phd defense 0.5cm optimal curves and mappings valued in ... · thewasserstein1space...

94
PhD defense Optimal curves and mappings valued in the Wasserstein space Hugo Lavenant – under the supervision of Filippo Santambrogio May 24th, 2019

Upload: others

Post on 06-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

PhD defense

Optimal curves and mappingsvalued in the Wasserstein space

Hugo Lavenant – under the supervision of Filippo Santambrogio

May 24th, 2019

Page 2: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

The Wasserstein1 space

D convex and compact domain of Rd.

D

P(D) space of probability measures on D.

The Wasserstein space is the space P(D) endowed with the Wassersteindistance.

1and Monge, Lévy, Fréchet, Kantorovich, Rubinstein, etc.

1/22

Page 3: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

The Wasserstein1 space

D convex and compact domain of Rd.

D

P(D) space of probability measures on D.

The Wasserstein space is the space P(D) endowed with the Wassersteindistance.

1and Monge, Lévy, Fréchet, Kantorovich, Rubinstein, etc.

1/22

Page 4: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

The Wasserstein1 space

D convex and compact domain of Rd.

D

P(D) space of probability measures on D.

The Wasserstein space is the space P(D) endowed with the Wassersteindistance.1and Monge, Lévy, Fréchet, Kantorovich, Rubinstein, etc.

1/22

Page 5: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

2/22

Page 6: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

2/22

Page 7: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

2/22

Page 8: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

2/22

Page 9: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

3/22

Page 10: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

3/22

Page 11: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

In this presentation

1. A quick introduction to the Wasserstein space

2. Optimal density evolution with congestion

3. Harmonic mappings valued in the Wasserstein space

4/22

Page 12: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

1. A quick introduction to theWasserstein space

Page 13: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

The metric tensor in the Wasserstein space

µt

µt+h

Vertical derivative

µt+h − µt

h

Horizontal derivative

v

A particle located at x moves to x+ hv(x)

−∂tµ = ∇ · (µv)

• Quadratic Optimal Transport: the square of the norm of the speed is

minv:D→Rd

ˆD|v(x)|2 µ(dx) : ∇ · (µv) = −∂tµ

.

5/22

Page 14: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

The metric tensor in the Wasserstein space

µt

µt+h

Vertical derivative

µt+h − µt

h

Horizontal derivative

v

A particle located at x moves to x+ hv(x)

−∂tµ = ∇ · (µv)

• Quadratic Optimal Transport: the square of the norm of the speed is

minv:D→Rd

ˆD|v(x)|2 µ(dx) : ∇ · (µv) = −∂tµ

.

5/22

Page 15: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

The metric tensor in the Wasserstein space

µt µt+h

Vertical derivative

µt+h − µt

h

Horizontal derivative

v

A particle located at x moves to x+ hv(x)

−∂tµ = ∇ · (µv)

• Quadratic Optimal Transport: the square of the norm of the speed is

minv:D→Rd

ˆD|v(x)|2 µ(dx) : ∇ · (µv) = −∂tµ

.

5/22

Page 16: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

The metric tensor in the Wasserstein space

µt µt+h

Vertical derivative

µt+h − µt

h

Horizontal derivative

v

A particle located at x moves to x+ hv(x)

−∂tµ = ∇ · (µv)

• Quadratic Optimal Transport: the square of the norm of the speed is

minv:D→Rd

ˆD|v(x)|2 µ(dx) : ∇ · (µv) = −∂tµ

.

5/22

Page 17: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

The metric tensor in the Wasserstein space

µt µt+h

Vertical derivative

µt+h − µt

h

Horizontal derivative

v

A particle located at x moves to x+ hv(x)

−∂tµ = ∇ · (µv)

• Quadratic Optimal Transport: the square of the norm of the speed is

minv:D→Rd

ˆD|v(x)|2 µ(dx) : ∇ · (µv) = −∂tµ

.

5/22

Page 18: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

The metric tensor in the Wasserstein space

µt µt+h

Vertical derivative

µt+h − µt

h

Horizontal derivative

v

A particle located at x moves to x+ hv(x)

−∂tµ = ∇ · (µv)

• Quadratic Optimal Transport: the square of the norm of the speed is

minv:D→Rd

ˆD|v(x)|2 µ(dx) : ∇ · (µv) = −∂tµ

.

5/22

Page 19: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Action and geodesics

If µ : [0, 1] → P(D) is given, its action is

A(µ) := minv

1

2

ˆ 1

0

ˆD|vt|2 dµt dt : ∂tµt +∇ · (µtvt) = 0

.

The Wasserstein distance W2 is

1

2W2

2(ρ, ν) = minµ

A(µ) : µ0 = ρ, µ1 = ν ,

and the minimizers are the constant-speed geodesics.

6/22

Page 20: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Action and geodesics

If µ : [0, 1] → P(D) is given, its action is

A(µ) := minv

1

2

ˆ 1

0

ˆD|vt|2 dµt dt : ∂tµt +∇ · (µtvt) = 0

.

The Wasserstein distance W2 is

1

2W2

2(ρ, ν) = minµ

A(µ) : µ0 = ρ, µ1 = ν ,

and the minimizers are the constant-speed geodesics.

6/22

Page 21: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Action and geodesics

If µ : [0, 1] → P(D) is given, its action is

A(µ) := minv

1

2

ˆ 1

0

ˆD|vt|2 dµt dt : ∂tµt +∇ · (µtvt) = 0

.

The Wasserstein distance W2 is

1

2W2

2(ρ, ν) = minµ

A(µ) : µ0 = ρ, µ1 = ν ,

and the minimizers are the constant-speed geodesics.

6/22

Page 22: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

2. Optimal density evolution withcongestion

Page 23: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

What do we minimize?

minµ

A(µ)︸ ︷︷ ︸Optimal evolution

+

ˆ 1

0

ˆDV(x)µt(x) dx dt︸ ︷︷ ︸

Favors congestion

+

ˆ 1

0

F(µt)dt︸ ︷︷ ︸Penalizes congestion

,

where µ : [0, 1] → P(D) and µ0, µ1 are penalized or fixed.

The function F : P(D) → R ∪ +∞ is convex, two cases:

F(µ) =

ˆDf(µ(x))dx “so t congestion”,

0 if µ 6 1, +∞ otherwise “hard congestion”.

Instanciation of a Mean Field Game of first order with local coupling.

7/22

Page 24: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

What do we minimize?

minµ

A(µ)︸ ︷︷ ︸Optimal evolution

+

ˆ 1

0

ˆDV(x)µt(x) dx dt︸ ︷︷ ︸

Favors congestion

+

ˆ 1

0

F(µt)dt︸ ︷︷ ︸Penalizes congestion

,

where µ : [0, 1] → P(D) and µ0, µ1 are penalized or fixed.

The function F : P(D) → R ∪ +∞ is convex, two cases:

F(µ) =

ˆDf(µ(x))dx “so t congestion”,

0 if µ 6 1, +∞ otherwise “hard congestion”.

Instanciation of a Mean Field Game of first order with local coupling.

7/22

Page 25: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

What do we minimize?

minµ

A(µ)︸ ︷︷ ︸Optimal evolution

+

ˆ 1

0

ˆDV(x)µt(x) dx dt︸ ︷︷ ︸

Favors congestion

+

ˆ 1

0

F(µt)dt︸ ︷︷ ︸Penalizes congestion

,

where µ : [0, 1] → P(D) and µ0, µ1 are penalized or fixed.

The function F : P(D) → R ∪ +∞ is convex, two cases:

F(µ) =

ˆDf(µ(x))dx “so t congestion”,

0 if µ 6 1, +∞ otherwise “hard congestion”.

Instanciation of a Mean Field Game of first order with local coupling.

7/22

Page 26: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

What do we minimize?

minµ

A(µ)︸ ︷︷ ︸Optimal evolution

+

ˆ 1

0

ˆDV(x)µt(x) dx dt︸ ︷︷ ︸

Favors congestion

+

ˆ 1

0

F(µt)dt︸ ︷︷ ︸Penalizes congestion

,

where µ : [0, 1] → P(D) and µ0, µ1 are penalized or fixed.

The function F : P(D) → R ∪ +∞ is convex, two cases:

F(µ) =

ˆDf(µ(x))dx “so t congestion”,

0 if µ 6 1, +∞ otherwise “hard congestion”.

Instanciation of a Mean Field Game of first order with local coupling.

7/22

Page 27: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

What do we minimize?

minµ

A(µ)︸ ︷︷ ︸Optimal evolution

+

ˆ 1

0

ˆDV(x)µt(x) dx dt︸ ︷︷ ︸

Favors congestion

+

ˆ 1

0

F(µt)dt︸ ︷︷ ︸Penalizes congestion

,

where µ : [0, 1] → P(D) and µ0, µ1 are penalized or fixed.

The function F : P(D) → R ∪ +∞ is convex, two cases:

F(µ) =

ˆDf(µ(x))dx “so t congestion”,

0 if µ 6 1, +∞ otherwise “hard congestion”.

Instanciation of a Mean Field Game of first order with local coupling.

7/22

Page 28: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

What do we minimize?

minµ

A(µ)︸ ︷︷ ︸Optimal evolution

+

ˆ 1

0

ˆDV(x)µt(x) dx dt︸ ︷︷ ︸

Favors congestion

+

ˆ 1

0

F(µt)dt︸ ︷︷ ︸Penalizes congestion

,

where µ : [0, 1] → P(D) and µ0, µ1 are penalized or fixed.

The function F : P(D) → R ∪ +∞ is convex, two cases:

F(µ) =

ˆDf(µ(x))dx “so t congestion”,

0 if µ 6 1, +∞ otherwise “hard congestion”.

Instanciation of a Mean Field Game of first order with local coupling.

7/22

Page 29: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

What do we minimize?

minµ

A(µ)︸ ︷︷ ︸Optimal evolution

+

ˆ 1

0

ˆDV(x)µt(x) dx dt︸ ︷︷ ︸

Favors congestion

+

ˆ 1

0

F(µt)dt︸ ︷︷ ︸Penalizes congestion

,

where µ : [0, 1] → P(D) and µ0, µ1 are penalized or fixed.

The function F : P(D) → R ∪ +∞ is convex, two cases:

F(µ) =

ˆDf(µ(x))dx “so t congestion”,

0 if µ 6 1, +∞ otherwise “hard congestion”.

Instanciation of a Mean Field Game of first order with local coupling.

7/22

Page 30: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

So t congestion

minµ

[A(µ) +

ˆ 1

0

ˆDV(x)µt(x) dx dt+

ˆ 1

0

ˆDf(µt(x)) dx dt

].

TheoremAssume V is Lipschitz and f ′′(s) > sα with α > −1. Assume that there existsa competitor with finite energy.

Then, for every 0 < T1 < T2 < 1, the optimal µ belongs to L∞([T1, T2]× D).

Older result: use of a maximum principle by Lions to get L∞.

Used to infer the Lagrangian interpretation of Mean Field Games.Imply regularity of the value function (Cardaliaguet, Graber, Porretta, Tonon).

8/22

Page 31: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

So t congestion

minµ

[A(µ) +

ˆ 1

0

ˆDV(x)µt(x) dx dt+

ˆ 1

0

ˆDf(µt(x)) dx dt

].

TheoremAssume V is Lipschitz and f ′′(s) > sα with α > −1. Assume that there existsa competitor with finite energy.

Then, for every 0 < T1 < T2 < 1, the optimal µ belongs to L∞([T1, T2]× D).

Older result: use of a maximum principle by Lions to get L∞.

Used to infer the Lagrangian interpretation of Mean Field Games.Imply regularity of the value function (Cardaliaguet, Graber, Porretta, Tonon).

8/22

Page 32: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

So t congestion

minµ

[A(µ) +

ˆ 1

0

ˆDV(x)µt(x) dx dt+

ˆ 1

0

ˆDf(µt(x)) dx dt

].

TheoremAssume V is Lipschitz and f ′′(s) > sα with α > −1. Assume that there existsa competitor with finite energy.

Then, for every 0 < T1 < T2 < 1, the optimal µ belongs to L∞([T1, T2]× D).

Older result: use of a maximum principle by Lions to get L∞.

Used to infer the Lagrangian interpretation of Mean Field Games.Imply regularity of the value function (Cardaliaguet, Graber, Porretta, Tonon).

8/22

Page 33: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

So t congestion

minµ

[A(µ) +

ˆ 1

0

ˆDV(x)µt(x) dx dt+

ˆ 1

0

ˆDf(µt(x)) dx dt

].

TheoremAssume V is Lipschitz and f ′′(s) > sα with α > −1. Assume that there existsa competitor with finite energy.

Then, for every 0 < T1 < T2 < 1, the optimal µ belongs to L∞([T1, T2]× D).

Older result: use of a maximum principle by Lions to get L∞.

Used to infer the Lagrangian interpretation of Mean Field Games.Imply regularity of the value function (Cardaliaguet, Graber, Porretta, Tonon).

8/22

Page 34: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

So t congestion

minµ

[A(µ) +

ˆ 1

0

ˆDV(x)µt(x) dx dt+

ˆ 1

0

ˆDf(µt(x)) dx dt

].

TheoremAssume V is Lipschitz and f ′′(s) > sα with α > −1. Assume that there existsa competitor with finite energy.

Then, for every 0 < T1 < T2 < 1, the optimal µ belongs to L∞([T1, T2]× D).

Older result: use of a maximum principle by Lions to get L∞.

Used to infer the Lagrangian interpretation of Mean Field Games.Imply regularity of the value function (Cardaliaguet, Graber, Porretta, Tonon).

8/22

Page 35: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Idea of the proof

If m > 1,

with β > 1 such that H1(D) → L2β(D),

d2

dt2

ˆDµm

> m(m− 1)

ˆD|∇µ|2µm−2f ′′(µ) + [Low order]

∼ C(m)

ˆD

∣∣∣∇(µ(m+1+α)/2

)∣∣∣2> C(m)

(ˆDµβ(m+1+α)

)1/β

.

Integration with respect to time and Moser iterations.Need for a discretization of the temporal axis for a rigorous proof.

9/22

Page 36: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Idea of the proof

If m > 1,

with β > 1 such that H1(D) → L2β(D),

d2

dt2ˆDµm

> m(m− 1)

ˆD|∇µ|2µm−2f ′′(µ) + [Low order]

∼ C(m)

ˆD

∣∣∣∇(µ(m+1+α)/2

)∣∣∣2> C(m)

(ˆDµβ(m+1+α)

)1/β

.

Integration with respect to time and Moser iterations.Need for a discretization of the temporal axis for a rigorous proof.

9/22

Page 37: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Idea of the proof

If m > 1,

with β > 1 such that H1(D) → L2β(D),

d2

dt2ˆDµm > m(m− 1)

ˆD|∇µ|2µm−2f ′′(µ) + [Low order]

∼ C(m)

ˆD

∣∣∣∇(µ(m+1+α)/2

)∣∣∣2> C(m)

(ˆDµβ(m+1+α)

)1/β

.

Integration with respect to time and Moser iterations.Need for a discretization of the temporal axis for a rigorous proof.

9/22

Page 38: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Idea of the proof

If m > 1,

with β > 1 such that H1(D) → L2β(D),

d2

dt2ˆDµm > m(m− 1)

ˆD|∇µ|2µm−2f ′′(µ) + [Low order]

∼ C(m)

ˆD

∣∣∣∇(µ(m+1+α)/2

)∣∣∣2

> C(m)

(ˆDµβ(m+1+α)

)1/β

.

Integration with respect to time and Moser iterations.Need for a discretization of the temporal axis for a rigorous proof.

9/22

Page 39: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Idea of the proof

If m > 1, with β > 1 such that H1(D) → L2β(D),

d2

dt2ˆDµm > m(m− 1)

ˆD|∇µ|2µm−2f ′′(µ) + [Low order]

∼ C(m)

ˆD

∣∣∣∇(µ(m+1+α)/2

)∣∣∣2> C(m)

(ˆDµβ(m+1+α)

)1/β

.

Integration with respect to time and Moser iterations.Need for a discretization of the temporal axis for a rigorous proof.

9/22

Page 40: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Idea of the proof

If m > 1, with β > 1 such that H1(D) → L2β(D),

d2

dt2ˆDµm > m(m− 1)

ˆD|∇µ|2µm−2f ′′(µ) + [Low order]

∼ C(m)

ˆD

∣∣∣∇(µ(m+1+α)/2

)∣∣∣2> C(m)

(ˆDµβ(m+1+α)

)1/β

.

Integration with respect to time and Moser iterations.

Need for a discretization of the temporal axis for a rigorous proof.

9/22

Page 41: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Idea of the proof

If m > 1, with β > 1 such that H1(D) → L2β(D),

d2

dt2ˆDµm > m(m− 1)

ˆD|∇µ|2µm−2f ′′(µ) + [Low order]

∼ C(m)

ˆD

∣∣∣∇(µ(m+1+α)/2

)∣∣∣2> C(m)

(ˆDµβ(m+1+α)

)1/β

.

Integration with respect to time and Moser iterations.Need for a discretization of the temporal axis for a rigorous proof.

9/22

Page 42: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Hard congestion

minµ

[A(µ) +

ˆ 1

0

ˆDV(x)µt(x) dx dt+

ˆDΨ(x)µ1(x)dx

]with µ0 given and the constraint µ 6 1.

Pressure p > 0 to enforce the constraint µ 6 1 (Cardaliaguet, Mészáros,Santambrogio).TheoremAssume ∇V ∈ Lq(D) with q > d.

Then p belongs to L∞([0, 1)× D) and L∞([0, 1),H1(D)) with a normdepending only on ‖∇V‖Lq(D) and D.

First approach: approximation by so t congestion.

Ultimately: estimate ∆(p+ V) > 0 on p > 0.

10/22

Page 43: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Hard congestion

minµ

[A(µ) +

ˆ 1

0

ˆDV(x)µt(x) dx dt+

ˆDΨ(x)µ1(x)dx

]with µ0 given and the constraint µ 6 1.

Pressure p > 0 to enforce the constraint µ 6 1 (Cardaliaguet, Mészáros,Santambrogio).

TheoremAssume ∇V ∈ Lq(D) with q > d.

Then p belongs to L∞([0, 1)× D) and L∞([0, 1),H1(D)) with a normdepending only on ‖∇V‖Lq(D) and D.

First approach: approximation by so t congestion.

Ultimately: estimate ∆(p+ V) > 0 on p > 0.

10/22

Page 44: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Hard congestion

minµ

[A(µ) +

ˆ 1

0

ˆDV(x)µt(x) dx dt+

ˆDΨ(x)µ1(x)dx

]with µ0 given and the constraint µ 6 1.

Pressure p > 0 to enforce the constraint µ 6 1 (Cardaliaguet, Mészáros,Santambrogio).TheoremAssume ∇V ∈ Lq(D) with q > d.

Then p belongs to L∞([0, 1)× D) and L∞([0, 1),H1(D)) with a normdepending only on ‖∇V‖Lq(D) and D.

First approach: approximation by so t congestion.

Ultimately: estimate ∆(p+ V) > 0 on p > 0.

10/22

Page 45: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Hard congestion

minµ

[A(µ) +

ˆ 1

0

ˆDV(x)µt(x) dx dt+

ˆDΨ(x)µ1(x)dx

]with µ0 given and the constraint µ 6 1.

Pressure p > 0 to enforce the constraint µ 6 1 (Cardaliaguet, Mészáros,Santambrogio).TheoremAssume ∇V ∈ Lq(D) with q > d.

Then p belongs to L∞([0, 1)× D) and L∞([0, 1),H1(D)) with a normdepending only on ‖∇V‖Lq(D) and D.

First approach: approximation by so t congestion.

Ultimately: estimate ∆(p+ V) > 0 on p > 0.

10/22

Page 46: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Hard congestion

minµ

[A(µ) +

ˆ 1

0

ˆDV(x)µt(x) dx dt+

ˆDΨ(x)µ1(x)dx

]with µ0 given and the constraint µ 6 1.

Pressure p > 0 to enforce the constraint µ 6 1 (Cardaliaguet, Mészáros,Santambrogio).TheoremAssume ∇V ∈ Lq(D) with q > d.

Then p belongs to L∞([0, 1)× D) and L∞([0, 1),H1(D)) with a normdepending only on ‖∇V‖Lq(D) and D.

First approach: approximation by so t congestion.

Ultimately: estimate ∆(p+ V) > 0 on p > 0.

10/22

Page 47: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Variational formulation of the incompressible Euler equations

Least action principle: unknown Q law of a random curve µ : [0, 1] → P(D).

minQ

EQ[A(µ)] : ∀t, EQ[µt] = LD ,

with joint law at time t ∈ 0, 1 fixed.

TheoremUnder reasonable assumptions on the temporal boundary conditions,there exists at least Q one solution of the problem such that

t 7→ EQ[ˆ

Dµt lnµt

]is a convex function.

Similar discretization to make rigorous a formal computation of Brenier.

Later simpler proof by Baradat and Monsaingeon.

11/22

Page 48: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Variational formulation of the incompressible Euler equations

Least action principle: unknown Q law of a random curve µ : [0, 1] → P(D).

minQ

EQ[A(µ)] : ∀t, EQ[µt] = LD ,

with joint law at time t ∈ 0, 1 fixed.

TheoremUnder reasonable assumptions on the temporal boundary conditions,there exists at least Q one solution of the problem such that

t 7→ EQ[ˆ

Dµt lnµt

]is a convex function.

Similar discretization to make rigorous a formal computation of Brenier.

Later simpler proof by Baradat and Monsaingeon.

11/22

Page 49: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Variational formulation of the incompressible Euler equations

Least action principle: unknown Q law of a random curve µ : [0, 1] → P(D).

minQ

EQ[A(µ)] : ∀t, EQ[µt] = LD ,

with joint law at time t ∈ 0, 1 fixed.

TheoremUnder reasonable assumptions on the temporal boundary conditions,there exists at least Q one solution of the problem such that

t 7→ EQ[ˆ

Dµt lnµt

]is a convex function.

Similar discretization to make rigorous a formal computation of Brenier.

Later simpler proof by Baradat and Monsaingeon.11/22

Page 50: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

3. Harmonic mappings valued inthe Wasserstein space

Page 51: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Measure-valued mappings

Ω bounded set of Rn with Lipschitz boundary

(before Ω = [0, 1] ⊂ R).

We study µ : Ω → P(D).

ΩD

µ•ξ

µ(ξ)•

ηµ(η)

•ξ

•δf(ξ)

Definition of Dir(µ) = 1

2

ˆΩ

|∇µ|2 the Dirichlet energy generalizing A.

Minimizers of Dir are called harmonic mappings (valued in the Wassersteinspace).

If f : Ω → D and µ(ξ) := δf(ξ) then Dir(µ) = 1

2

ˆΩ

|∇f|2.

12/22

Page 52: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Measure-valued mappings

Ω bounded set of Rn with Lipschitz boundary (before Ω = [0, 1] ⊂ R).

We study µ : Ω → P(D).

ΩD

µ•ξ

µ(ξ)•

ηµ(η)

•ξ

•δf(ξ)

Definition of Dir(µ) = 1

2

ˆΩ

|∇µ|2 the Dirichlet energy generalizing A.

Minimizers of Dir are called harmonic mappings (valued in the Wassersteinspace).

If f : Ω → D and µ(ξ) := δf(ξ) then Dir(µ) = 1

2

ˆΩ

|∇f|2.

12/22

Page 53: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Measure-valued mappings

Ω bounded set of Rn with Lipschitz boundary (before Ω = [0, 1] ⊂ R).

We study µ : Ω → P(D).

ΩD

µ•ξ

µ(ξ)•

ηµ(η)

•ξ

•δf(ξ)

Definition of Dir(µ) = 1

2

ˆΩ

|∇µ|2 the Dirichlet energy generalizing A.

Minimizers of Dir are called harmonic mappings (valued in the Wassersteinspace).

If f : Ω → D and µ(ξ) := δf(ξ) then Dir(µ) = 1

2

ˆΩ

|∇f|2.

12/22

Page 54: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Measure-valued mappings

Ω bounded set of Rn with Lipschitz boundary (before Ω = [0, 1] ⊂ R).

We study µ : Ω → P(D).

ΩD

µ

•ξ

µ(ξ)•

ηµ(η)

•ξ

•δf(ξ)

Definition of Dir(µ) = 1

2

ˆΩ

|∇µ|2 the Dirichlet energy generalizing A.

Minimizers of Dir are called harmonic mappings (valued in the Wassersteinspace).

If f : Ω → D and µ(ξ) := δf(ξ) then Dir(µ) = 1

2

ˆΩ

|∇f|2.

12/22

Page 55: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

The Dirichlet energy

Definition (Brenier (2003))If µ : Ω → P(D) is given,

Dir(µ) := minv

1

2

ˆΩ

ˆD|v|2dµ : ∇Ωµ+∇D · (µv) = 0

,

where v : Ω× D→ Rnd.

If Ω = [0, 1] it coincides with A.

13/22

Page 56: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Equivalence with a metric definition

Dirε(µ) :=Cn2

ˆΩ

1

εn

ˆΩ

W22(µ(ξ),µ(η))

ε2

1|ξ−η|6ε dη dξ

Proposed by Korevaar, Schoen and Jost for mappings valued in metric spaces.

TheoremThere holds

limε→0

Dirε = Dir,

and the convergence holds pointwisely and in the sense of Γ-convergencealong the sequence εm = 2−m.

Cannot apply the whole theory of Korevaar, Schoen and Jost because theWasserstein space is not a Non Positively Curved (NPC) space.The space µ : Dir(µ) < +∞ coincides with H1(Ω,P(D)) for the standarddefinitions of Sobolev spaces in metric spaces (Reshetnyak, Hajłasz).

14/22

Page 57: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Equivalence with a metric definition

Dirε(µ) :=Cn2

ˆΩ

1

εn

ˆΩ

W22(µ(ξ),µ(η))

ε21|ξ−η|6ε dη

Proposed by Korevaar, Schoen and Jost for mappings valued in metric spaces.

TheoremThere holds

limε→0

Dirε = Dir,

and the convergence holds pointwisely and in the sense of Γ-convergencealong the sequence εm = 2−m.

Cannot apply the whole theory of Korevaar, Schoen and Jost because theWasserstein space is not a Non Positively Curved (NPC) space.The space µ : Dir(µ) < +∞ coincides with H1(Ω,P(D)) for the standarddefinitions of Sobolev spaces in metric spaces (Reshetnyak, Hajłasz).

14/22

Page 58: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Equivalence with a metric definition

Dirε(µ) :=Cn2

ˆΩ

1

εn

ˆΩ

W22(µ(ξ),µ(η))

ε21|ξ−η|6ε dη dξ

Proposed by Korevaar, Schoen and Jost for mappings valued in metric spaces.

TheoremThere holds

limε→0

Dirε = Dir,

and the convergence holds pointwisely and in the sense of Γ-convergencealong the sequence εm = 2−m.

Cannot apply the whole theory of Korevaar, Schoen and Jost because theWasserstein space is not a Non Positively Curved (NPC) space.The space µ : Dir(µ) < +∞ coincides with H1(Ω,P(D)) for the standarddefinitions of Sobolev spaces in metric spaces (Reshetnyak, Hajłasz).

14/22

Page 59: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Equivalence with a metric definition

Dirε(µ) :=Cn2

ˆΩ

1

εn

ˆΩ

W22(µ(ξ),µ(η))

ε21|ξ−η|6ε dη dξ

Proposed by Korevaar, Schoen and Jost for mappings valued in metric spaces.

TheoremThere holds

limε→0

Dirε = Dir,

and the convergence holds pointwisely and in the sense of Γ-convergencealong the sequence εm = 2−m.

Cannot apply the whole theory of Korevaar, Schoen and Jost because theWasserstein space is not a Non Positively Curved (NPC) space.The space µ : Dir(µ) < +∞ coincides with H1(Ω,P(D)) for the standarddefinitions of Sobolev spaces in metric spaces (Reshetnyak, Hajłasz).

14/22

Page 60: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Equivalence with a metric definition

Dirε(µ) :=Cn2

ˆΩ

1

εn

ˆΩ

W22(µ(ξ),µ(η))

ε21|ξ−η|6ε dη dξ

Proposed by Korevaar, Schoen and Jost for mappings valued in metric spaces.

TheoremThere holds

limε→0

Dirε = Dir,

and the convergence holds pointwisely and in the sense of Γ-convergencealong the sequence εm = 2−m.

Cannot apply the whole theory of Korevaar, Schoen and Jost because theWasserstein space is not a Non Positively Curved (NPC) space.

The space µ : Dir(µ) < +∞ coincides with H1(Ω,P(D)) for the standarddefinitions of Sobolev spaces in metric spaces (Reshetnyak, Hajłasz).

14/22

Page 61: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Equivalence with a metric definition

Dirε(µ) :=Cn2

ˆΩ

1

εn

ˆΩ

W22(µ(ξ),µ(η))

ε21|ξ−η|6ε dη dξ

Proposed by Korevaar, Schoen and Jost for mappings valued in metric spaces.

TheoremThere holds

limε→0

Dirε = Dir,

and the convergence holds pointwisely and in the sense of Γ-convergencealong the sequence εm = 2−m.

Cannot apply the whole theory of Korevaar, Schoen and Jost because theWasserstein space is not a Non Positively Curved (NPC) space.The space µ : Dir(µ) < +∞ coincides with H1(Ω,P(D)) for the standarddefinitions of Sobolev spaces in metric spaces (Reshetnyak, Hajłasz). 14/22

Page 62: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Curvature and convexity

If µ, ν ∈ P(D), two ways to interpolate.

µ ν

The displacement interpolation

• Midpoint of the geodesic in theWasserstein space.

• The space (P(D),W2) is apositively curved space: noconvexity of W2

2 nor Dir.

The Euclidean interpolation

• The Wasserstein distance squareW2

2 and the Dirichlet energy areconvex.

• Tools from convex analysis.

15/22

Page 63: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Curvature and convexity

If µ, ν ∈ P(D), two ways to interpolate.

µ ν

The displacement interpolation

• Midpoint of the geodesic in theWasserstein space.

• The space (P(D),W2) is apositively curved space: noconvexity of W2

2 nor Dir.

The Euclidean interpolation

• The Wasserstein distance squareW2

2 and the Dirichlet energy areconvex.

• Tools from convex analysis.

15/22

Page 64: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Curvature and convexity

If µ, ν ∈ P(D), two ways to interpolate.

µ ν

The displacement interpolation

• Midpoint of the geodesic in theWasserstein space.

• The space (P(D),W2) is apositively curved space: noconvexity of W2

2 nor Dir.

The Euclidean interpolation

• The Wasserstein distance squareW2

2 and the Dirichlet energy areconvex.

• Tools from convex analysis.

15/22

Page 65: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

The Dirichlet problem

We choose µb : ∂Ω → P(D) the boundary data.

DefinitionThe Dirichlet problem is

minµ

Dir(µ) : µ = µb on ∂Ω .

The solutions of the Dirichlet problem are called harmonic mappings(valued in the Wasserstein space).

TheoremAssume µb : ∂Ω → (P(D),W2) is a Lipschitz mapping. Then there exists atleast one solution to the Dirichlet problem.

Tool: extension theorem for Lipschitz mappings valued in (P(D),W2).

Uniqueness is an open question.

16/22

Page 66: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

The Dirichlet problem

We choose µb : ∂Ω → P(D) the boundary data.

DefinitionThe Dirichlet problem is

minµ

Dir(µ) : µ = µb on ∂Ω .

The solutions of the Dirichlet problem are called harmonic mappings(valued in the Wasserstein space).

TheoremAssume µb : ∂Ω → (P(D),W2) is a Lipschitz mapping. Then there exists atleast one solution to the Dirichlet problem.

Tool: extension theorem for Lipschitz mappings valued in (P(D),W2).

Uniqueness is an open question.

16/22

Page 67: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

The Dirichlet problem

We choose µb : ∂Ω → P(D) the boundary data.

DefinitionThe Dirichlet problem is

minµ

Dir(µ) : µ = µb on ∂Ω .

The solutions of the Dirichlet problem are called harmonic mappings(valued in the Wasserstein space).

TheoremAssume µb : ∂Ω → (P(D),W2) is a Lipschitz mapping. Then there exists atleast one solution to the Dirichlet problem.

Tool: extension theorem for Lipschitz mappings valued in (P(D),W2).

Uniqueness is an open question.16/22

Page 68: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Numerics: example

17/22

Page 69: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Numerics: example

17/22

Page 70: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Numerics: adaptation of Benamou–Brenier

The Dirichlet problem is a convex optimization problem.

Unknowns (E = µv is the momentum):

µ : Ω× D→ R+

E : Ω× D→ Rnd

Objective:minµ,E

¨Ω×D

|E|2

under the constraints:

∇Ωµ+∇D · E = 0,

µ = µb on ∂Ω.

In practice: finite-dimensional “approximation” with two convexoptimization problems in duality, then ADMM.

18/22

Page 71: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Numerics: adaptation of Benamou–Brenier

The Dirichlet problem is a convex optimization problem.

Unknowns (E = µv is the momentum):

µ : Ω× D→ R+

E : Ω× D→ Rnd

Objective:minµ,E

¨Ω×D

|E|2

under the constraints:

∇Ωµ+∇D · E = 0,

µ = µb on ∂Ω.

In practice: finite-dimensional “approximation” with two convexoptimization problems in duality, then ADMM.

18/22

Page 72: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Numerics: adaptation of Benamou–Brenier

The Dirichlet problem is a convex optimization problem.

Unknowns (E = µv is the momentum):

µ : Ω× D→ R+

E : Ω× D→ Rnd

Objective:minµ,E

¨Ω×D

|E|2

under the constraints:

∇Ωµ+∇D · E = 0,

µ = µb on ∂Ω.

In practice: finite-dimensional “approximation” with two convexoptimization problems in duality, then ADMM.

18/22

Page 73: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Numerics: adaptation of Benamou–Brenier

The Dirichlet problem is a convex optimization problem.

Unknowns (E = µv is the momentum):

µ : Ω× D→ R+

E : Ω× D→ Rnd

Objective:minµ,E

¨Ω×D

|E|2

under the constraints:

∇Ωµ+∇D · E = 0,

µ = µb on ∂Ω.

In practice: finite-dimensional “approximation” with two convexoptimization problems in duality, then ADMM.

18/22

Page 74: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Maximum principle

Some functionals F : P(D) → R ∪ +∞ are convex along geodesics, e.g.

µ →ˆDµ(x) ln(µ(x)) dx.

TheoremTake F : P(D) → R ∪ +∞ convex along generalized geodesics (and fewadditional regularity property) and a boundary condition µb : ∂Ω → P(D)such that sup

∂Ω(F µb) < +∞.

Then there exists at least one solution µ of the Dirichlet problem withboundary conditions µb such that

∆(F µ) > 0 and ess supΩ

(F µ) 6 sup∂Ω

(F µb).

Already known for harmonic mappings valued in Riemannian manifolds(Ishihara) and Non Positively Curved spaces (Sturm).

19/22

Page 75: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Maximum principle

Some functionals F : P(D) → R ∪ +∞ are convex along geodesics, e.g.

µ →ˆDµ(x) ln(µ(x)) dx.

TheoremTake F : P(D) → R ∪ +∞ convex along generalized geodesics (and fewadditional regularity property) and a boundary condition µb : ∂Ω → P(D)such that sup

∂Ω(F µb) < +∞.

Then there exists at least one solution µ of the Dirichlet problem withboundary conditions µb such that

∆(F µ) > 0 and ess supΩ

(F µ) 6 sup∂Ω

(F µb).

Already known for harmonic mappings valued in Riemannian manifolds(Ishihara) and Non Positively Curved spaces (Sturm).

19/22

Page 76: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Maximum principle

Some functionals F : P(D) → R ∪ +∞ are convex along geodesics, e.g.

µ →ˆDµ(x) ln(µ(x)) dx.

TheoremTake F : P(D) → R ∪ +∞ convex along generalized geodesics (and fewadditional regularity property) and a boundary condition µb : ∂Ω → P(D)such that sup

∂Ω(F µb) < +∞.

Then there exists at least one solution µ of the Dirichlet problem withboundary conditions µb such that

∆(F µ) > 0 and ess supΩ

(F µ) 6 sup∂Ω

(F µb).

Already known for harmonic mappings valued in Riemannian manifolds(Ishihara) and Non Positively Curved spaces (Sturm).

19/22

Page 77: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Maximum principle

Some functionals F : P(D) → R ∪ +∞ are convex along geodesics, e.g.

µ →ˆDµ(x) ln(µ(x)) dx.

TheoremTake F : P(D) → R ∪ +∞ convex along generalized geodesics (and fewadditional regularity property) and a boundary condition µb : ∂Ω → P(D)such that sup

∂Ω(F µb) < +∞.

Then there exists at least one solution µ of the Dirichlet problem withboundary conditions µb such that

∆(F µ) > 0 and ess supΩ

(F µ) 6 sup∂Ω

(F µb).

Already known for harmonic mappings valued in Riemannian manifolds(Ishihara) and Non Positively Curved spaces (Sturm).

19/22

Page 78: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Maximum principle

Some functionals F : P(D) → R ∪ +∞ are convex along geodesics, e.g.

µ →ˆDµ(x) ln(µ(x)) dx.

TheoremTake F : P(D) → R ∪ +∞ convex along generalized geodesics (and fewadditional regularity property) and a boundary condition µb : ∂Ω → P(D)such that sup

∂Ω(F µb) < +∞.

Then there exists at least one solution µ of the Dirichlet problem withboundary conditions µb such that

∆(F µ) > 0 and ess supΩ

(F µ) 6 sup∂Ω

(F µb).

Already known for harmonic mappings valued in Riemannian manifolds(Ishihara) and Non Positively Curved spaces (Sturm). 19/22

Page 79: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Idea of the proof

First replace Dir by the approximate Dirichlet energies Dirε.

If µε minimizes Dirε, then for a.e. ξ ∈ Ω, the measure µε(ξ) is a (Wasserstein)barycenter of the µε(η) for η ∈ B(ξ, ε).

Ω

Jensen inequality for Wasserstein barycenters (Agueh, Carlier):

F(µε(ξ)) 6 B(ξ,ε)

F(µε(η))dη.

Then limit ε → 0 to get subharmonicity.

20/22

Page 80: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Idea of the proof

First replace Dir by the approximate Dirichlet energies Dirε.

If µε minimizes Dirε, then for a.e. ξ ∈ Ω, the measure µε(ξ) is a (Wasserstein)barycenter of the µε(η) for η ∈ B(ξ, ε).

Ω

Jensen inequality for Wasserstein barycenters (Agueh, Carlier):

F(µε(ξ)) 6 B(ξ,ε)

F(µε(η))dη.

Then limit ε → 0 to get subharmonicity.

20/22

Page 81: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Idea of the proof

First replace Dir by the approximate Dirichlet energies Dirε.

If µε minimizes Dirε, then for a.e. ξ ∈ Ω, the measure µε(ξ) is a (Wasserstein)barycenter of the µε(η) for η ∈ B(ξ, ε).

Ω

Jensen inequality for Wasserstein barycenters (Agueh, Carlier):

F(µε(ξ)) 6 B(ξ,ε)

F(µε(η))dη.

Then limit ε → 0 to get subharmonicity.

20/22

Page 82: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Idea of the proof

First replace Dir by the approximate Dirichlet energies Dirε.

If µε minimizes Dirε, then for a.e. ξ ∈ Ω, the measure µε(ξ) is a (Wasserstein)barycenter of the µε(η) for η ∈ B(ξ, ε).

Ω

Jensen inequality for Wasserstein barycenters (Agueh, Carlier):

F(µε(ξ)) 6 B(ξ,ε)

F(µε(η))dη.

Then limit ε → 0 to get subharmonicity.

20/22

Page 83: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

A special case

Family of “elliptically contoured distributions” Pec(D), think Gaussiansmeasures.

21/22

Page 84: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

A special case

Family of “elliptically contoured distributions” Pec(D), think Gaussiansmeasures.

21/22

Page 85: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

A special case

Family of “elliptically contoured distributions” Pec(D), think Gaussiansmeasures.

TheoremLet µb : ∂Ω → Pec(D) Lipschitz such that µb(ξ) is not singular for everyξ ∈ ∂Ω.

Then there exists a unique solution to the Dirichlet problem, it is valued inPec(D) and it is smooth.

21/22

Page 86: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

A special case

Family of “elliptically contoured distributions” Pec(D), think Gaussiansmeasures.

TheoremLet µb : ∂Ω → Pec(D) Lipschitz such that µb(ξ) is not singular for everyξ ∈ ∂Ω.

Then there exists a unique solution to the Dirichlet problem, it is valued inPec(D) and it is smooth.

21/22

Page 87: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Open questions and perspectives

Optimal density evolution with congestion:

• Continuity of µ? Even more?

Harmonic mappings valued in the Wasserstein space:

• Uniqueness in the Dirichlet problem.• Existence for the dual problem.• Regularity of harmonic mappings.• Convergence of the numerical schemes.

Thank you for your attention

22/22

Page 88: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Open questions and perspectives

Optimal density evolution with congestion:

• Continuity of µ? Even more?

Harmonic mappings valued in the Wasserstein space:

• Uniqueness in the Dirichlet problem.• Existence for the dual problem.• Regularity of harmonic mappings.• Convergence of the numerical schemes.

Thank you for your attention

22/22

Page 89: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Open questions and perspectives

Optimal density evolution with congestion:

• Continuity of µ? Even more?

Harmonic mappings valued in the Wasserstein space:

• Uniqueness in the Dirichlet problem.• Existence for the dual problem.• Regularity of harmonic mappings.• Convergence of the numerical schemes.

Thank you for your attention

22/22

Page 90: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Open questions and perspectives

Optimal density evolution with congestion:

• Continuity of µ? Even more?

Harmonic mappings valued in the Wasserstein space:

• Uniqueness in the Dirichlet problem.• Existence for the dual problem.• Regularity of harmonic mappings.• Convergence of the numerical schemes.

Thank you for your attention

22/22

Page 91: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Appendix: Dirac masses

Page 92: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Appendix: Dirac masses

Page 93: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Appendix: an explicit example

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

Radius

Eigenvalues

κ1κ2

Page 94: PhD defense 0.5cm Optimal curves and mappings valued in ... · TheWasserstein1space DconvexandcompactdomainofRd. D P(D) spaceofprobabilitymeasuresonD. TheWassersteinspaceisthespaceP(D)

Appendix: harmonic and barycentric interpolations

Harmonic interpolation Barycentric interpolation(Solomon et al., 2015)