phase transformation of materials · 2018. 1. 30. · 4 5.4 overall transformation kinetics – ttt...

21
1 Phase Transformation of Materials Phase Transformation of Materials Eun Eun Soo Soo Park Park Office: 33-316 Telephone: 880-7221 Email: [email protected] Office hours: by an appointment 2009 fall 12. 03. 2009

Upload: others

Post on 13-Aug-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

11

Phase Transformation of MaterialsPhase Transformation of Materials

EunEun

SooSoo

ParkPark

Office: 33-316 Telephone: 880-7221Email: [email protected] hours: by an appointment

2009 fall

12. 03. 2009

Page 2: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

2

• Precipitate growth1) Growth behind Planar Incoherent Interfaces

2) Diffusion Controlled lengthening of Plates or Needles

3) Thickening of Plate-like Precipitates

( / )v D t

Contents for previous class

Diffusion Controlled lengthening:

Diffusion-Controlled Thickening:

20

0

( )2( )( )e

D CvC C C C x

0v X 과포화도

( )x Dt 포물선

성장

0 1 *1( )r

D X rvk X X r r

V → constant tx

선형

성장

Thickening of Plate-like Precipitates by Ledge Mechanism

0 0,( ) ( )e e

D X D Xu vk X X h k X X

uhv

u : rate of lateral migration

Half Thickness Increase

Page 3: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

3

Contents for today’s class

• Overall Transformation Kinetics – TTT Diagram- Johnson-Mehl-Avrami Equation

• Precipitation in Age-Hardening Alloys

- GP Zones

- Transition phases

• Quenched-in Vacancies

• Age Hardening

Page 4: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

4

5.4 Overall Transformation Kinetics – TTT DiagramThe fraction of Transformation as a function of Time and Temperature

Plot the fraction oftransformation (1%, 99%)in T-log t coordinate.

f (t,T)

Plot f vs log t.

-

isothermal transformation

-

f ~ β 의

체적분율; 0~1

Page 5: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

5

Three Transformation Types(a) continuous nucleation

→ f depends on the nucleationrate and the growth rate.

(b) all nuclei present at t = 0→ f depends on the number

of nucleation sites and the growth rate.

(c) All of the parent phase is consumed by the transformation product.

→ pearlite, cellular ppt,massive transformation, recrystallization

5.4 Overall Transformation Kinetics – TTT Diagram

일정한

속도로

성장, 생성상이

서로

만나

충돌

급냉시

많은

불균일

핵생성처

존재

Page 6: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

6

Johnson-Mehl-Avrami Equation : 변태속도

비교

Assumption:- reaction produces by N + G- nucleation occurs randomly throughout specimen- reaction product grows radially until impingement

5.4 Overall Transformation Kinetics – TTT Diagram

specimenofVolphasenewofVol

f.

.define volume fraction transformed

f

d

+ d

tt

How much transformation occurred on time interval d

specimenofvolume

dduringformed

nucleiofnumber

ttimeatmeasureddduring

nucleatedparticleoneofvol

df

.

0

03 )()]([

34

V

dNVtvdf

α→β

Page 7: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

7

43

3exp1 tvNf

J-M-A Eq.

5.4 Overall Transformation Kinetics – TTT Diagram

43

0

33

0

3

)(34ˆ

tvNf

dtvNfdftx

do not consider impingement & repeated nucleation

only true for f ≪

1

)1()exp(1 zZz

)(exp1 ntkf k : sensitive to temp. (N, v)n : 1 ~ 4

i.e. 50% transform Exp (-0.7) = 0.5

7.05.0 nkt nkt /15.0

7.0 4/34/15.0

9.0vN

t

Example above.

Growth controlled. Nucleation-controlled.

시간이

지날수록

충돌에

의한

변태속도

감소

증가

임의로

배열된

생성상의

충돌효과를

고려하면,

K가

클때, 즉

핵생성

속도와

성장

속도가

클때

변태

속도가

빠름

Page 8: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

8

Precipitation in Aluminum-Copper Alloys

0

→ 1 +GP zones

→2 +

→3 +

→4 +CuAl2

)

5.5 Precipitation in Age-Hardening Alloys< 고체에서

나타나는

여러

종류의

개별

변태

>

Al-4 wt%Cu (1.7 at %)

quenching

isothermal

Quenching + Isothermal

Page 9: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

9

The zones minimize their strain energy by choosing a disc-shape perpendicular to the elastically soft <100> directions in the fcc matrix.

5.5.1 GP Zones

두께: 1~2 개의

원자층, 지름은

대략

25개의

원자

직경거리

: 이러한

응집체는

완전한

석출

입자로

없으며, 때때로

석출대

(zone)로

명명함.

정합상태의

Cu 농축지역

** )( zonesV GGGG

석출에

대한

구동력

Page 10: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

10

GP zones of Al-Cu alloys x 720,000

Fully coherent, about 2 atomic layers thick and 10 nm in diameter with a spacing of ~ 10 nm

: 현미경

관찰

불가, 사진에

나타난

명암은

GP 대에

수직인

방향으로의

정합

불일치

변형

때문

Page 11: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

11

0 → 1 +GP zone→2 +

→3 +

→4 +CuAl2

)

Transition phases

같은

결정구조

Page 12: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

12

Low Activation Energy of Transition Phases

(a)

(b)

0 → 1 +GP zone→2 +

→3 +

→4 +CuAl2

)

천이상의

결정구조가

모상과

평형상

중간상태를

갖기

때문

천이상

: 정합

정도가

높고

ΔG*에

여하는

계면에너지는

작은

가짐.

평형상: 기지와

격자를

일치시킬

수 없는 복잡한 결정구조= 고 계면 E

Page 13: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

13

The Crystal Structures of ,

and

Cu와 Al 원자가 (001) 면에규칙적으로놓여있는변형된 fcc 구조

CuAl2 조성, 복잡한 bct 구조

Page 14: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

14

of Al-Cu alloys x 63,000

Tetragonal unit cell, essentially a distorted fcc in which Cu and Al atoms are ordered on (001) planes, fully-coherent plate-like ppt with {001}

habit plane. ~ 10 nm thick and 100 nm in diameter.: 석출판상에

수직인

방향으로의

정합

불일치

변형

때문에

관찰

가능

Page 15: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

15

of Al-Cu alloys x 18,000

has (001) planes that are identical with {001}

and forms as plates on {001}

with the same orientation relationship as . (100), (010)

→ incoherent ,

~ 1 m in diameter.

: 판이

성장함에

따라

판의

모서리는

부정합이거나

복잡한

반정합구조의

계면을

갖게

됨.

Page 16: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

16

of Al-Cu alloys x 8,000

CuAl2 : complex body centered tetragonal, incoherentor complex semicoherent

Page 17: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

17

Nucleation sites in Al-Cu alloys

Page 18: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

18

The Effect of Ageing Temperature on the Sequence of Precipitates

석출순서에

따라

미세조직

조대화

됨.

안정한

석출물이

안정한

석출물을소비하면서

성장해

나가는

기구

Page 19: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

19

Precipitate-Free Zone(PFZ) due to Vacancy Diffusion during quenching

5.5.3. Quenched-in Vacancies

GB 농도

결정립

내부

농도와

거의

유사, 하지만

핵이

형성되려면

공공농도가

임계과포화

공공농도를

초과해야만

하기

때문.

- 불균일

핵생성

위치

제공

- 원자의

확산속도

증가…핵생성

성장속도

증가

시효시에

Grain boundary를

따라

Page 20: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

20

5.5.3. Quenched-in Vacancies용체화

처리

quenching 시에

G.B.를

따라

결정상이

형성되어

성장하는

경우, 시효시에

PFZ 가

생긴다.

Page 21: Phase Transformation of Materials · 2018. 1. 30. · 4 5.4 Overall Transformation Kinetics – TTT Diagram. The fraction of Transformation as a function of Time and Temperature

21

Hardness vs. Time by Ageing

Ageing at 130oC produceshigher maximum hardnessthan ageing at 190oC.

At 130oC, however, it takes too a long time.

Double ageing treatmentfirst below the GP zone solvus→ fine dispersion of GP zonesthen ageing at higher T.

How can you get the highhardness for the relativelyshort ageing time?

5.5.4. Age Hardening

Overaging: 석출물간

간격

증대로

경도

감소

적정시효시간.

중간상

형성시

커다란

격자변형

수반하고, 소성

변형시

전위의

이동을

방해함

고용강화

최대경도 와

공존할때

미세한

석출물의

분포