photoinduced decarboxylative azidation of cyclic amino acids · 2019. 8. 22. · close the...

5
The University of Manchester Research Photoinduced decarboxylative azidation of cyclic amino acids DOI: 10.1039/c8ob02702a Document Version Submitted manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Marcote, D. C., Street-Jeakings, R., Dauncey, E., Douglas, J. J., Ruffoni, A., & Leonori, D. (2019). Photoinduced decarboxylative azidation of cyclic amino acids. Organic and Biomolecular Chemistry, 17(7), 1839-1842. https://doi.org/10.1039/c8ob02702a Published in: Organic and Biomolecular Chemistry Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:03. May. 2021

Upload: others

Post on 24-Nov-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Photoinduced decarboxylative azidation of cyclic amino acids · 2019. 8. 22. · close the photoredox cycle ensuring catalytic activity. for example Scheme 2. Proposed photoredox

The University of Manchester Research

Photoinduced decarboxylative azidation of cyclic aminoacidsDOI:10.1039/c8ob02702a

Document VersionSubmitted manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):Marcote, D. C., Street-Jeakings, R., Dauncey, E., Douglas, J. J., Ruffoni, A., & Leonori, D. (2019). Photoinduceddecarboxylative azidation of cyclic amino acids. Organic and Biomolecular Chemistry, 17(7), 1839-1842.https://doi.org/10.1039/c8ob02702a

Published in:Organic and Biomolecular Chemistry

Citing this paperPlease note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscriptor Proof version this may differ from the final Published version. If citing, it is advised that you check and use thepublisher's definitive version.

General rightsCopyright and moral rights for the publications made accessible in the Research Explorer are retained by theauthors and/or other copyright owners and it is a condition of accessing publications that users recognise andabide by the legal requirements associated with these rights.

Takedown policyIf you believe that this document breaches copyright please refer to the University of Manchester’s TakedownProcedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providingrelevant details, so we can investigate your claim.

Download date:03. May. 2021

Page 2: Photoinduced decarboxylative azidation of cyclic amino acids · 2019. 8. 22. · close the photoredox cycle ensuring catalytic activity. for example Scheme 2. Proposed photoredox

JournalName

COMMUNICATION

Thisjournalis©TheRoyalSocietyofChemistry20xx J.Name.,2013,00,1-3|1

Pleasedonotadjustmargins

Pleasedonotadjustmargins

Received00thJanuary20xx,Accepted00thJanuary20xx

DOI:10.1039/x0xx00000x

www.rsc.org/

PhotoinducedDecarboxylativeAzidationofCyclicAminoacidsDavidC.Marcotea,RosieStreet-Jeakingsa,ElizabethDaunceya,JamesJ.Douglasb,AlessandroRuffoni*aandDanieleLeonori*a

The direct decarboxylative azidation of cyclicα -amino acids hasbeen achieved via visible light-mediated organo-photoredoxcatalysis.Thissyntheticstrategyallowsthesimplepreparationofazide-contaningbuildingblocksandhasbeenusedintheselectivemodificationofN-terminalprolineresiduesoftwodi-peptides.

The azide is among themost important functional groups inorganicchemistry, regularlyused inresearchprogramsaimedatdrugdiscovery,chemicalbiologyandmaterialscience.1Thisrelevancestemsfromtheeasebywhichorganicazidescanbeconverted into amines and amides (Staudingerreduction/ligation)aswellas triazoles (click-chemistrydipolarcycloaddition)(Scheme1A).2In general, alkyl azides are prepared by nucleophilicsubstitution of (pseudo)halides3d, Mitsunobu reaction3e onalcohols, or alkene hydro-azidation3a-c,g,f. More recentlymethodsfordirectsp3C–Hazidation4a-bhavebeendevelopedusingradicalstrategiesbasedonMn4candFe4dsystems.Theseapproaches have enabled the modification of very complexsubstrates via the functionalization of themost activated sp3C–H bonds (i.e. the functionalization of tertiary centres oversecondary). Radical approaches targeting the azidation ofspecificbutnon-activatedsp3-carbonshavegenerallyreliedinthe preparation of Barton-type esters and their followingdecarboxylation-azidation using high-energy UV-light or AIBNat elevated temperature.5More recently, Li6a and Jiao6bhavereported the direct oxidative conversion of carboxylic acidsintoalkylazidesusingsilver(I/II)catalystsandstrongoxidants(e.g.K2S2O8)instoichiometricamounts.Ascarboxylicacidsrepresentaveryversatilefeedstockforthegeneration of alkyl radicals using photoredox catalysis,7 wewere surprised to realise that no methodology has been

developed for their engagement in sp3-C azidation. Therealisation of this transformation would provide highcomplementarity to current methods both in terms ofsubstrate scope and functional group compatibility given themildconditionsnormallyassociatedtovisible-lightphotoredoxcatalysis. In this report,we describe the development of thefirst photoredox decarboxylative-azidation process. Themethodology described here utilises low cost and readilyavailableorganicdyesasphotocatalystsandithasbeenfoundparticularly useful for the modification of cyclic aminoacidsanddi-peptides.

Scheme1.A)Mostusedreactionsoforganicazidesinbio-organicchemistry.B)Decarboxylativeazidationproceduresinvolvingthegenerationofalkylradicals.

Our proposed reaction manifold is based on a classicalphotoredox reductive quenching cycle where visible light-excitation of a photocatalyst (PC g *PC) leads to the SET(single electron transfer) oxidation of a carboxylate startingmaterial (A) (Scheme 2).8 Following a fast decarboxylationprocess,theresultingalkylradical(B)canbeinterceptedbyanN3-containingSOMOphile(N3–Y)togivethedesiredproductC.Examples of commercially available N3-SOMOphiles are theZhdankin reagent9 (D) and aryl sulfonyl azides (E, F), whichhavebeenshowntoefficientlytransfertheazidegrouptoalkylradicals.10 A final SET between the radical generated upon

N3NN

N

MeO2C

Ph2PO

NH

Ph2PO[3+2] Huisgencycloaddition

Staudingerligation

CO2H CO2Hthis work

A) Azides and their manipulation

B) Decarboxylation-azidations

Ag(I/II)K2S2O8, Δ

• high-energy UV• AIBN, Δ

photoredoxcatalysis

O

ON

S

N3–X

Page 3: Photoinduced decarboxylative azidation of cyclic amino acids · 2019. 8. 22. · close the photoredox cycle ensuring catalytic activity. for example Scheme 2. Proposed photoredox

COMMUNICATION JournalName

2 |J.Name.,2012,00,1-3 Thisjournalis©TheRoyalSocietyofChemistry20xx

Pleasedonotadjustmargins

Pleasedonotadjustmargins

azide-transfer(Y•)andthereducedphotocatalyst(PC•–)wouldclosethephotoredoxcycleensuringcatalyticactivity.

Scheme2.Proposedphotoredoxcyclefordecarboxylateazidation.

To assess our hypothesis, we started by investigating thereaction of SOMOphiles D–F with N-Boc-proline 1a as thecarboxylic acid (1a-Cs Eox = +0.95 V vs SCE in CH3CN) andseveralphotocatalysts.Attheoutsetwedecidedtorestrictourphotocatalyst screening to organic dyes as they areconsiderably less expensive and commercially available onlargerscale.11As illustrated inScheme3,wewerepleased tofindoutthatusingEastheSOMOphile,rhodamine6G(*Ered=+1.18VvsSCE inCH3CN)

12as thephotocatalystandK2CO3asthebase inDCEundergreenLEDs irradiation,2wasobtainedinapromising36%yield(entry1).

Scheme 3. Optimization of the decarboxylative azidation using 1. B)Luminescence-quenchingexperiments.

We then screened several bases and found thatbyusing themore soluble CsOBz and tetramethyl guanidine (TMG), the

yieldwasimprovedto90%and85%respectively(entries2-5).UndertheseconditionstheotherazidatingreagentsF(entry6)andD(entry7)provided2 inconsiderablyloweryields.Othersolvents (entries 8–11) and commonly used organo-photocatalysts (entries 12-16) were evaluated but theygenerallyprovided2withlowerefficiency.Control experiments confirmed the requirement for light,photocatalystandbase(entries17–19).Our mechanistic proposal is further supported byluminescence-quenching studies (Stern-Volmer analysis) thatrevealed1-Cs (kq = 2.1 10

9M–1 s–1) and notE to quench theexcited state of rhodamine 6G (Scheme 4A). Unfortunately,quantumyieldmeasurementhasnotbeenpossibleduetothelack of green-light actinometers. As a result, we cannotexclude the presence of radical chain propagations resulting,forexample,bythedirectoxidationofAbyY•(Scheme4B).

Scheme4.Luminescence-quenchingexperiments.

Withtheoptimisedreactionconditionsinhand,weevaluatedthe scope of the process (Scheme 5). Replacing the N-Bocprotecting groupwith theN-Cbzonprolinewaspossible andwe obtained 3 in good yield. Fluorinated pyrrolidines arecommon motifs in drugs for the treatment of diabetes (e.g.bisegliptin)13 and we successfully prepared C-2-azidatedbuildingblock4ingoodyieldbutlowdr.Theoctahydroindole-2-carboxylic acid core is found in many ACE inhibitors likeperindopril and was used (following N-Boc protection) toaccess 5 in high yield. The chemistry could also be used toobtaine C-2 azidated-N-Boc-indoline 6. Six-membered-ringN-Boc-aminoacids were evaluated next and we successfullyengagedpipecolicacid(giving7)aswellassubstratesbasedonmorpholine (8) and protected piperazine (9 and 10)heterocycles. Decarboxylative-azidation of tetrahydro-isoquinoline carboxylic acids was possible and enabled thepreparationofbuildingblocksfunctionalisedatC-1(11)andC-3(12)positions.Saturatedfour-memberedringN-heterocycles

*PC

A CB

PC

PC•–

CO2–

N3 Y

N3

SET

SET

Y–

Y•

– CO2

commercially available SOMOphiles for radical azidation

IO

O

N3

Si-Pr

i-Pr

i-Pr

O

ON3

SMeO

ON3

ED

F

N3

PC (5 mol%) base (2.0 equiv.)

solvent, r.t., 12 hvisible light

N N N3

1a(1.0 equiv.)

2

Y

Boc BocD/E/F

(2.0 equiv.)

CO2H

Entry

123456789

1011

1213141516

171819

Base

K2CO3NaHCO3CsHCO3CsOBzTMG

CsOBzCsOBzCsOBzCsOBzCsOBzCsOBz

CsOBzCsOBzCsOBzCsOBzCsOBz

CsOBz–

CsOBz

N3–Y

EEEEEFDEEEE

EEEEE

EEE

solvent

DCEDCEDCEDCEDCEDCEDCE

CH2Cl2CH3CN

THFDMF

DCEDCEDCEDCEDCE

DCEDCEDCE

yield (%)

3651559085501551547230

3239113415

–––

PC

rhodamine 6Grhodamine 6Grhodamine 6Grhodamine 6Grhodamine 6Grhodamine 6Grhodamine 6Grhodamine 6Grhodamine 6Grhodamine 6Grhodamine 6G

methylene blueriboflavine

mesityl acridinium4CzIPNeosin Y

–rhodamine 6Grhodamine 6G

light

green LEDsgreen LEDsgreen LEDsgreen LEDsgreen LEDsgreen LEDsgreen LEDsgreen LEDsgreen LEDsgreen LEDsgreen LEDs

blue LEDsblue LEDsblue LEDsblue LEDs

green LEDs

green LEDsgreen LEDs

A) Stern-Volmer analysis

B) Possibility for radical chain propagation

Y–Y•

– CO2A BCO2

–SET

Page 4: Photoinduced decarboxylative azidation of cyclic amino acids · 2019. 8. 22. · close the photoredox cycle ensuring catalytic activity. for example Scheme 2. Proposed photoredox

JournalName COMMUNICATION

Thisjournalis©TheRoyalSocietyofChemistry20xx J.Name.,2013,00,1-3|3

Pleasedonotadjustmargins

Pleasedonotadjustmargins

are frequently used in medicinal chemistry programmes andwesuccessfullyappliedthereactiontotheC-2-azidationofN-Boc-azetidine (13).14 Extension of this methodology to non-cyclic aminoacids is a current limitation of the protocol anddespite extensive re-optimization of the process we did notmanage to achieve the decarboxylative-azidation of, forexample,protectedphenylalanine(14).Secondaryandprimarycarboxylicacidsaresometimesdifficultto engage in oxidative decarboxylative protocols and cannotbe used as starting materials in this strategy. Tertiarysubstrates however are amenable as demonstrated by theformationof17and18whichcanbeusedtoaccessderivativesof amantadine and memantidine, two blockbuster drugs forthe treatment of the Parkinson and Alzheimer diseasesrespectively. In this case however, optimum yields wereobtainedusingmesitylacridinium15asthephotocatalyst.

Scheme5.Scopeofthereaction.aTMGwasusedasthebase.bMesAcrBF4wasusedasthephotocatalyst.

To showcase theutilityof thismethodologyweevaluated itsapplicability in the late-stagemodificationof terminalprolineresidues embedded in peptide structures.13 Pleasingly,commercially available Cbz-Gly-Pro-OH (1r) and Boc-Pro-Pro-OH (1s) dipeptides were competent substrate and providedtheazidatedproducts19 and20 in goodyieldsbut lowdr inthe caseof20. To thebest of our knowledge this is the first

example of late-stage modification of peptides bydecarboxylation-azidation.

ConclusionsIn conclusion, we have developed the first visible-lightmediated process that enables the preparation of organicazides by oxidative decarboxylation. The methodology hasbeensuccessfullyapplied to thesynthesisof severalnovelα-N-Boc-amino-azides building blocks and the late-stagefunctionalizationofdipeptides.D.L. thanksEPSRCfora researchgrant (EP/P004997/1).A.R.thankstheMarieCurieActionsforaFellowship(703238).D.C.M. thanks theXuntadeGalicia for a Fellowship. E.D. thanksAstraZenecaforaPhDCaseAward.

ConflictsofinterestTherearenoconflictstodeclare.

Notesandreferences

1 (a)H.C.Kolb,M.G.Finn,K.B.Sharpless,Angew.Chem.Int.Ed.,2001,40, 2004. (b)V.V. Rostovtsev, L.G.Green,V.V.Fokin,K.B.SharplessAngew.Chem.Int.Ed.,2002,41,2596.(c)H.C.Kolb,K.B.Sharpless,DrugDiscoveryToday,2003,8,1128.(d)S.Brase,C.Gil,K.Knepper,V.Zimmerman.Angew.Chem. Int. Ed., 2005, 44, 5188. (e) E. J. Moses, A. D.Moorhouse,Chem.Soc.Rev.,2007,36,1249.(f)S.Brase,K.Banert, Organic Azides: Syntheses and Applicatins, Eds.Wiley:2009. (g) F.Amblard, J.H.Cho,R. F. Schinazi,Chem.Rev., 2009, 109, 4207. (h) R. K. Iha, K. L. Wooley, A. M.Nystrom,D. J. Burke,M. J. Kade, C. J. Hawker,Chem. Rev.,2009,109,5620.

2 (a) H. Staudinger, J.Meyer,Helv. Chim. Acta, 1919,2, 635.(b) R. Huisgen, Angew. Chem., 1963, 75, 604. (c) I. C.Schilling, N. Jung,M. Biskup, U. Scherpers, S. Brase,Chem.Soc. Rev., 2011, 40, 4840. (d) E. Lallan, R. Riguera, E.Fernandez-Magia,Angew.Chem.Int.Ed.,2011,50,8794.(e)P.Thirumurugan,D.Matosiuk,K.Jozwiak,Chem.Rev.,2013,113,4905.

3 (a) P. Panchaud, p. Renaud, Adv. Synth. Catal., 2004, 346,925. (b) J.Waser, H. Nambu, E.M. Carreira, J. Am. Chem.Soc. 2005,127, 8294. (c) J.Waser,B.Gaspar,H.Nambu,E.M.Carreira,J.Am.Chem.Soc.,2006,128,11693.(d)Y.Ju,D.Kumar, R. S. Varma, J.Org. Chem., 2006,71, 6697. (e) J. E.Green, D. M. Bender, S. Jackson, M. J. O'Donnell, J. R.McCarthy, Org. Lett., 2009, 11, 807. (g) K. Weidner, A.Giroult, P. Panchaud, P. Renaud, J. Am. Chem. Soc. 2010,132, 17511 (f) H. Chen, W. Yang, W. Wu, H. Jiang, Org.Biomol.Chem.2014,12,3340.

4 (a)C.Viuf,M.Bols,Angew.Chem.Int.Ed.,2001,40,623.(b)Q.H.Deng,T.Bleith,H.Wadepohl,L.H.Gade,J.Am.Chem.Soc., 2013, 135, 5356. (c) H. Huang, T. M. Bergsten, J. T.Groves,J.Am.Chem.Soc.,2015,137,5300.(d)A.Sharma,J.F.Hartwig,Nature,2015,517,600

5 (a)D.S.Masterson,N.A.Porter,Org.Lett.2002,4,4253.(b)E.Nyfeler,P.Renaud,Org.Lett.,2008,10,985.

6 (a)C.Liu,X.Wang,Z.Li,L.Cui,C.Li,J.Am.Chem.Soc.,2015,137, 9820, (b) Y. Zhu, X. Li, X.Wang, X. Huang, T. Shen, Y.

N N3

N N3

NN3

NN3

N N3 NN3

N

O

N3 N

N

N3 N

N

N3

N

N3

N

N3

2 87%

364%a

H

HN N3

F

NMe

BocN3

468%, dr 1.1:1

5 80%, dr 1.5:1

6 80%

13 48%

786%a

8 76%

9 85%

10 59%

11 70%

1276%

19 54%

20 68%, dr 1.5:1

14 –

Boc Cbz Boc Boc Boc

Boc

Boc Boc Boc CbzBoc

Boc

Rhodamine 6G (5 mol%) CsOBz (2 equiv.)

DCE (0.1M), r.t., 12 h,green LEDs

N3 NH2

amantadineanti-Parkinson drug

N3

Me

Me

memantineanti-Alzheimer drug

NH2

Me

Me

Ph

O

NHN

Cbz

N3

NBoc

N

ON3

Ph N3

Me

PhN3

15 –

16 –

BocBoc

1790%b

1846%b

Gly-Pro1r

Pro-Pro1s

CO2H N3+ Si-Pr

i-Pr

i-Pr

O

ON3

1a–s(1.0 equiv.)

E(2.0 equiv.)

2–20

Page 5: Photoinduced decarboxylative azidation of cyclic amino acids · 2019. 8. 22. · close the photoredox cycle ensuring catalytic activity. for example Scheme 2. Proposed photoredox

COMMUNICATION JournalName

4 |J.Name.,2012,00,1-3 Thisjournalis©TheRoyalSocietyofChemistry20xx

Pleasedonotadjustmargins

Pleasedonotadjustmargins

Zhang,X.Sun,M.Zou,S.Song,N.Jiao,Org.Lett.,2015,17,4702

7 J.Xuan,Z.G.Zhang,W.J.Xiao,Angew.Chem.Int.Ed.2015,54,15632

8 (a) C. K. Prier, D. A. Rankic, D. W. MacMillan, Chem. Rev.2013,113,5322.(b)K.L.Skubi,T.R.Blum,T.P.Yoon,Chem.Rev.,2016,116,10035.(c)M.N.Hopkinson,B.Sahoo,J.–L.Li,F.Glorius,Chem.Eur.J.,2014,20,3874.

9 V.V.Zhdankin,A.P.Krasutsky,C. J.Kuehl,A. J.Simonsen,J.K.Woodward,B.Mismash,J.T.Bolz,J.Am.Chem.Soc.1996,118,5192.

10 K.Weidner,P.Renaud,Austr.J.Chem.,2013,66,341.11 N.A.Romero,D.A.Nicewicz,Chem.Rev.,2016,116,1007512 D.Magde,G.E.Rojas,P.G.Seybold,Photochem.and

Photobiol.1999,70,737.13 D.Klaus,BoehringerIngelheimInt,Patent:US884669514 D. C. Blakemore, L. Castro, I. Churcher, D. C. Rees, A. W.

Thomas,D.M.Wilson,A.Wood,Nat.Chem.,2018,10,38315 S.Fukuzumi,K.Ohkubo,Org.Biomol.Chem.,2014,12,6059.16 S.J.McCarver,J.X.Qiao,J.Carpenter,R.M.Borzilleri,M.A.

Poss, M. D. Eastgate, M. M. Miller, D. W. C. MacMillan,Angew.Chem.Int.Ed.,2017,56,728.(b)S.Bloom,C.Liu,D.K.Kölmel,J.X.Qiao,Y.Zhang,M.A.Poss,W.R.Ewing,D.W.C.MacMillan,Nat.Chem.,2017,10,205,