photons in the universewolle/telekolleg/kern/lecture/...lorentz factor: ๐›พ๐›พ= 1...

30
Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar Photons in the universe

Upload: vuongthu

Post on 08-Apr-2018

213 views

Category:

Documents


1 download

TRANSCRIPT

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Photons in the universe

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Photons in the universe

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Element production on the sun

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Spectral lines of hydrogen

absorption

hydr

ogen

gas

absorption spectrum

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Element production on the sun

5

Hydrogen emission spectrum

wave length nm

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Spectral analysis

6

H

Spectral analysis Kirchhoff und Bunsen: Every element has a characteristic emission band

Max Planck

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Nuclear Resonance Fluorescence

Nuclear Resonance Fluorescence (NRF) is analogous to atomic resonance fluorescence but depends upon the number of protons AND the number of neutrons in the nucleus

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Photon-nuclear reactions with MeV ฮณ-rays

pure electromagnetic interaction spin selectivity (mainly E1, M1, E2 transitions)

ฮณ-ray

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Photon-nuclear reactions with MeV ฮณ-rays ฮณ-ray pure electromagnetic interaction

spin selectivity (mainly E1, M1, E2 transitions)

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Low energy photon scattering at S-DALINAC

โ€œwhiteโ€œ photon spectrum wide energy region examined

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Absorption processes

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Principle of measurement and self absorption

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

First ฮณฮณ-coincidences in a ฮณ-beam

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

First ฮณฮณ-coincidences in a ฮณ-beam

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

First ฮณฮณ-coincidences in a ฮณ-beam

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Compton scattering and inverse Compton scattering

Compton scattering:

Elastic scattering of a high-energy ฮณ-ray on a free electron. A fraction of the ฮณ-ray energy is transferred to the electron. The wave length of the scattered ฮณ-ray is increased: ฮปโ€˜ > ฮป.

โ„Ž๐œˆ๐œˆ โ‰ฅ ๐‘š๐‘š๐‘’๐‘’๐‘๐‘2

๐ธ๐ธ๐›พ๐›พโ€ฒ =๐ธ๐ธ๐›พ๐›พ

1 +๐ธ๐ธ๐›พ๐›พ๐‘š๐‘š๐‘’๐‘’๐‘๐‘2

โˆ™ 1 โˆ’ ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘

Inverse Compton scattering:

Scattering of low energy photons on ultra-relativistic electrons. Kinetic energy is transferred from the electron to the photon. The wave length of the scattered ฮณ-ray is decreased: ฮปโ€˜ < ฮป.

๐œ†๐œ†โ€ฒ โ‰ˆ ๐œ†๐œ† โˆ™1 โˆ’ ๐›ฝ๐›ฝ โˆ™ ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐›พ๐›พ1 + ๐›ฝ๐›ฝ โˆ™ ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐ฟ๐ฟ

๐œ†๐œ†โ€ฒ โˆ’ ๐œ†๐œ† =โ„Ž๐‘š๐‘š๐‘’๐‘’๐‘๐‘

โˆ™ 1 โˆ’ ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐›พ๐›พ

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Inverse Compton scattering

Electron is moving at relativistic velocity Transformation from laboratory frame to reference frame of e- (rest frame):

in order to repeat the derivation for Compton scattering

๐ธ๐ธ๐›พ๐›พ = ๐›พ๐›พ โˆ™ ๐ธ๐ธ๐›พ๐›พ 1 โˆ’๐‘ฃ๐‘ฃ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘’๐‘’โˆ’๐›พ๐›พ

Doppler shift

Lorentz factor: ๐›พ๐›พ = 1 โˆ’ ๐›ฝ๐›ฝ2 โˆ’1/2 = 1 + ๐‘‡๐‘‡๐‘’๐‘’๐‘€๐‘€๐‘’๐‘’๐‘€๐‘€

931.5โˆ™0.00055

๐ธ๐ธ๐›พ๐›พโ€ฒ =๐ธ๐ธ๐›พ๐›พ

1 +๐ธ๐ธ๐›พ๐›พ๐‘š๐‘š๐‘’๐‘’๐‘๐‘2

โˆ™ 1 โˆ’ ๐‘๐‘๐‘๐‘๐‘๐‘๐œ™๐œ™ Compton scattering in rest frame

๐ธ๐ธ๐›พ๐›พโ€ฒ = ๐›พ๐›พ โˆ™ ๐ธ๐ธ๐›พ๐›พโ€ฒ 1 +๐‘ฃ๐‘ฃ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘’๐‘’โˆ’๐›พ๐›พโ€ฒ

Limit ๐ธ๐ธ๐›พ๐›พ โ‰ช ๐‘š๐‘š๐‘’๐‘’๐‘๐‘2

๐ธ๐ธ๐›พ๐›พโ€ฒ โ‰ˆ ๐›พ๐›พ2 โˆ™ ๐ธ๐ธ๐›พ๐›พ 1 โˆ’๐‘ฃ๐‘ฃ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘’๐‘’โˆ’๐›พ๐›พ 1 +

๐‘ฃ๐‘ฃ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘’๐‘’โˆ’๐›พ๐›พโ€ฒ

transformation into the laboratory frame

๐ธ๐ธ๐›พ๐›พโ€ฒ โ‰ˆ 4๐›พ๐›พ2 โˆ™ ๐ธ๐ธ๐›พ๐›พ

electron and ฮณ interaction ๐‘๐‘๐‘’๐‘’โˆ’๐›พ๐›พ~1800 ฮณโ€˜ emission relative to electron ๐‘๐‘๐‘’๐‘’โˆ’๐›พ๐›พโ€ฒ~00

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Laser Compton backscattering

Energy โ€“ momentum conservation yields ~4๐›พ๐›พ2 Doppler upshift Thomsons scattering cross section is very small (6ยท10-25 cm2)

High photon and electron density are required

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Gamma rays resulting after inverse Compton scattering

A. H. Compton Nobel Prize 1927

photon scattering on relativistic electrons (ฮณ >> 1)

โ„Ž๐œˆ๐œˆ = 2.3 eV โ‰ก 515 ๐‘›๐‘›๐‘š๐‘š

๐‘‡๐‘‡๐‘’๐‘’๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ = 720 ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ โ†’ ๐›พ๐›พ๐‘’๐‘’ = 1 +๐‘‡๐‘‡๐‘’๐‘’๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€

931.5 โˆ™ ๐ด๐ด๐‘’๐‘’ ๐‘ข๐‘ข= 1410

๐ธ๐ธ๐›พ๐›พ = 2๐›พ๐›พ๐‘’๐‘’21 + ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐ฟ๐ฟ

1 + ๐›พ๐›พ๐‘’๐‘’๐‘๐‘๐›พ๐›พ2 + ๐‘Ž๐‘Ž02 + 4๐›พ๐›พ๐‘’๐‘’๐ธ๐ธ๐ฟ๐ฟ

๐‘š๐‘š๐‘๐‘2โˆ™ ๐ธ๐ธ๐ฟ๐ฟ

4๐›พ๐›พ๐‘’๐‘’๐ธ๐ธ๐ฟ๐ฟ๐‘š๐‘š๐‘๐‘2

= recoil parameter

๐‘Ž๐‘Ž๐ฟ๐ฟ = ๐‘’๐‘’๐ธ๐ธ๐‘š๐‘š๐œ”๐œ”๐ฟ๐ฟ๐‘๐‘

= normalized potential vector of the laser field

E = laser electric field strength ๐ธ๐ธ๐ฟ๐ฟ = โ„๐œ”๐œ”๐ฟ๐ฟ

๐›พ๐›พ๐‘’๐‘’ = ๐ธ๐ธ๐‘’๐‘’๐‘š๐‘š๐‘๐‘2

= 11โˆ’๐›ฝ๐›ฝ2

= Lorentz factor

maximum frequency amplification: head-on collision (ฮธL = 00) & backscattering (ฮธฮณ = 00)

๐ธ๐ธ๐›พ๐›พ~4๐›พ๐›พ๐‘’๐‘’2 โˆ™ ๐ธ๐ธ๐ฟ๐ฟ โ‰… 18.3 ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Scattered photons in collision

Luminosity: ๐ฟ๐ฟ = ๐‘๐‘๐ฟ๐ฟโˆ™๐‘๐‘๐‘’๐‘’4๐œ‹๐œ‹โˆ™๐œŽ๐œŽ๐‘…๐‘…

2

๐‘ˆ๐‘ˆ๐ฟ๐ฟ = 0.5 ๐ฝ๐ฝ โ„Ž๐œˆ๐œˆ๐ฟ๐ฟ = 2.4 ๐‘€๐‘€๐‘€๐‘€ = 3.86 โˆ™ 10โˆ’19 ๐ฝ๐ฝ โ‰ก 515 ๐‘›๐‘›๐‘š๐‘š

โ†’ ๐‘๐‘๐ฟ๐ฟ= 1.3 โˆ™ 1018

๐œŽ๐œŽ๐‘…๐‘… = 15 ๐œ‡๐œ‡๐‘š๐‘š

๐‘„๐‘„ = 1 ๐‘›๐‘›๐‘›๐‘›

โ†’ ๐‘๐‘๐‘’๐‘’= 6.25 โˆ™ 109

โˆ™ ๐‘“๐‘“

ฮณ-ray rate: ๐‘๐‘๐›พ๐›พ = ๐ฟ๐ฟ โˆ™ ๐œŽ๐œŽ๐‘‡๐‘‡๐‘‡๐‘‡๐‘‡๐‘š๐‘š๐‘‡๐‘‡๐‘‡๐‘‡๐‘‡๐‘‡ ๐œŽ๐œŽ๐‘‡๐‘‡ = 0.67 โˆ™ 10โˆ’24 ๐‘๐‘๐‘š๐‘š2

โ‰… 2.9 โˆ™ 1032 โˆ™ ๐‘“๐‘“ ๐‘๐‘๐‘š๐‘šโˆ’2๐‘๐‘โˆ’1

โ‰… 2 โˆ™ 108 โˆ™ ๐‘“๐‘“ ๐‘๐‘โˆ’1 (full spectrum)

Yb: Yag J-class laser

10 Peta (1015) Watt

repetition rate: ๐‘“๐‘“ = 3.2 ๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜๐‘˜

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Thomson Scattering

J. J. Thomson Nobel prize 1906

Thomson scattering = elastic scattering of electromagnetic radiation by an electron at rest โˆ’ the electric and magnetic components of the incident wave act on the electron โˆ’ the electron acceleration is mainly due to the electric field โ†’ the electron will move in the direction of the oscillating electric field โ†’ the moving electron will radiate electromagnetic dipole radiation โ†’ the radiation is emitted mostly in a direction perpendicular to the motion of the electron โ†’ the radiation will be polarized in a direction along the electron motion

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Thomson Scattering

J. J. Thomson Nobel prize 1906

๐‘‘๐‘‘๐œŽ๐œŽ๐‘‡๐‘‡ ๐‘๐‘๐‘‘๐‘‘ฮฉ

=12๐‘Ÿ๐‘Ÿ02 โˆ™ 1 + ๐‘๐‘๐‘๐‘๐‘๐‘2๐‘๐‘

๐‘Ÿ๐‘Ÿ0 =๐‘€๐‘€2

4๐œ‹๐œ‹๐œ€๐œ€0๐‘š๐‘š๐‘’๐‘’๐‘๐‘2= 2.818 โˆ™ 10โˆ’15 ๐‘š๐‘š

๐œŽ๐œŽ๐‘‡๐‘‡ = ๏ฟฝ๐‘‘๐‘‘๐œŽ๐œŽ๐‘‡๐‘‡ ๐‘๐‘๐‘‘๐‘‘ฮฉ

๐‘‘๐‘‘ฮฉ =2๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ02

2๏ฟฝ 1 + ๐‘๐‘๐‘๐‘๐‘๐‘2๐‘๐‘ ๐‘‘๐‘‘๐‘๐‘๐œ‹๐œ‹

0

=8๐œ‹๐œ‹3๐‘Ÿ๐‘Ÿ02 = 6.65 โˆ™ 10โˆ’29 ๐‘š๐‘š2 = 0.665 ๐‘๐‘

differential cross section

classical electron radius

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Scattered photons in collision

ฮธ = 0 ฮธ = ฯ€

๐ธ๐ธ๐›พ๐›พ = 2๐›พ๐›พ๐‘’๐‘’21 + ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐ฟ๐ฟ

1 + ๐›พ๐›พ๐‘’๐‘’๐‘๐‘๐›พ๐›พ2 + ๐‘Ž๐‘Ž02 + 4๐›พ๐›พ๐‘’๐‘’๐ธ๐ธ๐ฟ๐ฟ

๐‘š๐‘š๐‘๐‘2โˆ™ ๐ธ๐ธ๐ฟ๐ฟ

๐‘๐‘๐‘ ๐‘ ๐‘›๐‘›๐‘๐‘ = 1/๐›พ๐›พ

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Inverse Compton scattering of laser light

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Extreme Light Infrastructure โ€“ Nuclear Physics

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Nuclear Resonance Fluorescence

Widths of particle-bound states: ฮ“ โ‰ค 10๐‘€๐‘€๐‘€๐‘€

Breit-Wigner absorption resonance curve for isolated resonance:

๐œŽ๐œŽ๐‘™๐‘™ ๐ธ๐ธ = ๐œ‹๐œ‹๏ฟฝฬ…๏ฟฝ๐œ†22๐ฝ๐ฝ + 1

2ฮ“0ฮ“

๐ธ๐ธ โˆ’ ๐ธ๐ธ๐‘Ÿ๐‘Ÿ 2 + ฮ“ 2โ„ 2 ~ ฮ“0 ฮ“โ„

Resonance cross section can be very large: ๐œŽ๐œŽ0 โ‰… 200 ๐‘๐‘ (for ฮ“0 = ฮ“, 5 MeV)

Example: 10 mg, A~200 โ†’ Ntarget = 3ยท1019, Nฮณ = 100, event rate = 0.6 [s-1]

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Nuclear Resonance Fluorescence

Count rate estimate 104 ฮณ/(s eV) in 100 macro pulses 100 ฮณ/(s eV) per macro pulse example: 10 mg, A ~ 200 target resonance width ฮ“ = 1 eV 2 excitations per macro pulse 0.6 photons per macro pulse in detector pp-count rate 6 Hz 1000 counts per 3 min

8 HPGe detectors 2 rings at 900 and 1270

ฮตrel(HPGe) = 100% solid angle ~ 1% photopeak ฮตpp ~ 3%

narrow band width 0.5%

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Nuclear Resonance Fluorescence

narrow bandwidth allows selective excitation and detection of decay channels

Hans-Jรผrgen Wollersheim - 2017 Indian Institute of Technology Ropar

Deformation and Scissors Mode

Decay to intrinsic excitations