photorealistic rendering techniques ||

25
Colour Plates

Upload: peter

Post on 04-Dec-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Photorealistic Rendering Techniques ||

Colour Plates

Page 2: Photorealistic Rendering Techniques ||

Colour Plate 1 A Model for Fluorescence

and Phosphorescence Page 60-70

Page 3: Photorealistic Rendering Techniques ||

Colour Plate 2 A Model for Fluorescence and Phosphorescence Page 60-70

Page 4: Photorealistic Rendering Techniques ||

Colour Plate 3 Global Illumination in Presence of Participating Media

with General Properties Page 71-86

Page 5: Photorealistic Rendering Techniques ||

Colour Plate 4 Efficient light Propagation for Multiple Anisotropic Volume Scattering Page 87-104

Page 6: Photorealistic Rendering Techniques ||

a

a

I I I I I

, I

I I I b

Colour Plate 5 Adaptive Splatting

for Specular to Diffuse light Transport Page 121-135

(a) Example spectra resulting from different spectral sampling schemes. Top 6: each initial ray spawns 2,3,4,6,8 and 16 refracted rays with wavelength randomly distributed in the 380-780 nm range. Bottom 6: single refracted ray with 2,3, 4,6,8, 16 spectral samples and (b) the test scene with 2 light sources, one colimated behind the viewer and one directly above.

b View of swimming pool from (a) above and (b) below.

Page 7: Photorealistic Rendering Techniques ||

Colour Plate 6 Rayvolution: An Evolutionary Ray Tracing Algorithm Page 136-144

Left: Monte-Carlo ray distribution. Right: Corresponding evolved ray distribution.

Left: Hemisphere represented as a population of triangles. Right: Evolved hemisphere stratification in detail.

Left: Image generated by Monte-Carlo integration. Right: Corre­sponding image generated by evolutionary stratification.

Page 8: Photorealistic Rendering Techniques ||

Colour Plate 7 A New Stochastic Radiosity Method

for Highly Complex Scenes Page 199-211

Page 9: Photorealistic Rendering Techniques ||

Colour Plate 8 Wavelet Radiance Page 293-307

- -' 9J .-

a b (

a

d

Ward's reflection model: (a) anisotropic reflection, au = 0.1, a v = 0.5; (b) isotropic reflection, au = a v = 0.2; (c) anisotropic reflection, au = 0.5, a v = 0.1.

b (

e Solutions for a complex scene: (a) radiance seen from above; (b) importance seen from above; (c) gray-scale representation of refinement; (d) radiance solution without final gather; (e) radiance solution with final gather.

Page 10: Photorealistic Rendering Techniques ||

Colour Plate 9 Wavelet Methods

for Radiance (omputations Page 308-324

The top left shows a configuration with three light sources and an anisotropic reflec­tor; the top right the included meshing. Below a sequence illustrating a spatial plot of the radiance field induced by the three coloured light sources as the view point changes (r= O.I,p = 0.1; linear basis functions).

Page 11: Photorealistic Rendering Techniques ||

Colour Plate 10 Efficient Radiosity in Dynamic Environments Page 327-336

Dynamic links events for an orthogonal gutter being approached by a patch. The links (in pink) are to the centre of the relevant hierarchy element. Links to the patch are dynamic, others are static. In the first frame many links go to the centre of the patch (to hierarchy element). As the patch gets closer to the gutter, links are demoted and move to the lower hierarchy levels.

Page 12: Photorealistic Rendering Techniques ||

Colour Plate 11 Efficient Radiosity

in Dynamic Environments Page 327-336

Left: Motion sequence with the light moving around the ceiling. Mesh elements with light-source links are shown to the right of each image. Note the changes in the dy­namic links. Right: Dynamic links reinspected at each step. In far right column links and form factors are extrapolated up to seven frames ahead to predict events.

Page 13: Photorealistic Rendering Techniques ||

Colour Plate 12 Fast Radiosity Repropagation For Interactive Virtual Environments Using A Shadow-Form-Factor-list Page 337-354

The model of the VR lab of Fraunhofer IGD.

The same scene after moving the termi­nal and a chair.

The model of the airport waiting area of The same scene after changing the reflec­Abu Dhabi. In this scene, five virtual tivity of the seats. point light sources have been used.

The model of the cabinet of the president of the European Parliament. In this scene five virtual point light sources have been used.

The same room after deleting the confer­ence table and the chairs.

Page 14: Photorealistic Rendering Techniques ||

a

(

a

Colour Plate 13 Texture Mapping as an Alternative

for Meshing During Walkthrough Animation Page 387-398

b

d

Room. A comparison of mesh-based vs. texture-based shading: (a) mesh-based Gouraud shading, (b) the corresponding mesh, (c) the scene regions replaced by textures (green), (d) differences between mesh-based and texture-based images.

b Room. The scene luminance distribution in the colour fringe convention: (a) col­our-fringe image, (b) corresponding mesh.

Page 15: Photorealistic Rendering Techniques ||

Colour Plate 14 Texture Mapping as an Alternative for Meshing During Walkthrough Animation Page 387-398

a b ( Texture magnification: (a) mesh-based Gouraud shading, (b) ordinary texture, (c) sharpened texture.

a b

( d Room. Close-up view for shadows: (a) mesh-based Gouraud shading, (b) texture­based shading, (c) the scene regions replaced by texture (green - mesh-based tex­ture, blue - sampling-based texture), (d) reference ray tracing image.

Page 16: Photorealistic Rendering Techniques ||

a

(

Colour Plate 15

Texture Mapping as an Alternative for Meshing During Walkthrough Animation

Page 387-398

b

d Cafeteria. Close-up view for shadows: (a) mesh-based Gouraud shading, (b) tex­ture-based shading, (c) the scene regions replaced by texture (green - mesh-based texture, blue - sampling-based texture), (d) reference ray tracing image.

Page 17: Photorealistic Rendering Techniques ||

Colour Plate 16 BRUSH as a Walkthrough System for Architectural Models Page 399-407

Model of the Frauenkirche in Dresden, Germany. Courtesy of IBM Germany. The model contains about 230000 triangles.

Icerink at the Olympic site in Lille­hammer, Norway. Courtesy of the Olym­pic Winter Games. The model contains about 200000 triangles.

Computer reconstruction of the abbey of Cluny, France. Courtesy of IBM France. The model contains about 680000 trian­gles, and has been rendered with floor shadows.

Interior of the Frauenkirche in Dresden, Germany. Courtesy of IBM Germany. Full detail, about 125000 triangles.

Page 18: Photorealistic Rendering Techniques ||

Interior of the Frauenkirche in Dresden, Germany. Courtesy of IBM Germany. Sim­plification, about 10000 triangles.

Interior of the Frauenkirche in Dresden, Germany. Courtesy of IBM Germany. Full detail with textures.

Page 19: Photorealistic Rendering Techniques ||

List of Authors

Markus Beyer Fraunhofer Institute for Computer Graphics, WilhelminenstraBe 7, 64283 Darmstadt, Germany

Philippe Blasi Laboratoire Bordelais de Recherche en Informatique, Univerist Bordeaux I, 351, Cours de la Lebration 33405 TALENCE Cedex, France

Paul Borrel IBM T. J. Watson Res. Ctr., P.O. Box 704, Yorktown Heights, NY 10598, USA

Kadi Bouatouch Institut de Recherche en Informatique et Systmes Alatoires, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France

Michael Chelle Institut de Recherche en Informatique et Systmes Alatoires, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France

Kenneth Chiu Indiana University, Dept. of Computer Science, Lindley Hall, Bloomington, IN 47405, USA

Per Christensen University of Washington, Apartment 408, 4225 11th Ave. NE, Seattle, WA 98105, USA

Steven Collins Reilly Institute, Trinity College, Dept. of Computer Science, Dublin 2 Ireland

Tony DeRose University of Washington, 3940 Wallingford Ave. N, Seattle, WA 98103, USA

Julie Dorsey University of Pennsylvania, Dept. of Computer and Information Science, 200 South 33rd St., Philadelphia, PA 19104-6389, USA

Page 20: Photorealistic Rendering Techniques ||

444

George Drettakis iMAGIS / IMAG, B. P. 53, 38041 Grenoble Cedex 09, France

Philip Dutre· Katholieke Universiteit Leuven, Dept. Computerwetenschappen, Celestijnenlaan 200 A, 3001 Heverlee, Belgium

Martin Feda Institute of Computer Graphics, TU Vienna, Wiedner Hauptstr. 7/186/2, 1040 Vienna, Austria

David Forsyth The University of Iowa, Dept. of Computer Sciences, 14 MacLean Hall, Iowa City, IA 52242-1419, USA

Donald Fussell University of Texas at Austin, Dept. of Mathematics, Austin, Texas 78712, USA

Neil Gatenby Computer Graphics Unit, Manchester Computing Centre, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

Andrew Glassner Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA

Leonidas Guibas Stanford University, Dept. of Computer Science, Robotics Laboratory, Stanford, CA 94305-2140 USA

Pat Hanrahan Princeton University, Dept. of Computer Science, 35 OldenSt .. Princeton, NJ 08544-2087, USA

w. Hewitt Computer Graphics Unit, Manchester Computing Centre, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

Nicolas Holzschuch iMAGIS / IMAG, B. P. 53, 38041 Grenoble Cedex 09, France

Frederik Jansen Delft University of Technology, Faculty of Technical Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, The Netherlands

Manfred Kopp Institute of Computer Graphics, TU Vienna, Wiedner Hauptstr. 7/186/2, 1040 Vienna, Austria

Tosiyasu Kunii The. University of Aizu, Tsuruga, Ikki-machi, Aizu-Wakumatsu City, Fukushima, 965-80, Japan

Brigitta Lange Fraunhofer Institute for Computer Graphics, WilhelminenstraBe 7, 64283 Darmstadt, Germany

Page 21: Photorealistic Rendering Techniques ||

Eric Lafortune Katholieke Universiteit Leuven, Dept. Computerwetenschappen, Celestijnenlaan 200 A, 3001 Heverlee, Belgium

Eric Languenou Institut de Recherche en Informatique et Systmes Alatoires, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France

Nelson Max L-301, Lawrence Livermore National Lab., P.o. Box 808, Livermore, CA 94550, USA

Jai Menon IBM T. J. Watson Res. Ctr., P.O. Box 704, Yorktown Heights, NY 10598, USA

Josh Mittleman IBM T. J. Watson Res. Ctr., P.O. Box 704, Yorktown Heights, NY 10598, USA

Stefan Miiller Fraunhofer Institute for Computer Graphics, WilhelminenstraBe 7, 64283 Darmstadt, Germany

Karol Myszkowski The University of Aizu, Tsuruga, Ikki-machi, Aizu-Wakumatsu City, Fukushima, 965-80, Japan

Jeffry S. Nimeroff University of Pennsylvania, Dept. of Computer and Information Science, 200 South 33rd St., Philadelphia, PA 19104-6389, USA

Laszlo Neumann Maros u. 36, H-1122 Budapest, Hungary

Sumanta N. Pattanaik Institut de Recherche en Informatique et Systmes Alatoires, Project SIAMES, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France

Werner Purgathofer Institute of Computer Graphics, TU Vienna, Karlsplatz 13/186, 1040 Vienna, Austria

Erik Reinhard Delft University of Technology, Faculty of Technical Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, The Netherlands

J arek Rossignac IBM T. J. Watson Res. Ctr., P.O. Box 704, Yorktown Heights, NY 10598, USA

Holly Rushmeier National Institute of Science

445

and Technology, Rm. B-146, Bldg. 225 Gaithersburg, MD 20899 USA

Bertrand Le Saec Laboratoire Bordelais de Recherche en Informatique, Univerist Bordeaux I, 351, Cours de la Lebration, 33405 TALENCE Cedex, France

Georgios Sakas Fraunhofer Institute for Computer Graphics, WilhelminenstraBe 7, 64283 Darmstadt, Germany

Page 22: Photorealistic Rendering Techniques ||

446

David Salesin University of Washington, 3940 Wallingford Ave. N, Seattle, WA 98103, USA

Christophe Schlick Laboratoire Bordelais de Recherche en Informatique, Univerist Bordeaux I, 351, Cours de la Lebration, 33405 TALENCE Cedex France

Peter Schroder Princeton University, Dept. of Computer Science, 35 OldenSt .. Princeton, NJ 08544-2087, USA

Frank Schaffel Fraunhofer Institute for Computer Graphics, Wilhelminenstra6e 7, 64283 Darmstadt, Germany

Francois Sillion iMAGIS / IMAG, B. P. 53, 38041 Grenoble Cedex 09, France

Eero Simoncelli University of Pennsylvania, Dept. of Computer and Information Science, 200 South 33rd St., Philadelphia, PA 19104-6389, USA

Peter Shirley Indiana University, Dept. of Computer Science, Lindley Hall, Bloomington, IN 47405, USA

Bengt-Olaf Schneider IBM T. J. Watson Res. Ctr., P.O. Box 704, Yorktown Heights, NY 10598, USA

Eric Stollnitz University of Washington, Apartment 301, 3940 Wallingford Ave. N, Seattle, WA 98103, USA

Wolfgang Stiirzlinger Johannes Kepler Universitat Linz, Inst. fur Informatik, Abt. f. graph. und parallele DV, Altenbergerstr. 69, 4040 Linz, Austria

Kim Teo The University of Iowa, Dept. of Computer Sciences, 14 MacLean Hall, Iowa City, IA 52242-1419, USA

Lucas U. Tijssen Delft University of Technology, Faculty of Technical Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, The Netherlands

Robert F. Tobler Institute of Computer Graphics, TU Vienna, Wiedner Hauptstr. 7/186/2, 1040 Vienna, Austria

Eric Veach Stanford University, Dept. of Computer Science, Robotics Laboratory, Stanford, CA 94305-2140 USA

Page 23: Photorealistic Rendering Techniques ||

Yves Willems Katholieke Universiteit Leuven, Dept. Computerwetenschappen, Celestijnenlaan 200 A, 3001 Heverlee, Belgium

Chien Yang The University of Iowa, Dept. of Computer Sciences, 14 MacLean Hall, Iowa City, IA 52242-1419, USA

Wei Xu University of Texas at Austin, Dept. of Mathematics, Austin, Texas 78712, USA

447

Page 24: Photorealistic Rendering Techniques ||

Focus on Computer Graphics (Fonnerl y EurographicSeminars)

Eurographics Tutorials '83. Edited by P. J. W. ten Hagen. XI, 425 pages, 164 figs., 1984. Out of print

User Interface Management Systems. Edited by G. E. Pfaff. XII, 224 pages, 65 figs., 1985. Out of print (see below, Duce et al. 1991)

Methodology of Window Management. Edited by F. R. A. Hopgood, D. A. Duce, E. V. C. Fielding, K. Robinson, A. S. Williams. XV, 250 pages, 41 figs., 1985. Out of print

Data Structures for Raster Graphics. Edited by L. R. A. Kessener, F. J. Peters, M. L. P. van Lierop. VII, 201 pages, 80 figs., 1986

Advances in Computer Graphics I. Edited by G. Enderle, M. Grave, F. Lillehagen. XII, 512 pages, 168 figs., 1986

Advances in Computer Graphics II. Edited by F. R. A. Hopgood, R. J. Hubbold, D. A. Duce. X, 186 pages, 96 figs., 1986

Advances in Computer Graphics Hardware I. Edited by W. StraBer. X, 147 pages, 76 figs., 1987

GKS Theory and Practice. Edited by P. R. Bono, I. Hennan. X, 316 pages, 92 figs., 1987. Out of print

Intelligent CAD Systems I. Theoretical and Methodological Aspects. Edited by P. J. W. ten Hagen, T. Tomiyama. XIV, 360 pages, 119 figs., 1987

Advances in Computer Graphics III. Edited by M. M. de Ruiter. IX, 323 pages, 247 figs., 1988

Advances in Computer Graphics Hardware II. Edited by A. A. M. Kuijk, W. StraBer. VIII, 258 pages, 99 figs., 1988

CGM in the Real World. Edited by A. M. Mumford, M. W. Skall. VIII, 288 pages, 23 figs., 1988. Out of print

Intelligent CAD Systems II. Implementational Issues. Edited by V. Akman, P. J. W. ten Hagen, P. J. Veerkamp. X, 324 pages, 114 figs., 1989

Advances in Computer Graphics IV. Edited by W. T. Hewitt, M. Grave, M. Roch. XVI, 248 pages, 138 figs., 1991

Advances in Computer Graphics V. Edited by W. Purgathofer, J. Schonhut. VIII, 223 pages, 10 1 figs., 1989

Page 25: Photorealistic Rendering Techniques ||

User Interface Management and Design. Edited by D. A. Duce, M. R. Gomes, F. R. A. Hopgood, J. R. Lee. VIII, 324 pages, 117 figs., 1991

Advances in Computer Graphics Hardware III. Edited by A. A. M. Kuijk. VIII, 214 pages, 88 figs., 1991

Advances in Object-Oriented Graphics I. Edited by E. H. Blake, P. Wisskirchen. X, 218 pages, 74 figs., 1991

Advances in Computer Graphics Hardware IV. Edited by R. L. Grimsdale, W. StraBer. VIII, 276 pages, 124 figs., 1991

Advances in Computer Graphics VI. Images: Synthesis, Analysis, and Interaction. Edited by G. Garcia, I. Herman. IX, 449 pages, 186 figs., 1991

Intelligent CAD Systems III. Practical Experience and Evaluation. Edited by P. J. W. ten Hagen, P. J. Veerkamp. X, 270 pages, 116 figs., 1991

Graphics and Communications. Edited by D. B. Arnold, R. A. Day, D. A. Duce, C. Fuhrhop, J. R. Gallop, R. Maybury, D. C. Sutcliffe. VIII, 274 pages, 84 figs., 1991

Photorealism in Computer Graphics. Edited by K. Bouatouch, C. BouviIle. XVI, 230 pages, 118 figs., 1992

Advances in Computer Graphics Hardware V. Rendering, Ray Tracing and Visualization Systems. Edited by R. L. Grimsdale, A. Kaufman. VIII, 174 pages, 97 figs., 1992

Multimedia. Systems, Interaction and Applications. Edited by L. Kjelldahl. VIII, 355 pages, 129 figs., 1992. Out of print

Advances in Scientific Visualization. Edited by F. H. Post, A. J. S. Hin. X, 212 pages, 141 figs., 47 in color, 1992

Computer Graphics and Mathematics. Edited by B. FaIcidieno, I. Herman, C. Pienovi. VII, 318 pages, 159 figs., 8 in color, 1992

Rendering, Visualization and Rasterization Hardware. Edited by A. Kaufman. VIII, 196 pages, 100 figs., 1993

Visualization in Scientific Computing. Edited by M. Grave, Y. Le Lous, W. T. Hewitt. XI, 218 pages, 120 figs., 1994

Photorealistic Rendering in Computer Graphics. Edited by P. Brunet, F. W. Jansen. X, 286 pages, 175 figs., 1994

From Object Modelling to Advanced Visual Communication. Edited by S. Coquillart, W. StraBer, P. Stucki. VII, 305 pages, 128 figs., 38 in color, 1994

Photorealistic Rendering Techniques. Edited by G. Sakas, P. Shirley, S. Muller. X, 448 pages, 155 figs., 16 color plates, 1995