photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt ›...

20
SUPPLEMENTARY INFORMATION Synthesis and characterization of novel 7-oxy-3-ethyl-6-hexyl-4-methylcoumarin substituted metallo phthalocyanines and investigation of their photophysical and photochemical properties. Mücahit Özdemir, a Begümhan Karapınar, a Bahattin Yalçın,* a Ümit Salan, a Mahmut Durmuş b and Mustafa Bulut* a a. Marmara University, Department of Chemistry, 34722 Kadikoy, Istanbul, Turkey. E-mail: [email protected], [email protected], [email protected], [email protected], [email protected] b. Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey. E-mail: [email protected] 1. Experimental 1.1. Materials All chemicals used were of reagent grade quality. 3-Nitrophthalonitrile, 4-nitrophthalonitrile, 4,5-dichlorophthalonitrile, 7-hydroxy-3-ethyl- 6-hexyl-4-methylcoumarin (1) and its phthalonitrile derivatives (2-5) were synthesized and purified according to the methods described previously in literature respectively. 1-3 4-Hexylresorcinol, ethyl 2-ethylacetoacetate, 1,3-diphenylisobenzofuran (DPBF) and metal salts were purchased from Sigma-Aldrich and used as received. The solvents were purified, dried and stored over 4Å molecular sieves. All reactions were carried out under high purity N 2 atmosphere unless otherwise noted. The Pc compounds (6a-9b) were purified successively by washing with hot acetic acid, water, ethanol and acetonitrile in the Soxhlet apparatus. Column chromatography was performed on silica gel 60 (0.040- 0.063 mm) for a proper purification. Melting points of the Pc compounds were found to be higher than 300°C. The homogeneity of the products was tested in each step by thin layer chromatography (TLC Silica gel 60 F 254 ). 1.2. Equipment IR spectra were recorded on a Perkin Elmer Spectrum One fourier transform infrared spectrophotometer. 1 H-NMR spectras were recorded on a Bruker Avance III 500 MHz Three channel NMR spectrometer. Elemental analyses were performed by the Instrumental Analysis Laboratory of the TUBITAK, Marmara Research Centre. Mass spectra were recorded on the Bruker microflex LT MALDI-TOF Mass Spectrometer equipped with a nitrogen UV-Laser operating at 337 nm using the 2,5-dihydroxybenzoicacid (DHB) and dithranol (DIT) matrix. Optical spectra in the UV-vis region were recorded with a Shimadzu 2450 UV-vis spectrophotometer. Fluorescence lifetimes were measured using a time correlated single photon counting setup (TCSPC) (Horiba Fluorolog 3 equipment.) Fluorescence excitation and emission spectra were recorded on the Hitachi F-7000 spectrofluorometer using 1 cm path length cuvette at room temperature. Photo-irradiations were done using a Osram optic halogen lamp (300W-120V). A 600 nm glass cut off filter (Schott) and a water filter were used to filter off ultraviolet and infrared radiations respectively. An interference filter (Intor, 670 nm and 700 nm with a band width of 40 nm) was additionally placed in the light path before the sample. Light intensities were measured with a POWER MAX PM5100 laser (Molectron detector incorporated) power meter. Thermal properties of phthalocyanines were examined by Thermal Gravimetric Analysis (TGA) using a Perkin-Elmer Thermogravimetric analyzer STA6000 model. TGA curves of the phthalocyanines were obtained in the 30-750°C temperature range with heating rate of 10°C/min under air and N 2 atmospheres. Phase change properties and phase transitions of phthalocyanines were examined by Pyris Diamond differential scanning calorimeter (DSC). DSC analysis was run from 0°C to 80 with 5°C/min heating and cooling rates under N 2 at 25 ml/min. 1.3. Photophysical Parameters 1.3.1. Fluorescence quantum yields and lifetimes Fluorescence quantum yields ( ) were determined by the comparative method using equation 1. 4-5 Φ eq. (1) Φ = × × 2 × × 2 Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Upload: others

Post on 26-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

SUPPLEMENTARY INFORMATION

Synthesis and characterization of novel 7-oxy-3-ethyl-6-hexyl-4-methylcoumarin substituted metallo phthalocyanines and investigation of their photophysical and

photochemical properties. Mücahit Özdemir,a Begümhan Karapınar,a Bahattin Yalçın,*a Ümit Salan,a Mahmut Durmuşb and Mustafa Bulut*a

a. Marmara University, Department of Chemistry, 34722 Kadikoy, Istanbul, Turkey. E-mail: [email protected], [email protected],

[email protected], [email protected], [email protected]

b. Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey. E-mail: [email protected]

1. Experimental

1.1. Materials

All chemicals used were of reagent grade quality. 3-Nitrophthalonitrile, 4-nitrophthalonitrile, 4,5-dichlorophthalonitrile, 7-hydroxy-3-ethyl-6-hexyl-4-methylcoumarin (1) and its phthalonitrile derivatives (2-5) were synthesized and purified according to the methods described previously in literature respectively.1-3 4-Hexylresorcinol, ethyl 2-ethylacetoacetate, 1,3-diphenylisobenzofuran (DPBF) and metal salts were purchased from Sigma-Aldrich and used as received. The solvents were purified, dried and stored over 4Å molecular sieves. All reactions were carried out under high purity N2 atmosphere unless otherwise noted. The Pc compounds (6a-9b) were purified successively by washing with hot acetic acid, water, ethanol and acetonitrile in the Soxhlet apparatus. Column chromatography was performed on silica gel 60 (0.040-0.063 mm) for a proper purification. Melting points of the Pc compounds were found to be higher than 300°C. The homogeneity of the products was tested in each step by thin layer chromatography (TLC Silica gel 60 F254).

1.2. Equipment

IR spectra were recorded on a Perkin Elmer Spectrum One fourier transform infrared spectrophotometer. 1H-NMR spectras were recorded on a Bruker Avance III 500 MHz Three channel NMR spectrometer. Elemental analyses were performed by the Instrumental Analysis Laboratory of the TUBITAK, Marmara Research Centre. Mass spectra were recorded on the Bruker microflex LT MALDI-TOF Mass Spectrometer equipped with a nitrogen UV-Laser operating at 337 nm using the 2,5-dihydroxybenzoicacid (DHB) and dithranol (DIT) matrix. Optical spectra in the UV-vis region were recorded with a Shimadzu 2450 UV-vis spectrophotometer. Fluorescence lifetimes were measured using a time correlated single photon counting setup (TCSPC) (Horiba Fluorolog 3 equipment.) Fluorescence excitation and emission spectra were recorded on the Hitachi F-7000 spectrofluorometer using 1 cm path length cuvette at room temperature. Photo-irradiations were done using a Osram optic halogen lamp (300W-120V). A 600 nm glass cut off filter (Schott) and a water filter were used to filter off ultraviolet and infrared radiations respectively. An interference filter (Intor, 670 nm and 700 nm with a band width of 40 nm) was additionally placed in the light path before the sample. Light intensities were measured with a POWER MAX PM5100 laser (Molectron detector incorporated) power meter. Thermal properties of phthalocyanines were examined by Thermal Gravimetric Analysis (TGA) using a Perkin-Elmer Thermogravimetric analyzer STA6000 model. TGA curves of the phthalocyanines were obtained in the 30-750°C temperature range with heating rate of 10°C/min under air and N2 atmospheres. Phase change properties and phase transitions of phthalocyanines were examined by Pyris Diamond differential scanning calorimeter (DSC). DSC analysis was run from 0°C to 80 with 5°C/min heating and cooling rates under N2 at 25 ml/min.

1.3. Photophysical Parameters

1.3.1. Fluorescence quantum yields and lifetimes

Fluorescence quantum yields ( ) were determined by the comparative method using equation 1.4-5Φ𝐹

eq. (1)

Φ𝐹 = 𝐹 × 𝐴𝑠𝑡𝑑 × 𝜂2

𝐹𝑠𝑡𝑑 × 𝐴 × 𝜂 2𝑠𝑡𝑑

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2019

Page 2: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

where and are the areas under the fluorescence emission curves of the samples (6a-9b) and the standard (Unsubstituted ZnPc), 𝐹 𝐹𝑠𝑡𝑑

respectively. and are the relative absorbance of the samples and standard at the excitation wavelength, respectively. and are 𝐴 𝐴𝑠𝑡𝑑 𝜂2 𝜂 2𝑠𝑡𝑑

the refractive indices of solvents for the sample and standard, respectively.

Unsubstituted ZnPc (in DMF) ( = 0.170)6 was employed as the standard. Both the sample and standard were excited at the same Φ𝐹

wavelength. The absorbance of the solutions was ranged between 0.10 and 0.12 at the excitation wavelength.

Fluorescence lifetimes were measured using a time correlated single photon counting setup (TCSPC). The natural radiative lifetimes ( ) 𝜏𝐹 𝜏0

were evaluated using equation 2.7

eq. (2)

𝜏0 = 𝜏𝐹

Φ𝐹

1.4. Photochemical Parameters

1.4.1. Singlet oxygen quantum yields

Singlet oxygen quantum yield ( ) determinations were carried out using the experimental set-up described in literature.8-11 Φ∆

Typically, a 3 mL portion of the respective unsubstituted, peripherally, non-peripherally tetra-substituted and octa-substituted Zn(II) Pc and In(III) ClPc solutions (concentration = 1×10−5 M) containing the singlet oxygen quencher was irradiated in the Q band region

with the photo-irradiation set-up described in the reference.8-11 values were determined in air using the relative method with Φ∆

unsubstituted ZnPc (in DMF) as references. Diphenylisobenzofurane (DPBF) was used as chemical quencher for singlet oxygen in

DMF. The values of the studied Pc complexes were calculated using equation 3:Φ∆

eq. (3)

Φ∆ = Φ𝑠𝑡𝑑∆

𝑅 × 𝐼𝑠𝑡𝑑𝑎𝑏𝑠

𝑅𝑠𝑡𝑑 × 𝐼𝑎𝑏𝑠

where is the singlet oxygen quantum yield for the standard. Unsubsituted ZnPc ( = 0.56 in DMF)12 was used as standard. and Φ𝑠𝑡𝑑∆ Φ𝑠𝑡𝑑

∆ 𝑅

are the DPBF photobleaching rates in the presence of the respective samples (6a-9b and Unsubs. ZnPc) and standard, respectively. 𝑅𝑠𝑡𝑑

and are the rates of light absorption by the samples and standards, respectively was determined by using equation 4.𝐼𝑎𝑏𝑠 𝐼𝑠𝑡𝑑𝑎𝑏𝑠 𝐼𝑎𝑏𝑠

eq. (4)

𝐼𝑎𝑏𝑠 = 𝛼 × 𝑆 × 𝐼

𝑁𝐴

is the Avogadro’s constant, is the irradiated cell area, is the irradiation time and is the overlap integral of the radiation source 𝑁𝐴 𝑆 𝛼 𝐼𝑎𝑏𝑠

light intensity and the absorption of the samples (6a-9b and Unsubs. ZnPc).

To avoid chain reactions induced by DPBF in the presence of singlet oxygen, the concentration of quenchers (DPBF) was lowered to ∼3×10-5

M.8-11 Solutions of sensitizer (concentration = 1×10-5) containing DPBF were prepared in the dark and irradiated in the Q band region using

the setup described in literature.8-11 DPBF degradation at 417 nm was monitored. The light intensity used for determinations was found Φ∆

to be 6.60×1015 photons s-1 cm-2.

1.4.2. Photodegradation quantum yields

Photodegradation quantum yield ( ) determinations were carried out using the experimental set-up described in literature [12]. Φ𝑑

Photodegradation quantum yields were determined using equation 5,

eq. (5)

Φ𝑑 =(𝐶0 ‒ 𝐶𝑡) × 𝑉 × 𝑁𝐴

𝐼𝑎𝑏𝑠 × 𝑆 × 𝑡

where and are the samples (Unsubs. ZnPc, 6a-9b) concentrations before and after irradiation respectively, is the reaction volume, 𝐶0 𝐶𝑡 𝑉

is the Avogadro’s constant, is the irradiated cell area, is the irradiation time and is the overlap integral of the radiation source 𝑁𝐴 𝑆 𝑡 𝐼𝑎𝑏𝑠

Page 3: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

light intensity and the absorption of the samples (6a-9b and Unsubs. ZnPc). A light intensity of 2.15×1016 photons s-1 cm-2 was employed for

determinations.Φ𝑑

1.4.3. Fluorescence quenching by benzoquinone or potassium iodide (BQ or KI)

Fluorescence quenching experiments on the substituted ZnPc (6a-9a) were carried out by the addition of different concentrations of quencher [BQ] or [KI] to a fixed concentration of the complexes, and the concentrations of quencher in the resulting mixtures were 0, 0.008, 0.016, 0.024, 0.032 and 0.040 M. The fluorescence spectra of substituted ZnPc (6a-9a) at each quencher concentration were recorded, and the changes in fluorescence intensity related to quencher concentration by the Stern–Volmer equation12 (equation 6):

eq. (6)

𝐼0

𝐼= 1 + 𝐾𝑠𝑣[𝑄𝑢𝑒𝑛𝑐ℎ𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛]

where and are the fluorescence intensities of fluorophore in the absence and presence of quencher, respectively, [BQ] or [KI] is the 𝐼0 𝐼

concentration of the quencher, and is the Stern–Volmer constant, and is the product of the bimolecular quenching constant ( ) and the 𝐾𝑠𝑣 𝑘𝑞

fluorescence lifetime , i.e.𝜏𝐹

eq. (7)𝐾𝑠𝑣 = 𝑘𝑞 × 𝜏𝐹

The ratios were calculated and plotted against [BQ] or [KI] according to equation 6, and determined from the slope.𝐼0/𝐼 𝐾𝑠𝑣

Fig. S1. Photophysical and photochemical measurement process.

Page 4: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

2. References

1 H. Kuruca, B. Köksoy, B. Karapınar, M. Durmuş and M. Bulut, J. Porphyr. Phthalocyanines, 2018, 22, 266–278.

2 O. S. Can, A. Kuş, E. N. Kaya, M. Durmuş and M. Bulut, Inorganica Chim. Acta, 2017, 465, 31–37.

3 M. A. Köksoy, B. Köksoy, M. Durmuş and M. Bulut, J. Organomet. Chem., 2016, 822, 125–134.

4 G. İlke, M. Durmuş, V. Ahsen and T. Nyokong, Dalton Trans., 2007, 0, 3782-3791.

5 S. Fery-Forgues and D. Lavabre, J. Chem. Educ., 1999, 76, 1260-1264.

6 A. Ogunsipe, D. Maree and T. Nyokong, J. Mol. Struct., 2003, 650, 131–140.

7 G. Dilber, H. Altunparmak, A. Nas, H. Kantekin and M. Durmuş, Spectrochim. Acta A., 2019, 217, 128-140.

8 B. Ghazal, A. Husain, A. Ganesan, M. Durmuş, X. F. Zhang and S. Makhseed, Dyes Pigm., 2019, 164, 296-304.

9 T. Nyokong and E. Antunes, in Handbook of Porphyrin Science, Eds. K. M. Kadish, K. M. Smith and R. Guilard, World Scientific, New York, 2010, pp.247-357.

10 Y. Zorlu, F. Dumoulin, M. Durmuş and V. Ahsen, Tetrahedron, 2010, 66, 3248–3258.

11 W. Spiller, H. Kliesch, D. Wöhrle, S. Hackbarth, B. Roder and G. Schnurpfeil, J. Porphyr. Phthalocyanines, 1998, 2,145–158.

12 A. Awaji, B. Köksoy, M. Durmuş, A. Aljuhani and S. Alraqa, Molecules, 2018, 24, 77.

Page 5: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

Table S1. The specific IR bands of the compounds (1-5, 6a-9b and unsubs. ZnPc, InPc)

The CompoundsAromatic

‒O‒H

Aromatic

‒C‒H

Aliphatic

‒C‒H‒C≡N

Lactone

‒C=O

Aromatic

‒C=C‒Ar‒O‒Ar

1 3203 3062 29252854 - 1701 1573 -

2 - 3049 29292860 2234 1696 1592 1275

3 - 3087 29232856 2234 1703 1569 1277

4 - 3047 29262855 2233 1703 1573 1256

5 - 3049 29262855 2230 1705 1574 1257

6a - 3064 29242852 - 1707 1569 1211

7a - 3065 29242852 - 1709 1571 1215

8a - 3067 29262854 - 1707 1572 1257

9a - 3075 29252855 - 1705 1571 1257

Unsubs. ZnPc - 3069 29222863 - 1711 1569 -

6b - 3065 29242852 - 1709 1571 1215

7b - 3072 29232853 - 1706 1569 1238

8b - 3065 29252856 - 1707 1571 1256

9b - 3062 29252854 - 1705 1572 1255

Unsubs. InPc - 3058 29262860 - 1722 1548 -

Page 6: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

Fig. S2. The IR spectra of the compounds (1-5, 6a-9a, 6b-9b).

Page 7: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

Table S2. Absorption and emission spectral results of 7a in different solvents.

Solvent𝑄 𝑏𝑎𝑛𝑑

𝑚𝑎𝑥

(log ɛ)

𝐵 𝑏𝑎𝑛𝑑𝑚𝑎𝑥

(log ɛ)

𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑚𝑎𝑥

(log ɛ)

𝐽 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥

(log ɛ)

𝑒𝑚𝑚𝑎𝑥

(nm)

∆𝑣

(cm-1)

Dichloromethane 697 (5.04) 330 (4.99) 629 (4.28) 745 (4.37) 696 21

Dichloromethane + K2CO3 693 (5.08) 325 (4.95) 624 (4.34) - 706 266

Chloroform 697 (4.83) 325 (5.15) 645 (4.42) 741 (5.07) 713 322

Chloroform + K2CO3 693 (5.03) 326 (4.88) 624 (4.26) - 713 405

Acetone 688 (5.06) 324 (4.87) 620 (4.28) - 698 208

Dimethylformamide 691 (5.11) 325 (4.96) 623 (4.33) - 700 186

Pyridine 693 (5.11) 324 (5.00) 623 (4.34) - 714 424

Dimethylsulfoxide 697 (5.11) 324 (4.99) 627 (4.34) - 703 122

Ethyl acetate 688 (5.09) 322 (4.97) 621 (4.31) - 704 330

Toluene 694 (5.11) 321 (4.98) 625 (4.32) - 706 245

Tetrahydrofuran 689 (5.10) 323 (4.94) 621 (4.32) - 706 349

1,4-Dioxane 692 (5.07) 322 (4.93) 623 (4.30) - 707 307

1-Hexanol 689 (5.10) 325 (4.97) 621 (4.31) - 702 269

0

0,2

0,4

0,6

0,8

1

1,2

685 695 705 715 725 735 745 755 765

Nor

mal

ized

Inte

nsity

(a.u

.)

Wavelength (nm)

DMF1,4-Dioxane1-HexanolAcetoneChloroformDCM + BaseDCMDMSOEthyl acetatePyridineTHFToluene

Fig. S3. Emission spectra of compound 7a in different solvents.

Page 8: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

0

50

100

150

200

250

300

1500 1600 1700 1800 1900 2000 2100

Inte

nsity

[a.u

.]

m/z

1724.015

Fig. S4. Positive ion in reflectron mode MALDI-TOF mass spectrum of compound 7a were obtained in dithranol (DIT).

0

100

200

300

400

500

600

700

1500 1600 1700 1800 1900 2000 2100 2200 2300

Inte

nsity

[a.u

.]

m/z

2108.5481863.538

[M+DIT]

Fig. S5. Positive ion in reflectron mode MALDI-TOF mass spectrum of compound 8a were obtained in dithranol (DIT).

0

100

200

300

400

500

600

700

800

900

1000

2600 2700 2800 2900 3000 3100 3200 3300

Inte

nsity

[a.u

.]

m/z

2868.21

Fig. S6. Positive ion in reflectron mode MALDI-TOF mass spectrum of compound 9a were obtained in dithranol (DIT).

Page 9: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

O OOH

HH

H

HH

H

H H

HH

H

HH

H

H

HH

H

HHH

H

H

1.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

3.12

3.07

7.00

2.09

0.91

2.91

4.06

1.00

0.99

0.86

0.90

0.94

0.94

0.95

0.96

1.19

1.20

1.22

1.31

1.32

1.35

1.36

1.36

1.37

1.38

1.39

1.39

1.40

1.41

1.42

1.43

1.45

1.45

1.66

1.67

1.68

1.68

1.69

1.70

1.71

1.72

1.91

2.24

2.25

2.26

2.47

2.71

2.72

2.73

2.73

2.74

2.75

2.76

6.52

6.64

7.15

7.23

7.33

CD

Cl3

7.37

7.63

7.63

7.64

7.65

7.27.37.47.57.67.7f1 (ppm)

2.22.32.42.52.62.7f1 (ppm)

0.80.91.01.11.21.31.41.51.61.71.8f1 (ppm)

Fig. S7. 1H NMR spectrum of compound 1.

Page 10: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

O

O

O

H H

H

HH

H

HH

H

H

H

H

H

H

H

H

H

H

H

H H

H

H

N

N

H

H H

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

3.79

3.23

8.01

2.21

3.00

2.08

2.06

0.98

2.55

1.09

1.01

0.78

0.79

0.81

0.82

0.83

0.84

0.85

0.86

1.08

1.09

1.11

1.15

1.17

1.18

1.19

1.19

1.20

1.20

1.20

1.21

1.21

1.22

1.22

1.24

1.24

1.25

1.25

1.28

1.32

1.34

1.35

1.37

1.46

1.47

1.47

1.49

1.50

1.52

HD

O1.

611.

972.

022.

382.

422.

472.

482.

482.

502.

622.

632.

652.

664.

134.

144.

154.

16

6.83

7.16

7.17

7.18

7.18

7.19

CD

Cl3

7.20

7.45

7.46

7.47

7.63

7.63

7.64

7.64

7.68

7.70

6.86.97.07.17.27.37.47.57.67.7f1 (ppm)

2.352.402.452.502.552.602.652.70f1 (ppm)

0.80.91.01.11.21.31.41.5f1 (ppm)

Fig. S8. 1H NMR spectrum of compound 2.

Page 11: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

1.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

12.0

9

9.92

11.8

47.

401.

95

1.03

1.15

1.29

5.20

7.32

5.11

0.99

1.77

1.05

0.91

2.24

0.99

0.86

0.61

0.96

0.83

0.82

0.84

0.84

0.86

0.87

0.87

0.88

0.89

0.92

0.94

1.14

1.15

1.16

1.17

1.17

1.18

1.19

1.21

1.22

1.23

1.24

1.25

1.25

1.27

1.28

1.29

1.30

1.43

1.60

HD

O1.

832.

012.

182.

182.

342.

352.

422.

442.

452.

462.

462.

532.

542.

562.

592.

602.

622.

682.

702.

712.

732.

743.

503.

673.

69

6.80

6.88

6.88

6.91

7.02

7.09

7.22

7.23

7.26

CD

Cl3

7.29

7.31

7.32

7.49

7.50

7.55

7.62

7.65

1.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

3.79

3.23

8.01

2.21

3.00

2.08

2.06

0.98

2.55

1.09

1.01

0.78

0.79

0.81

0.82

0.83

0.84

0.85

0.86

1.08

1.09

1.11

1.15

1.17

1.18

1.19

1.19

1.20

1.20

1.20

1.21

1.21

1.22

1.22

1.24

1.24

1.25

1.25

1.28

1.32

1.34

1.35

1.37

1.46

1.47

1.47

1.49

1.50

1.52

HD

O1.

611.

972.

022.

382.

422.

472.

482.

482.

502.

622.

632.

652.

664.

134.

144.

154.

16

6.83

7.16

7.17

7.18

7.18

7.19

CD

Cl3

7.20

7.45

7.46

7.47

7.63

7.64

7.68

7.70

O

O

O

H H

H

HH

H

HH

H

H

H

H

H

H

H

H

H

H

H

H H

H

H

N

N

H

H H

O

O

OH

H

H

HH H

H

H

H

HH

H

H

HH

H

H

HH

HH

H

H

Zn

N

N

N

N

N

N

N

N

Fig. S9. 1H NMR spectrum of compound 6a.

Page 12: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

30 40 50 60 70 80 90 100

40

45

50

55

60

65

70

75

80

30

40

50

60

70

80

90

100

110

30 130 230 330 430 530 630 730

Temperature (°C)

Wei

ght %

(%)

Heat

Flow

End

o U

p (m

W)

Temperature (°C)

TGADSC

End= 72.48°C

Onset= 72.12°C

Tg: Half Cp Extrapolated= 72.22°CDelta Cp = 0.208 J/*°C

Fig. S10. TGA and DSC curves of compound 6b.

3 00 3 50 4 00 4 50 5 00 5 50 6 00 6 50 7 00 7 50 8 00

0

0 ,2

0 ,4

0 ,6

0 ,8

1

1 ,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

300 400 500 600 700 800

Abso

rban

ce

Wavelength (nm)

ChloroformDichloromethaneTHFDMFDMSO

a)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

300 400 500 600 700 800

Abso

rban

ce

Wavelength (nm)

ChloroformDichloromethaneDMFDMSOTHF

b)

Fig. S11. a) UV-vis spectrums of 6b in different solvents. b) UV-vis spectrums of 7b in different solvents.

Page 13: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

300 400 500 600 700 800

Abso

rban

ce

Wavelength (nm)

6b7b8b9b

Fig. S12. Absorption spectra of indium phthalocyanine complexes (6b-9b) in DMF.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

300 400 500 600 700 800

Abso

rban

ce

Wavelength (nm)

1,00E-059,00E-068,00E-067,00E-066,00E-065,00E-064,00E-063,00E-062,00E-061,00E-06

a)

y = 75427xR² = 0,9993

0

0,2

0,4

0,6

0,8

0,00E+00 5,00E-06 1,00E-05

Abso

rban

ce

Concentration (M)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

300 400 500 600 700 800

Abso

rban

ce

Wavelength (nm)

1,00E-059,00E-068,00E-067,00E-066,00E-065,00E-064,00E-063,00E-062,00E-061,00E-06

b)

y = 98905xR² = 0,9997

00,20,40,60,8

1

0,00E+00 5,00E-06 1,00E-05

Abso

rban

ce

Concentration (M)

Fig. S13. a) Aggregation behaviors of 8b in DMF at different concentrations. b) Aggregation behaviors of 7a in DMF at different

concentrations.

Page 14: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

0

0 ,2

0 ,4

0 ,6

0 ,8

1

1 ,2

300 400 500 600 700 8000

0,2

0,4

0,6

0,8

1

1,2

1,4

Wavelength (nm)

Abso

rban

ce

DMSO

DMSO + Triton X-100 5µg

DMSO + Triton X-100 10µg

a)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

300 400 500 600 700 800

Abso

rban

ce

Wavelength (nm)

+ 1 mg+ 0.5 mg0 mg

K2CO3b)

Fig. S14. a) Absorption spectra of 6a in DMSO and Triton X-100. Concentration ∼1×10−5 M. b) Absorption spectra of 7a in dichloromethane and K2CO3 + CH2Cl2 solution. Concentration ∼1×10−5 M.

Page 15: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

0

0,2

0,4

0,6

0,8

1

500 550 600 650 700 750 8000

0,2

0,4

0,6

0,8

1

Nor

mal

ized

Abso

rban

ce

Wavelength (nm)

Nor

mal

ized

Inte

nsity

(a.u

.)

EmissionExcitationAbsorption

a)

0

0,2

0,4

0,6

0,8

1

500 550 600 650 700 750 8000

0,2

0,4

0,6

0,8

1

Nor

mal

ized

Abso

rban

ce

Wavelength (nm)

Nor

mal

ized

Inte

nsity

(a.u

.)

EmissionExcitationAbsorption

b)

Fig. S15. a) Normalized absorption, emission and excitation spectra for compounds 8a in DMF. b) Normalized absorption, emission and

excitation spectra for compounds 9a in DMF.

Page 16: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

0

2000

4000

6000

8000

10000

80 85 90 95 100

Coun

t

Time (ns)

PromptFit (8a)Decay (8a)

0

2000

4000

6000

8000

10000

80 85 90 95 100

Coun

tTime (ns)

PromptFit (7a)Decay (7a)

0

2000

4000

6000

8000

10000

80 85 90 95 100

Coun

t

Time (ns)

Promt

Fit (9a)

Decay (9a)

(7a) = 2.55 ± 0.03 nsCHISQ = 0.95

(8a) = 1.74 ± 0.04 nsCHISQ = 1.34

(9a) = 1.78 ± 0.03 nsCHISQ = 1.03

Fig. S16. Time correlated single photon counting (TCSPC) trace for compound 7a, 8a and 9a in DMF with residuals. Ex = 661 nm for 7a, Ex = 650 nm for 8a and Ex = 644 nm for 9a.

Page 17: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

0

0,2

0,4

0,6

0,8

1

1,2

300 400 500 600 700 800

Abso

rban

ce

Wavelength (nm)

0 sec5 sec10 sec15 sec20 sec25 sec30 sec35 sec40 sec45 sec50 sec55 sec60 sec65 sec

a) y = -0,0129x + 1,0119R² = 0,985

0

0,3

0,6

0,9

1,2

0 20 40 60

DPBF

Abs

orba

nce

Time (sec)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

300 400 500 600 700 800

Abso

rban

ce

Wavelength (nm)

0 sec5 sec10 sec15 sec20 sec25 sec30 sec

b) y = -0,0431x + 1,9731R² = 0,9967

0

1

2

3

0 10 20 30Ab

sorb

ance

Time (sec)

Fig. S17. a) A typical spectra for the determination of singlet oxygen quantum yield of 8a, in DMF at 1×10-5 M (inset: plots of DPBF absorbance versus time). b) A typical spectra for the determination of singlet oxygen quantum yield of 9b, in DMF at 1×10-5 M (inset: plots of DPBF absorbance versus time).

Page 18: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

300 400 500 600 700 800

Abso

rban

ce

Wavelength (nm)

0 sec120 sec240 sec360 sec480 sec

a)

y = -0,0004x + 0,6327R² = 0,9992

0

0,2

0,4

0,6

0 120 240 360 480

Abso

rban

ce

Time (sec)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

300 400 500 600 700 800

Abso

rban

ce

Wavelength (nm)

0 sec120 sec240 sec360 sec480 sec600 sec

b)

y = -0,0003x + 0,6675R² = 0,9984

0

0,2

0,4

0,6

0 200 400 600

Abso

rban

ce

Time (sec)

Fig. S18. a) The photodegradation of compounds 8b in DMF showing the disappearance of the Q-band at eight minutes intervals. b) The photodegradation of compounds 6b in DMF showing the disappearance of the Q-band at ten minutes intervals.

Page 19: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

0

20

40

60

80

100

665 675 685 695 705 715 725 735

Inte

nsity

(a.u

.)

Wavelength (nm)

0.000M [BQ]0.008M [BQ]0.016M [BQ]0.024M [BQ]0.032M [BQ]0.040M [BQ]

a)

0

50

100

150

200

250

300

665 675 685 695 705 715 725 735

Inte

nsity

[a.u

.]

Wavelength (nm)

0.000M [KI]0.008M [KI]0.016M [KI]0.024M [KI]0.032M [KI]0.040M [KI]

b)

Fig. S19. a) Fluorescence emission spectral changes of compound 8a on addition of different concentrations of BQ in DMF. b) Fluorescence emission spectral changes of compound 9a on addition of different concentrations of KI in DMF. Concentration ∼1×10−6 M.

Page 20: photochemical properties. Φ substituted metallo phthalocyanines … › suppdata › c9 › dt › c9dt02687h › c9dt02687h1.pdf · 2019-08-01 · SUPPLEMENTARY INFORMATION Synthesis

1

1,2

1,4

1,6

1,8

2

2,2

2,4

0 0,008 0,016 0,024 0,032 0,04

I 0/I

Concentration (M)

(6a)(7a)(8a)(9a)

R² = 0.9523R² = 0.9224R² = 0.9979R² = 0.9988

a)

1

1,5

2

2,5

3

3,5

4

0 0,008 0,016 0,024 0,032 0,04

I 0/I

Concentration (M)

(6a)(7a)(8a)(9a)

R² = 0.9771R² = 0.9286R² = 0.9931R² = 0.9352

b)

Fig. S20 a) Stern-Volmer plots for 1,4-benzoquinone (BQ) quenching of 6a, 7a, 8a and 9a, concentration: ∼1×10−6 M in DMF. b) Stern-Volmer plots for potassium iodide (KI) quenching of 6a, 7a, 8a and 9a, concentration: ∼1×10−6 M in DMF. [BQ] and [KI] concentration = 0, 0.008, 0.016, 0.024, 0.032, 0.040 M.