phoenix, az flare gas recovery for algal protein...

27
Flare Gas Recovery for Algal Protein Production C. M. Beal 1 , F.T. Davidson 2 , M. E. Webber 2 , J. C. Quinn 3 1 B&D Engineering and Consulting LLC, 7419 State Hwy 789, Lander, WY 2 The University of Texas at Austin, 1 University Station, Austin, TX 3 Colorado State University, 1 Isotope drive, Fort Collins, CO 1 Phoenix, Az

Upload: truonglien

Post on 06-Mar-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

FlareGasRecoveryforAlgalProteinProduction

C.M.Beal1,F.T.Davidson2,M.E.Webber2,J.C.Quinn3

1 B&DEngineeringandConsultingLLC,7419StateHwy789,Lander,WY2 TheUniversityofTexasatAustin,1UniversityStation,Austin,TX

3 ColoradoStateUniversity,1Isotopedrive,FortCollins,CO

1

Phoenix,Az

Acknowledgements• Financialsupportprovidedby– U.S.DepartmentofEnergy(DE-EP0000011)– AlfredP.SloanFoundation,andtheCynthiaandGeorgeMitchellFoundation

– ColoradoStateUniversity• Specialthanksto:– DannaQuinn– BarbandFred

2

Outline

• FlareGas&Algae• GeneralOverviewofMethods– EnergyReturnonInvestment– LifeCycleAssessment– ModeledScenarios

• Results– Potential– Comparisontoliterature

• FutureDirection

3

AlgaeChallenges

• Energyintensive– Growth– Harvest– Drying

• HighNutrientDemand– Nitrogen– Phosphorus– CarbonDioxide

• EconomicViability

4

FlareGas

5

• Volumeofflarednaturalgas:140billioncubicmetersperyear

– 10xtheColoradoRiverinGCNP

– 1%ofUSannualproduction

GlobalChallenges

6

• NeedforAlternativeProteinProduction

• Algaeispromising:nolandorfreshwaterrequirements,efficientnutrientuse

OECD-FAOAgriculturalOutlook2015-2024

FlareGas+AlgaeSynergy

Couplingflaregasandalgaecan:1) Generatesecond-generationbiofuels2) Produceproteinforagrowingpopulation3) Increaseomega-3production4) Eliminateenvironmentaldamageofflaring

Productionrequiresnoarableland,freshwater,externalN,orexternalCO2.

7

Outline

• FlareGas&Algae• GeneralOverviewofMethods– EnergyReturnonInvestment– LifeCycleAssessment– ModeledScenarios

• Results– Potential– Comparisontoliterature

• FutureDirection

8

Methods

9

SystemModeling

SustainabilityModeling

Multi-PathwayAssessment MultipleScales

EROI LCA

TechnologyIntegration

SystemModel:Simplified

CHP

AlgaeProductRecovery

AmmoniaProduction

Harvest

SystemBoundary

FlareGas

Protein&

Biocrude

SystemModel

FoundationalInputs

12

Amount UnitFlareGasRecoveryVolumetricFlowRateofFlareGas 3,000 m3/d

CombinedHeatandPowerElectricityProductionEfficiency 44% -(Net)HeatRecoveryEfficiency 38% -OverallPlantEfficiency 82% -

AmmoniaProductionElectricityInput 0.70 MJ/kgammoniaHeatInput 12.6 MJ/kgammoniaWaterConsumption 1.20 kg/kgammonia

AlgaeCultivationAlgaeFacilitySize 40.0 haMixingEnergyDemand 100 kWh/ha-dProductivity 25.0 gAFDW/m2-dLipidFraction 0.25 kglipid/kgAFDWProteinFraction 0.40 kgprotein/kgAFDW

AlgaeHarvestingOverallHarvestingEfficiency 0.77 -DAFElectricity 431 kJ/kgalgaeCentrifugeElectricity 0.11 kJ/kgalgae

BioproductSeparationsDryingHeat 7.23 MJ/kgalgaeElectricityConsumption 79.9 kJ/kgalgaeExtractionHeatConsumption 864 kJ/kgalgaeSolventConsumption 1.26 g/kgalgaeBiocrudeRecovery 0.24 kgbiocrude/kgalgaeLipid-extractedBiomassRecovery 0.75 kgLEA/kgalgae

CHP:82%overallefficiency(heat&electricity)

Productivity:25gm-2d-1,25%lipid

Harvesting:DAF&Centrifuge

Productseparation:Drysolventextraction

AbbreviatedInputs

Methods

13

SystemModeling

SustainabilityModeling

Multi-PathwayAssessment MultipleScales

EROI LCA

TechnologyIntegration

EnergyReturnonInvestment

14

• Includesallembodiedenergyinmaterials• Includesupstreamenergyimpacts(embodiedenergy)• EROI>1isdesirable• Displacementmethodappliedtoco-products

EROI = Eout

Ein

EnergyIntensityofProtein

15

• Includesupstreamenergyformaterialsandenergyconsumedonsite

• Totalenergyinputisdividedbyproductyield

EI = Ein

Mout

LifeCycleAssessment

• Metric:IPCC100yearglobalwarmingpotential– CO2,CH4,andN2Oemissions

• Co-productallocation:DisplacementandEnergy• LifeCycleInventoryData

16

Scenarios:AccountingMethods

• CaseI:baseline(flaregasiswastestreamfromOil&Gas),excesselectricitydelivered

• CaseII:Excludesexcesselectricity• CaseIII:Includesenergeticcostofmethane• CaseIV:Excludesexcesselectricityandincludesenergeticcostofmethane

CaseIismostpromising,CaseIVisleasepromising

17

Outline

• FlareGas&Algae• GeneralOverviewofMethods– EnergyReturnonInvestment– LifeCycleAssessment– ModeledScenarios

• Results– Potential– Comparisontoliterature

• FutureDirection

18

EROIResults

19

• Baseline(CaseI)• InputsminimizedthroughCHP,electricitysoldtogrid,flaregasassumedaswaste

• CaseII• Assumeselectricitycannotbesoldtogrid

• CaseIII• Includesenergeticcostsofflaregas(effectivelyagas-poweredalgaeplant)

• CaseIV• Worstcasescenario(combinationofCaseIII&IV)

CaseI CaseII CaseIII CaseIV

OutputBiocrude 19,899 19,899 19,899 19,899AnimalFeed 30,597 30,597 30,597 30,597NetElectricityYield 95,463 0 95,463 0

Input

FlareGas 0 0 115,500 115,500AmmoniaProduction 2 2 2 2Cultivation 734 734 734 734Separations 32 32 32 32

TotalEROI 190 66 1.26 0.43

0 20 40 60 80 100 120 140 160 180 200

CaseI

Coal

CaseII

WindPower

OilandGasatWell

Solar

Nuclear

RefinedDiesel

CornEthanol

Beal20158T

CaseIII

Batan2010

Quinn2014

SoyBiodiesel

CaseIV

Beal2011HPC

EROI

EROIResults

20

OtherAlgaeStudies,EROI~1

CasesI&II,EROI>60

EnergyIntensity:FoodProducts

21

0 10 20 30 40 50 60 70

CaseICaseIICorn

SoyMealWheatApplesMilk

OrangesCookedPasta

FishmealEggs

ChickenPork

Beal20158TFrenchFries

CaseIIIBeef

CaseIV

EnergyInput(MJ/kg-product)

CasesI&II,NegligibleEnergyInputforFood/FeedProduction

CasesIII&IV,Ifflaregasisnotawasteproduct,energyintensityincreasesdrastically

EnergyIntensity:Protein

22

0 50 100 150 200 250

CaseICaseIICorn

SoyMealWheatApplesMilk

OrangesCookedPasta

FishmealEggs

ChickenPork

Beal20158TFrenchFries

CaseIIIBeef

CaseIV

EnergyInput(MJ/kg-protein)

CasesI&II,EnergyIntensity<Soy,Meat

LifeCycleResults

23

-915

-523

-398

-54

-25

-6

12

15

18

167

-1000 -800 -600 -400 -200 0 200 400

CaseI

CaseIII

CaseII

SoyBiodiesel

CornEthanol

CaseIV

Solar

ConventionalGasoline

RefinedDiesel

GridElectricity

GHGEmissions(gCO2eq/MJ)

CasesI,II,&III,HugeGHGSavings

LifeCycleResults

24

-1000

-800

-600

-400

-200

0

200

400

600

800

GHGEm

issions(g-CO2-eqMJ-1)

SensitivityAnalysis

25

-20% -15% -10% -5% 0% 5% 10% 15% 20%

HeatRecoveryEfficiencySeparationsElectricity

RecyclingandDischargeWaterEnergyWaterSupplyEnergy

HarvestingEnergyCirculationEnergy

C:N:PUptakeRates¹LipidContent

CompressionEnergy(FlareandCO₂)BiocrudeRecovery²BiomassRecovery³

BiomassProductivityElectricityGenerationEfficiency

FlareGasHHVAlgaeMealRen.vsTotalEnergyImpact⁴

PercentChangeinEROIforCasesI

CaseIFavorable

CaseIUnfavorable

Importanceofaccountingmethods

ConclusionFlaregasandalgaeareenergeticallyandenvironmentallysynergetic.

Thesetechnologiesyield:• Protein• Biofuel• Omega3FattyAcids• GHGreductions

Without:• ArableLand• FreshWater• AdditionalNorCO2

FutureWork

• DevelopmentofafullTEA

• GISsitidentification

• Potentialforglobaldeployment– Addressenergyandproteindemands