phy 113 c general physics i 11 am – 12:15 pm tr olin 101 plan for lecture 2:

32
8/29/2013 PHY 113 C Fall 2012 -- Lecture 2 1 PHY 113 C General Physics I 11 AM – 12:15 PM TR Olin 101 Plan for Lecture 2: Chapter 2 – Motion in one dimension 1.Time and Position 2.Time and Velocity 3.Time and Acceleration 4.Special relationships for constant

Upload: kris

Post on 22-Feb-2016

29 views

Category:

Documents


0 download

DESCRIPTION

PHY 113 C General Physics I 11 AM – 12:15 PM TR Olin 101 Plan for Lecture 2: Chapter 2 – Motion in one dimension Time and Position Time and Velocity Time and Acceleration Special relationships for constant acceleration. Some updates/announcements. iclicker exercises: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 18/29/2013

PHY 113 C General Physics I11 AM – 12:15 PM TR Olin 101

Plan for Lecture 2:

Chapter 2 – Motion in one dimension

1. Time and Position

2. Time and Velocity

3. Time and Acceleration

4. Special relationships for constant acceleration

Page 2: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 28/29/2013

Some updates/announcements

Page 3: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 38/29/2013

iclicker exercises:Webassign Experiences so far

A. Have not tried itB. Cannot loginC. Can loginD. Have logged in and have completed one or more

example problems.

Textbook Experiences

E. Have no textbook (yet)F. Have complete physical textbookG. Have electronic version of textbookH. Textbook is on orderI. Other

Page 4: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 48/29/2013

Comment on Webassign #1 problem:

7. A pet lamb grows rapidly, with its mass proportional to the cube of its length. When the lamb's length changes by 16%, its mass increases by 16.8 kg. Find the lamb's mass at the end of this process.

Problem solving steps1. Visualize problem – labeling

variables2. Determine which basic physical

principle(s) apply3. Write down the appropriate

equations using the variables defined in step 1.

4. Check whether you have the correct amount of information to solve the problem (same number of knowns and unknowns).

5. Solve the equations.6. Check whether your answer makes

sense (units, order of magnitude, etc.).

Page 5: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 58/29/2013

7. A pet lamb grows rapidly, with its mass proportional to the cube of its length. When the lamb's length changes by 16%, its mass increases by 16.8 kg. Find the lamb's mass at the end of this process.

L

p L

LL

M MM

kLMkLM

i

if

ff

ffii

16.0

kg 8.16

33

kg 8.4611.16

1.16 kg 8.161/

/

1//

:clearsdust When the

3

3

3

3

3

3

33

3

if

iff

if

if

if

ff

LLLL

MM

LLLL

kLkLkL

MM

Page 6: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 68/29/2013

i>clicker exercise:What did you learn from this problem?

A. It is a bad idea to have a pet lambB. This was a very hard questionC. I hope this problem will not be on an examD. My physics instructor is VERY meanE. All of the above.

Page 7: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 78/29/2013

Motion in one-dimension

Page 8: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 88/29/2013

Graphical representation of position (displacement) x(t)

t (s)

Page 9: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 98/29/2013

Comment: Your text mentions the notion of a “scalar quantity” in contrast to a “vector quantity” which will be introduced in Chapter 3. In most contexts, a scalar quantity – like one-dimensional distance or displacement can be positive or negative.

Another comment: Your text describes the time rate of change of displacement as “velocity” which, in one-dimension is a signed scalar quantity. In general “speed” is the magnitude of velocity – a positive scalar quantity.

Page 10: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 108/29/2013

Graphical representation of position (displacement): x(t) time rate of change of displacement = velocity: v(t)

t (s)

dtdx

ttxttxtv

Δt

)()()(

:velocity

lim0

4

204040

2040)20()40()(

m/s-s

mm--ss

xxtv

Page 11: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 118/29/2013

Instantaneous velocity

t (s)

vA

vB

vC

vE

vF

vD

Page 12: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 128/29/2013

Demonstration of tangent line limit

dtdx

ttxttxtv

Δt

)()()(

: velocityousInstantane

lim0

Page 13: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 138/29/2013

Average velocity versus instantaneous velocity

dtdx

ttxttxtv

Δt

)()()(

: velocityousInstantane

lim0

AB

AB

AB

t

tB

A

tttxtx

tt

dttv

v

B

A

)()(

)(

: velocityAverage

Page 14: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 148/29/2013

Average velocity

AB

ABB

A tttxtxv

)()(

:result stated Previouslyiclicker exercise:

This results is:

A. ExactB. Approximate

AB

AB

AB

t

t

AB

t

t

AB

t

t

N

ii

B

A tttxtx

tt

tdx

tt

dtdt

tdx

tt

dttv

N

tvv

B

A

B

A

B

A

)()()()()()(

:Why

1

Page 15: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 158/29/2013

Webassign Example

Page 16: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 168/29/2013

Instantaneous velocity using calculus

2765)(

:Suppose42 ttttx

38146)( ttdtdxtv

x

v

Page 17: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 178/29/2013

Anti-derivative relationship

:m/s 3.0 and 0 suppose -- Example)( :Then

:Suppose

motionelocity Constant v

00

00

0

vxtvxtx

vdtdx

t

x

Page 18: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 188/29/2013

Velocity

AB

ABB

A tttxtxv

dtdxtv

)()(: velocityAverage

)(

: velocitysInstanteou

Page 19: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 198/29/2013

Acceleration

AB

ABB

A tttvtva

dtxd

dtdx

dtd

dtdvta

)()(:onaccelerati Average

)(

:onaccelerati sInstanteou

2

2

Page 20: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 208/29/2013

Rate of acceleration

4

4

3

3

3

3

2

2

2

2

3

3

2

2

:onaccelerati of rate of rate sInstanteou

:onaccelerati of rate sInstanteou

dtxd

dtdx

dtd

dtvd

dtdv

dtd

dtad

dtda

dtd

dtxd

dtdx

dtd

dtd

dtvd

dtdv

dtd

dtda

iclicker exerciseHow many derivatives of position are useful for describing motion:

A. 1 (dx/dt)B. 2 (d2x/dt2)C. 3 (dx3/dt3)D. 4 (dx4/dt4)E.

Page 21: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 218/29/2013

Anti-derivative relationship

202

100

00

000

)(

)( :Then

0 ,0 and :Suppose

motionon acceleratiConstant

tatvxtx

tavtv

x)x(v)v(adtdv

Page 22: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 228/29/2013

Examples

2000

202

10000

m/s 8.9 5m/s 0

)(

avx

tatvxx(t)tavtv

v(t)

x(t)

Page 23: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 238/29/2013

Examples

2000

202

10000

m/s 8.9 5m/s 0

)(

avx

tatvxx(t)tavtv

v(t)

x(t)

Page 24: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 248/29/2013

Summary

t

t

t

t

dttatvdtdvta

dttvtxdtdxtv

0

0

')'()( )(

')'()( )(

Page 25: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 258/29/2013

x(t)

v(t)

Another example

Page 26: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 268/29/2013

From webassign:

mssmsxst

smssmsvst

255/221)5( :5at position

/105/2)5( :5at velocity

22

2

Page 27: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 278/29/2013

Another example

t

t

dttvtx0

')'()(

m

sx

4533021

)3(

m

sxsx

105 230 )3(

)5(

(m/s)

(s)

Page 28: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 288/29/2013

Another example -- continued

dttdvta )()(

(m/s)

(s)

2m/s 1003030

03)0()3()(

vvta

2m/s 03500

35)3()5()(

vvta

Page 29: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 298/29/2013

Special relationships between t,x,v,a for constant a:

t

t

t

t

dttatvdtdvta

dttvtxdtdxtv

0

0

')'()( )(

')'()( )(

:iprelationsh General

200

2

0

21

2100)(

0)(:iprelationsh Special

attvxattvxtx

atvatvtv

Page 30: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 308/29/2013

Special relationships between t,x,v,a for constant a:

20

20

0

200

0

21)(

21)(

)(:iprelationsh Special

vtva

xtxa

vtvt

attvxtx

atvtv

Page 31: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 318/29/2013

Special case: constant velocity due to earth’s gravityIn this case, the “one” dimension is the vertical direction with “up” chosen as positive:

a = -g = -9.8 m/s2

y(t) = y0 + v0t – ½ gt2

y0 = 0 v0 = 20 m/s

At what time tm will the ball hit the ground ym = -50m ?

Solve: ym = y0 + v0tm – ½ gtm2

quadratic equation physical solution: tm = 5.83 s

Page 32: PHY 113 C General Physics I 11 AM – 12:15 PM TR  Olin 101 Plan for Lecture 2:

PHY 113 C Fall 2012 -- Lecture 2 328/29/2013

Helpful mathematical relationships(see Appendix B of your text)

g

yygvvt

yytvgtt

gttvyy

mm

mmmm

mmm

02

00

002

200

2

021:for equation Quadratic

21