Configuration

270

Page 208: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

)

1.

2.

3.

REFERENCES

Request for Proposal from Ames Research Center, ?vloffett Fie 1d, No PROC RFP ..\-10597 (WEB-32), dated 29 April 1965.

Anon. "A Proposal for Study of the Performance Potential of Hydrogen- Fue led, Airbreathing Cruise Aircraft, General Dynamics Convair, 26 May 1965.

Jarlett, F. E., Outline of Final Report and Schedule for Contract NAS2-3180. Letter No. 581-5-1836, dated 9 September 1965.

4. Jarlett, F. E., First l\Ionihly Progress Report, GD/C-DCB-65-040, dated 17 October 1965.

5. Jarlett, F. E., Second Monthly Progress Report, GD/'C-DCB-65-042, dated 17 November 1965.

6. Jariett, F. E., Third l\Ionthly Progress Report, GD/C-DCB-65-046. dated 17 December 1965.

7. Jarlett, F. E., First Quarterly Presentation Charts 1 Report (:;D/ C-DCB-66-002,

dated 5 January 1966.

8. "Theoretical Prediction of Prediction of Pressures in Hypersonic Flow with Special Reference to Configurations Having Attached Leading- Edge Shock, " Mead, H. R. and Koch, F., ASD TR 61-60, Parts II and III, May 1962.

9. "Pressure Distribution Tests of Several Sharp Leading Edge Wings, Bodies and Body-Wing Combinations at Mach 5 and 8," Randall, R. E., Bell. D. R., and Burk, J. L., AEDC TN 60-175, September 1960.

10. "The'Aerodynamic Forces on Slender Plane and Cruciform-Wing and Body Combinations," Spreiter, J., NACA TR 962, 1950.

11. "Low Speed Pitching Derivatives of Low-Aspect-Ratio Wings of Triangular Plan Forms," Goodman, A., and Soquist, B. 1\1., N,.-'\CA RM L50C02, 1950.

12. "Market and System Analysis for Potential Global Transport Application of a

Reusable Orbital Transport - Final Report, " Lockheed, California, Report LR 19044, 29 July 1965.

271

Page 209: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

,

\ \

.~~ ...

-:) REFERENCES (Continued)

~)

13. "Study to Develop System Criteria for Reusable Launch Vehicle Concepts -

Final Report. "

North American Aviation, Space and Information Systems Division, Report SID 65-848-1, 30 June 1965, Vol. I Report SID 65-848-3, 30 June 1965, Vol. ITL

14. Carlson, Harry W., "An Investigation of Some Aspects of the Sonic Boom by Means of Wind Tunnel Measurements of Pressures about Several Bodies at a Mach Number of 2.01, " NASA TN D-161, 1959.

15. Carlson, Harry W., IIWind-Tunnel Measuremerts of the Sonic Boom Character­istics of a Supersonic Bomber Model and a Correlation with Flight- Test Ground Measurements, tl NASA TM X-700, 1962.

16. Witham, G. B., liThe Flow Pattern of a Supersonic Projectile." Communications of Pure Applied Math., Volume V, No.3, August 1952, pp. 301-348.

17. Hilton, D. A., Hickel, Vera, Steiner, R., Maglieri, D. J., "Sonic-Boom Ex­posures During FAA Community-Response Studies Over a 6-Month Period in the Oklahoma City Area, NASA TN D-2539, December 1964.

18. McLean, F. E., "Some Nonasymptotic Effects on the Sonic Boom of Large Air­planes, NASA TN D-2877, June 1965.

19. McLean, F. E. and Carlson, H. W., "The Influence of Airplane Configuration on the Shape and Magnitude of Sonic-Boom Pressure Signatures, " AIA...'\ Paper No. 65-803, November 1965.

20. Roland, H. L. and Neben, R. E., Aircraft Structural Weight Estimating Methods,

Report ERR-FW-241, 15 September 1964.

21. Applied Research and Advanced Technology for the Supersonic Combustion Ram­jet for 1964, AFAPL-TR-65-15, The Marquardt Corporation, April 1965.

22. Comparison of Airbreathing PropulSion Systems for Scramjet Cruise Vehicles, PWA-2559, Pratt & Whitney Aircraft, April 1965.

23. Final Review of Analytical and Experimental Evaluation of the Supersonic Com­bustion Ramjet Engine, General Electric, 4 October 1965.

272

Page 210: PEtiJ)0192 · PDF file12.7 nomencl.a ture 255 13.0 cost ... 135 142 96. world total annual ... so~lc boo:vr characteristics scra::\ljet conficrratio::';

---) REFERENCES (Continued)

)

24. Bernick, C. R., "Economics of Advanced Launch Vehicles," Report GD/C-ERR­A1\-793, dated 31 December 1965.

25. Fuller, Dennis E. and Campbell, James F., !lSupersonic Lateral Directional Stability Characteristics of a 45° Swept Wing-Body-Tail Model with Various Body Cross-Sectional Shapes," NASA TN D-2376, August 1964.

26. Goodmanson, J. T. and Swihart, J. M., "Variable Sweep and Its Application to The Supersonic Transport," SAE 858C, May 1964.

27. Spencer, B., Jr., !fA Simplified Method for Estimating Subsonic Lift-Curve Slope at Low Angles of Attack for Irregular Planform Wings," NASA TM X-525, May 1961.

28. Breuhaus, W. 0., Reynolds, P. A., and Kidd, E. A •• "Handling Qualities Require­ments for Hypervelocity Airc raft." Cornell Aeronautical Lab., Inc. Report No. TC-1332-F-1, January 1960.

273