pf simulation using matlab

8
One line diagram of a five bus system : INPUT : %clear basemva = 100; accuracy = 0.0001; accel = 1.6; maxiter = 100; % Ybus ELEMENTS CALCULATION, 5 BUSES 7 LINES USING % GAUSS-SEIDEL METHOD % Bus Bus Voltage Angle ---Load------ -----Generator----- Static Mvar % No code Mag. Degree MW Mvar MW Mvar Qmin Qmax +Qc/-Ql busdata=[1 1 1.02 0.0 0.0 0.0 0.0 0.0 0 0 0 2 0 1.00 0.0 60.0 30.0 0.0 0.0 0 0 0 3 2 1.04 0.0 0.0 0.0 100.0 0.0 0 0 0 4 0 1.0 0.0 40.0 10.0 0.0 0.0 0 0 0 5 0 1.0 0.0 60.0 20.0 0.0 0.0 0 0 0]; % Line code % Bus bus R X 1/2 B = 1 for lines % nl nr p.u. p.u. p.u. > 1 or < 1 tr. tap at bus nl linedata=[1 2 0.100 0.400 0.0 1 1 4 0.150 0.600 0.0 1 1 5 0.050 0.200 0.0 1 2 3 0.050 0.200 0.0 1 2 4 0.100 0.400 0.0 1 3 5 0.050 0.200 0.0 1 ];

Upload: rizkyharyogi

Post on 07-Feb-2016

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PF Simulation Using Matlab

One line diagram of a five bus system :

INPUT :

%clear

basemva = 100; accuracy = 0.0001; accel = 1.6; maxiter = 100;

% Ybus ELEMENTS CALCULATION, 5 BUSES 7 LINES USING

% GAUSS-SEIDEL METHOD

% Bus Bus Voltage Angle ---Load------ -----Generator----- Static Mvar

% No code Mag. Degree MW Mvar MW Mvar Qmin Qmax +Qc/-Ql

busdata=[1 1 1.02 0.0 0.0 0.0 0.0 0.0 0 0 0

2 0 1.00 0.0 60.0 30.0 0.0 0.0 0 0 0

3 2 1.04 0.0 0.0 0.0 100.0 0.0 0 0 0

4 0 1.0 0.0 40.0 10.0 0.0 0.0 0 0 0

5 0 1.0 0.0 60.0 20.0 0.0 0.0 0 0 0];

% Line code

% Bus bus R X 1/2 B = 1 for lines

% nl nr p.u. p.u. p.u. > 1 or < 1 tr. tap at bus nl

linedata=[1 2 0.100 0.400 0.0 1

1 4 0.150 0.600 0.0 1

1 5 0.050 0.200 0.0 1

2 3 0.050 0.200 0.0 1

2 4 0.100 0.400 0.0 1

3 5 0.050 0.200 0.0 1 ];

Page 2: PF Simulation Using Matlab

lfybus % form the bus admittance matrix

%lfgauss % Load flow solution by Gauss-Seidel method

%lfnewton % Load flow solution by Newton-Raphson method

%decouple % Load flow solution by Fast Decoupled method

%busout % Prints the power flow solution on the screen

%lineflow % Computes and displays the line flow and losses

OUTPUT :

Ybus =

Columns 1 through 4

2.1569 - 8.6275i -0.5882 + 2.3529i 0 -0.3922 + 1.5686i

-0.5882 + 2.3529i 2.3529 - 9.4118i -1.1765 + 4.7059i -0.5882 + 2.3529i

0 -1.1765 + 4.7059i 2.3529 - 9.4118i 0

-0.3922 + 1.5686i -0.5882 + 2.3529i 0 0.9804 - 3.9216i

-1.1765 + 4.7059i 0 -1.1765 + 4.7059i 0

Column 5

-1.1765 + 4.7059i

0

-1.1765 + 4.7059i

0

2.3529 - 9.4118i

Page 3: PF Simulation Using Matlab

INPUT :

%clear

basemva = 100; accuracy = 0.0001; accel = 1.6; maxiter = 100;

% POWER FLOW CALCULATION, 5 BUSES 7 LINES USING

% GAUSS-SEIDEL METHOD

% Bus Bus Voltage Angle ---Load------ -----Generator----- Static Mvar

% No code Mag. Degree MW Mvar MW Mvar Qmin Qmax +Qc/-Ql

busdata=[1 1 1.02 0.0 0.0 0.0 0.0 0.0 0 0 0

2 0 1.00 0.0 60.0 30.0 0.0 0.0 0 0 0

3 2 1.04 0.0 0.0 0.0 100.0 0.0 0 0 0

4 0 1.0 0.0 40.0 10.0 0.0 0.0 0 0 0

5 0 1.0 0.0 60.0 20.0 0.0 0.0 0 0 0];

% Line code

% Bus bus R X 1/2 B = 1 for lines

% nl nr p.u. p.u. p.u. > 1 or < 1 tr. tap at bus nl

linedata=[1 2 0.100 0.400 0.0 1

1 4 0.150 0.600 0.0 1

1 5 0.050 0.200 0.0 1

2 3 0.050 0.200 0.0 1

2 4 0.100 0.400 0.0 1

3 5 0.050 0.200 0.0 1 ];

lfybus % form the bus admittance matrix

lfgauss % Load flow solution by Gauss-Seidel method

%lfnewton % Load flow solution by Newton-Raphson method

%decouple % Load flow solution by Fast Decoupled method

busout % Prints the power flow solution on the screen

lineflow % Computes and displays the line flow and losses

OUTPUT :

Power Flow Solution by Gauss-Seidel Method

Maximum Power Mismatch = 9.32572e-005

No. of Iterations = 25

Bus Voltage Angle ------Load------ ---Generation--- Injected

No. Mag. Degree MW Mvar MW Mvar Mvar

1 1.020 0.000 0.000 0.000 65.141 32.921 0.000

2 0.955 -3.942 60.000 30.000 0.000 0.000 0.000

Page 4: PF Simulation Using Matlab

3 1.040 2.001 0.000 0.000 100.000 47.685 0.000

4 0.923 -8.009 40.000 10.000 0.000 0.000 0.000

5 0.993 -2.073 60.000 20.000 0.000 0.000 0.000

Total 160.000 60.000 165.141 80.607 0.000

Line Flow and Losses

--Line-- Power at bus & line flow --Line loss-- Transformer

from to MW Mvar MVA MW Mvar tap

1 65.141 32.921 72.987

2 19.802 12.263 23.292 0.521 2.086

4 24.807 11.741 27.446 1.086 4.344

5 20.546 8.908 22.394 0.241 0.964

2 -60.000 -30.000 67.082

1 -19.280 -10.178 21.802 0.521 2.086

3 -57.325 -23.696 62.029 2.110 8.442

4 16.602 3.874 17.048 0.319 1.275

3 100.000 47.685 110.788

2 59.435 32.138 67.568 2.110 8.442

5 40.572 15.543 43.448 0.873 3.491

4 -40.000 -10.000 41.231

1 -23.721 -7.397 24.848 1.086 4.344

2 -16.283 -2.599 16.489 0.319 1.275

5 -60.000 -20.000 63.246

1 -20.305 -7.944 21.804 0.241 0.964

3 -39.700 -12.053 41.489 0.873 3.491

Total loss 5.150 20.602

Page 5: PF Simulation Using Matlab

INPUT :

%clear

basemva = 100; accuracy = 0.0001; accel = 1.6; maxiter = 100;

% POWER FLOW CALCULATION, 5 BUSES 7 LINES USING

% NEWTON-RAPHSON METHOD

% Bus Bus Voltage Angle ---Load------ -----Generator----- Static Mvar

% No code Mag. Degree MW Mvar MW Mvar Qmin Qmax +Qc/-Ql

busdata=[1 1 1.02 0.0 0.0 0.0 0.0 0.0 0 0 0

2 0 1.00 0.0 60.0 30.0 0.0 0.0 0 0 0

3 2 1.04 0.0 0.0 0.0 100.0 0.0 0 0 0

4 0 1.0 0.0 40.0 10.0 0.0 0.0 0 0 0

5 0 1.0 0.0 60.0 20.0 0.0 0.0 0 0 0];

% Line code

% Bus bus R X 1/2 B = 1 for lines

% nl nr p.u. p.u. p.u. > 1 or < 1 tr. tap at bus nl

linedata=[1 2 0.100 0.400 0.0 1

1 4 0.150 0.600 0.0 1

1 5 0.050 0.200 0.0 1

2 3 0.050 0.200 0.0 1

2 4 0.100 0.400 0.0 1

3 5 0.050 0.200 0.0 1 ];

lfybus % form the bus admittance matrix

%lfgauss % Load flow solution by Gauss-Seidel method

lfnewton % Load flow solution by Newton-Raphson method

%decouple % Load flow solution by Fast Decoupled method

busout % Prints the power flow solution on the screen

lineflow % Computes and displays the line flow and losses

OUTPUT :

Power Flow Solution by Newton-Raphson Method

Maximum Power Mismatch = 3.56144e-007

No. of Iterations = 4

Bus Voltage Angle ------Load------ ---Generation--- Injected

No. Mag. Degree MW Mvar MW Mvar Mvar

1 1.020 0.000 0.000 0.000 65.150 32.916 0.000

2 0.955 -3.941 60.000 30.000 0.000 0.000 0.000

Page 6: PF Simulation Using Matlab

3 1.040 2.001 0.000 0.000 100.000 47.684 0.000

4 0.923 -8.008 40.000 10.000 0.000 0.000 0.000

5 0.993 -2.073 60.000 20.000 0.000 0.000 0.000

Total 160.000 60.000 165.150 80.599 0.000

Line Flow and Losses

--Line-- Power at bus & line flow --Line loss-- Transformer

from to MW Mvar MVA MW Mvar tap

1 65.150 32.916 72.993

2 19.800 12.264 23.291 0.521 2.086

4 24.805 11.743 27.444 1.086 4.344

5 20.544 8.909 22.393 0.241 0.964

2 -60.000 -30.000 67.082

1 -19.279 -10.178 21.801 0.521 2.086

3 -57.321 -23.698 62.026 2.110 8.441

4 16.600 3.876 17.046 0.319 1.275

3 100.000 47.684 110.787

2 59.431 32.139 67.564 2.110 8.441

5 40.569 15.545 43.445 0.873 3.490

4 -40.000 -10.000 41.231

1 -23.719 -7.399 24.846 1.086 4.344

2 -16.281 -2.601 16.487 0.319 1.275

5 -60.000 -20.000 63.246

1 -20.303 -7.945 21.803 0.241 0.964

3 -39.697 -12.055 41.487 0.873 3.490

Total loss 5.150 20.599

Page 7: PF Simulation Using Matlab

INPUT :

%clear

basemva = 100; accuracy = 0.0001; accel = 1.6; maxiter = 100;

% POWER FLOW CALCULATION, 5 BUSES 7 LINES USING

% FAST-DECOUPLED METHOD

% Bus Bus Voltage Angle ---Load------ -----Generator----- Static Mvar

% No code Mag. Degree MW Mvar MW Mvar Qmin Qmax +Qc/-Ql

busdata=[1 1 1.02 0.0 0.0 0.0 0.0 0.0 0 0 0

2 0 1.00 0.0 60.0 30.0 0.0 0.0 0 0 0

3 2 1.04 0.0 0.0 0.0 100.0 0.0 0 0 0

4 0 1.0 0.0 40.0 10.0 0.0 0.0 0 0 0

5 0 1.0 0.0 60.0 20.0 0.0 0.0 0 0 0];

% Line code

% Bus bus R X 1/2 B = 1 for lines

% nl nr p.u. p.u. p.u. > 1 or < 1 tr. tap at bus nl

linedata=[1 2 0.100 0.400 0.0 1

1 4 0.150 0.600 0.0 1

1 5 0.050 0.200 0.0 1

2 3 0.050 0.200 0.0 1

2 4 0.100 0.400 0.0 1

3 5 0.050 0.200 0.0 1 ];

lfybus % form the bus admittance matrix

%lfgauss % Load flow solution by Gauss-Seidel method

%lfnewton % Load flow solution by Newton-Raphson method

decouple % Load flow solution by Fast Decoupled method

busout % Prints the power flow solution on the screen

lineflow % Computes and displays the line flow and losses

OUTPUT :

Power Flow Solution by Fast Decoupled Method

Maximum Power Mismatch = 9.98889e-005

No. of Iterations = 7

Bus Voltage Angle ------Load------ ---Generation--- Injected

No. Mag. Degree MW Mvar MW Mvar Mvar

1 1.020 0.000 0.000 0.000 65.156 32.914 0.000

2 0.955 -3.941 60.000 30.000 0.000 0.000 0.000

Page 8: PF Simulation Using Matlab

3 1.040 2.001 0.000 0.000 100.000 47.680 0.000

4 0.923 -8.008 40.000 10.000 0.000 0.000 0.000

5 0.993 -2.073 60.000 20.000 0.000 0.000 0.000

Total 160.000 60.000 165.156 80.594 0.000

Line Flow and Losses

--Line-- Power at bus & line flow --Line loss-- Transformer

from to MW Mvar MVA MW Mvar tap

1 65.156 32.914 72.998

2 19.801 12.265 23.291 0.521 2.086

4 24.805 11.742 27.444 1.086 4.343

5 20.545 8.911 22.394 0.241 0.964

2 -60.000 -30.000 67.082

1 -19.279 -10.179 21.801 0.521 2.086

3 -57.321 -23.699 62.027 2.110 8.441

4 16.599 3.875 17.045 0.319 1.275

3 100.000 47.680 110.786

2 59.432 32.140 67.565 2.110 8.441

5 40.569 15.547 43.446 0.873 3.490

4 -40.000 -10.000 41.231

1 -23.719 -7.399 24.846 1.086 4.343

2 -16.280 -2.600 16.486 0.319 1.275

5 -60.000 -20.000 63.246

1 -20.304 -7.947 21.803 0.241 0.964

3 -39.697 -12.056 41.487 0.873 3.490

Total loss 5.150 20.600