philip jackson and martin russell electronic electrical and computer engineering models of speech...

22
Philip Jackson and Martin Russell Philip Jackson and Martin Russell Electronic Electrical and Computer Engineering Models of speech Models of speech dynamics in a dynamics in a segmental-HMM segmental-HMM recognizer using recognizer using intermediate linear intermediate linear representations representations http://web.bham.ac.uk/p.jackson/ balthasar/

Post on 21-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Philip Jackson and Martin RussellPhilip Jackson and Martin Russell

Electronic Electrical and Computer Engineering

Models of speech Models of speech dynamics in a segmental-dynamics in a segmental-

HMM recognizer using HMM recognizer using intermediate linear intermediate linear

representationsrepresentations

http://web.bham.ac.uk/p.jackson/balthasar/

Speech dynamics into ASR

INTRODUCTIONINTRODUCTION

Conventional model

INTRODUCTIONINTRODUCTION

1

acoustic observations

HMM

acoustic PDF

1 11 1 2 3 42 2222 3 33 4 4 42

Linear-trajectory model

INTRODUCTIONINTRODUCTION

2 3 41

W

acoustic observations

articulatory-to-

intermediate layer

segmental HMM

acoustic PDF

acoustic mapping

Multi-level Segmental HMM

• segmental finite-state process

• intermediate “articulatory” layer– linear trajectories

• mapping required– linear transformation– radial basis function network

INTRODUCTIONINTRODUCTION

Estimation of linear mapping

Matched sequences andT1x

YXW

,1Ty

YWXD min

THEORYTHEORY

Linear-trajectory equations

Defined as:

,iii ttt cmf

THEORYTHEORY

21 t

tif

t

ic

Training the model parameters

For optimal least-squares estimates (acoustic domain):

,s

11

)(1

ˆi

i

t

tti t

Tyc

1 2

1

1

1 )(ˆ

i

i

i

i

t

tt

t

tti

tt

tttym

THEORYTHEORY

midpoint

slope

11

)(1

ˆi

i

t

ttki tW

Tyc

THEORYTHEORY

midpoint

slope

For optimal least-squares estimates (articulatory domain):

,s

1 2

1

1

1 )(ˆ

i

i

i

i

t

tt

t

tt k

itt

tttW ym

Training the model parameters

11

)(1

ˆi

i

t

ttikii tDWD

Tyc

1 2

1

1

1 )(ˆ

i

i

i

i

t

tt

t

tt iki

itt

tttDWD ym

THEORYTHEORY

midpoint

slope

For optimal maximum-likelihood estimates (articulatory domain):

,s

Training the model parameters

Tests on MOCHA

• S. British English, at 16kHz (Wrench, 2000)

– MFCC13 acoustic features, incl. zero’th

– articulatory x- & y-coords from 7 EMA coils– PCA9+Lx: first nine articulatory modes plus

the laryngograph log energy

METHODMETHOD

MOCHA baseline performance

53

54

55

56

ID_0 ID_1

Mappings

Acc

ura

cy (

%)

RESULTSRESULTS

• Constant-trajectory SHMM (ID_0)• Linear-trajectory SHMM (ID_1)

Performance across mappings

53

54

55

56

ID_0 A (1) B (2) C (6) D (10) E (10) F (49) ID_1

Mappings

Acc

ura

cy (

%)

RESULTSRESULTS

Phone categorisation

No. Description

A 1 all data

B 2 silence; speech

C 6 linguistic categories: silence/stop; vowel; liquid; nasal; fricative; affricate

D 10 as (Deng and Ma, 2000):silence; vowel; liquid; nasal; UV fric; /s,ch/; V fric; /z,jh/; UV stop; V stop

E 10 discrete articulatory regions

F 49 silence; individual phonesMETHODMETHOD

Tests on TIMIT

• N. American English, at 8kHz

– MFCC13 acoustic features, incl. zero’th

a) F1-3: formants F1, F2 and F3, estimated by Holmes formant tracker

b) F1-3+BE5: five band energies added

c) PFS12: synthesiser control parameters

METHODMETHOD

60

61

62

63

64

65

66

Acc

ura

cy (

%)

ID_0 ID_1

Features

TIMIT baseline performance

• Constant-trajectory SHMM (ID_0)• Linear-trajectory SHMM (ID_1)

RESULTSRESULTS

Performance across feature sets

RESULTSRESULTS

60

61

62

63

64

65

66

Acc

ura

cy (

%)

ID_0 (a) F3 (b) F3+BE5 (c) PFS12 ID_1

Features

Performance across groupings

RESULTSRESULTS

60

61

62

63

64

65

66

Acc

ura

cy (

%)

ID_0 A (1) B (2) C (6) D (10) E (10) F (49) ID_1

Mappings

Results across groupings

RESULTSRESULTS

ID_0

A(1

)

B(2

)

C(6

)

D(1

0)

E(1

0)

F(4

9)

ID_1

60

61

62

63

64

65

66

Acc

ura

cy (

%)

Mappings

(a) F3

(b) F3+BE5

(c) PFS12

Model visualisation

Originalacousticdata

Constant-trajectorymodel

Linear-trajectorymodel (c,F)

DISCUSSIONDISCUSSION

Conclusions• Developed framework for speech

dynamics in an intermediate space• Linear traj. + piecewise linear mapping

bounded by performance of linear traj. in acoustic space

• Near optimal performance achieved– For more than 3 formant parameters– For 6 or more linear mappings

• Formants and articulatory parameters gave qualitatively similar results

• What next?

SUMMARYSUMMARY

• Complete experiments with lang. model• Include segment duration models• Derive pseudo-articulatory

representations by unsupervised (embedded) training

• Implement non-linear mapping (i.e., RBF)

• Further information:– here and now– [email protected]– web.bham.ac.uk/p.jackson/balthasar

SUMMARYSUMMARY

Further work