petronas deepwater seminar

14
Petronas Deepwater Seminar – Session 1B Floating Production Systems - Houston Petronas Deepwater Seminar Session 1B Probabilistic Analysis John Chianis FPS Houston Vice President, Deepwater Technology and Engineering

Upload: tg-tarro

Post on 17-Sep-2015

247 views

Category:

Documents


6 download

DESCRIPTION

Session 1BProbabilistic Analysis

TRANSCRIPT

  • Petro

    nas

    Dee

    pwat

    er S

    emin

    ar

    Sess

    ion

    1B

    Floating Production Systems - Houston

    Petronas Deepwater SeminarSession 1BProbabilistic Analysis

    John ChianisFPS Houston

    Vice President, Deepwater Technology and Engineering

  • Petro

    nas

    Dee

    pwat

    er S

    emin

    ar

    Sess

    ion

    1B

    Floating Production Systems - Houston

    Probabilistic AnalysisAgenda:

    Waves and Wave Spectra

    Example Design Wave Data

    Calculation of Response Spectrum

    Statistical Design Values

  • Petro

    nas

    Dee

    pwat

    er S

    emin

    ar

    Sess

    ion

    1B

    Floating Production Systems - Houston

    Realistic Wave ConditionsABB SCF 020503 Model Test Wave Elevation - 100-yr Hurricane

    -40.00

    -30.00

    -20.00

    -10.00

    0.00

    10.00

    20.00

    30.00

    40.00

    50.00

    0 500 1000 1500 2000 2500 3000

    Time (sec)

    Ocean waves are not regular in both form and content

    Ocean waves are not unit amplitude

    Actual wave conditions are referred to as a seastate

    Typical Irregular Seastate Time History

    A seastate is characterized by a theoretical wave

    spectrum

    Waves and Wave Spectra

  • Petro

    nas

    Dee

    pwat

    er S

    emin

    ar

    Sess

    ion

    1B

    Floating Production Systems - Houston

    Next Session . . .

  • Petro

    nas

    Dee

    pwat

    er S

    emin

    ar

    Sess

    ion

    1B

    Floating Production Systems - Houston

    Wave Spectrum

    Wav

    e En

    ergy

    (ft2 *

    sec/

    rad)

    Wave Period (sec)

    A wave spectrum . . . Is a mathematical

    formulation

    It is energy-based

    Enables statistical methods

    Facilitates design

    Waves and Wave Spectra

  • Petro

    nas

    Dee

    pwat

    er S

    emin

    ar

    Sess

    ion

    1B

    Floating Production Systems - Houston

    Wave Spectral FormulationTwo-Parameter Pierson/Moskowitz

    )/T/690(54

    1

    2sig 441e

    TH5.172

    )(S

    =

    Where :Hsig = Significant wave height (avg of highest 1/3) in feet

    T1 = Mean spectral period (T1=Tp /1.296)

    = Circular frequency

    Waves and Wave Spectra

  • Petro

    nas

    Dee

    pwat

    er S

    emin

    ar

    Sess

    ion

    1B

    Floating Production Systems - Houston

    Example GoM Design Wave Data(For Illustrative Purposes Only)

    Wave:HsigTp

    Current:Surface

    Wind:1 hr @ 33 ft

    (ft)(sec)

    (ft/sec)

    (ft/sec)

    Units

    40.014.3

    3.28

    118.1

    100-Yr

    26.212.4

    1.97

    78.7

    10-Yr

    15.410.9

    1.31

    49.2

    1 YrTypical GoM Hurricane Conditions

    Example Design Wave Data

  • Petro

    nas

    Dee

    pwat

    er S

    emin

    ar

    Sess

    ion

    1B

    Floating Production Systems - Houston

    Example GoM Design Wave Spectra(Plot of Hurricane Wave Data from Previous Slide)

    0.0

    50.0

    100.0

    150.0

    200.0

    250.0

    300.0

    350.0

    0.0 5.0 10.0 15.0 20.0 25.0 30.0

    Period (sec)

    Wav

    e En

    ergy

    (ft2 *

    sec/

    rad)

    )/T/690(54

    1

    2sig 441e

    TH5.172

    )(S

    =

    100-Yr

    10-Yr

    1 Yr

    Example Design Wave Data

  • Petro

    nas

    Dee

    pwat

    er S

    emin

    ar

    Sess

    ion

    1B

    Floating Production Systems - Houston

    Example Design Wave Data

    Worldwide Design Wave Spectra

    0

    100

    200

    300

    400

    500

    600

    700

    800

    0 5 10 15 20 25 30Wave Period (sec)

    Spec

    rtal D

    ensi

    ty (f

    t2 sec

    /rad)

    TLPTH

    FloaterTH TP

    W Africa

    Malaysia

    GoM

    Brazil

    14.8

    18.7

    40.0

    24.9

    18.8

    14.3

    14.315.8

    14.9

    11.4

    15.8

    12.8

    Region Hsig (ft) Tp (sec)Spectral Characteristics

  • Petro

    nas

    Dee

    pwat

    er S

    emin

    ar

    Sess

    ion

    1B

    Floating Production Systems - Houston

    Application for Design

    RAO()

    RAO2

    Ti

    S()

    Wave Spectrum

    Ti

    R()

    Response

    Ti

    x =

    R() = RAO2() x S()

    = (RAO, Wave Spectrum)Statistical DesignValue, i.e. Response

    Calculation of Response Spectrum

  • Petro

    nas

    Dee

    pwat

    er S

    emin

    ar

    Sess

    ion

    1B

    Floating Production Systems - Houston

    Statistical Design Values

    Response Spectrum

    Area

    = RAO2() x S() d

    0

    Area under response curve

    RRMS =

    Rsig = 4 x RRMS

    Rmax = 1.86 x RsigArea

    Statistical Values:

    Statistical Design Values

  • Petro

    nas

    Dee

    pwat

    er S

    emin

    ar

    Sess

    ion

    1B

    Floating Production Systems - Houston

    Statistical Design Values

    Lets do a Quick Units Check!

    ft / ft (assume heave)Units of RAO()

    ft2 sec / radUnits of wave spectrum, S()

    ft2 sec / radUnits of response, R()

    Square-root of the area gives ft

    Units of area under response curve

    ft2 secrad

    rad/sec = ft2

    O.K. !

  • Petro

    nas

    Dee

    pwat

    er S

    emin

    ar

    Sess

    ion

    1B

    Floating Production Systems - Houston

    Motion Response Prediction

    0.00

    0.50

    1.00

    1.50

    2.00

    2.50

    3.00

    0.00 10.00 20.00 30.00Period (sec)

    RA

    O M

    otio

    n (ft

    /ft)

    0.0

    125.0

    250.0

    375.0

    500.0

    625.0

    750.0

    875.0

    1,000.0

    Wav

    e &

    Res

    pons

    e Sp

    ectra

    (ft

    2 *se

    c/ra

    d)

    Motion RAO Wave Spectrum Motion Response Design Results:

    Area = 209.8 ft2

    HeaveRMS = 14.5 ft

    Heavesig = 57.9 ft

    Heavemax = 107.8 ft

    Example Design Values(Plot of Example 100-Yr Hurricane Results)

    Statistical Design Values

  • Petro

    nas

    Dee

    pwat

    er S

    emin

    ar

    Sess

    ion

    1B

    Floating Production Systems - Houston

    Summary - Application

    Dry Transport: Motions of vessel-platform

    system Structural design Tiedown design

    Wet Tow: Motions Structural design

    Installation: Motions Mooring loads Structural design

    In-Place: Motions Mooring loads Structural design (strength,

    buckling & fatigue)

    Statistical Design Values are Used for . . .

    Statistical Design Values

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14