phy 712 electrodynamics 10-10:50 am mwf olin 107 plan for lecture 35:

23
1 PHY 712 Electrodynamics 10-10:50 AM MWF Olin 107 Plan for Lecture 35: Comments and problem solving advice: Comment about PHY 712 final General review 04/25/2014 PHY 712 Spring 2014 -- Lecture 35

Upload: lavi

Post on 27-Jan-2016

36 views

Category:

Documents


0 download

DESCRIPTION

PHY 712 Electrodynamics 10-10:50 AM MWF Olin 107 Plan for Lecture 35: Comments and problem solving advice: Comment about PHY 712 final General review. Monday 4/28/2014. Wednesday 4/30/2014. Final exam for PHY 712 Available: Friday, May 2, 2014 Due: Monday, May 12, 2014. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 1

PHY 712 Electrodynamics10-10:50 AM MWF Olin 107

Plan for Lecture 35:

Comments and problem solving advice:

Comment about PHY 712 final

General review

04/25/2014

Page 2: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 204/25/2014

Page 3: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 304/25/2014

Page 4: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 404/25/2014

Time Presenter Name

Presenter Title

10-10:20 AM

Sam Flynn “Group Theory and Electromagnetism”

10:25-10:40 AM

Ahmad ?????????????????????????

Time Presenter Name

Presenter Title

9:30-9:50 AM

Calvin Arter “Electrodynamics and the interaction potential”

9:55-10:20 AM

Ryan Melvin “Effects of electric fields on small strands of human RNA”

10:25-10:40 AM

Drew Onken “The Electromagnetic Theory Behind the Free Electron Laser”

Monday4/28/2014

Wednesday4/30/2014

Page 5: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 504/25/2014

Final exam for PHY 712 Available: Friday, May 2, 2014 Due: Monday, May 12, 2014

Page 6: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 604/25/2014

Maxwell’s equations

0

02

SI units; Microscopic or vacuum form ( 0; 0):

Coulomb's law: /

1Ampere-Maxwell's law:

Faraday's law: 0

No magnetic monopoles:

c t

t

P M

E

EB J

BE

2

0 0

0

1 c

B

Page 7: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 704/25/2014

Maxwell’s equations

0

0

0

1SI units; Macroscopic form ( 0; = ):

Coulomb's law:

Ampere-Maxwell's law:

Faraday's law: 0

No magnetic monopol

free

freet

t

D E P H B M

D

DH J

BE

es: 0 B

Page 8: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 804/25/2014

Maxwell’s equations

Gaussian units; Macroscopic form ( 4 0; = 4 ):

Coulomb's law: 4

1 4Ampere-Maxwell's law:

1Faraday's law: 0

No magn

free

freec t c

c t

D E P H B M

D

DH J

BE

etic monopoles: 0 B

Page 9: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 904/25/2014

Energy and power (SI units)

1Electromagnetic energy density:

2Poynting vector:

u

E D H B

S E H

tititi )e,()e,()e,(,t)( rErErErE *~~

2

1~

:fields harmonic for time Equations

*

avg

1

2t,t ( , ) ( , ) S r E r H r

* *

avg

1

4tu ,t ( , ) ( , ) ( , ) ( , ) r E r D B rHr r

Page 10: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 1004/25/2014

0 02

Solution of Maxwell's equations:

1 /

0 0

c t

t

EE B J

BE B

Introduction of vector and scalar potentials:

0

0 0

or

t t

t t

B B A

B AE E

A AE E

Page 11: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 1104/25/2014

0

20

02

2

02 2

Scalar and vector potentials continued:

/ :

/

1

1

t

c t

c t t

E

A

EB J

AA J

Page 12: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 1204/25/2014

JA

A

A

JA

A

A

02

2

22

02

2

22

2

02

2

2

02

1

/1

01

require -- form gauge Lorentz

1

/

:equations potential vector andscalar theof Analysis

tc

tc

tc

ttc

t

LL

LL

LL

Page 13: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 1304/25/2014

22

02 2

22

02 2

Solution methods for scalar and vector potentials

and their electrostatic and magnetostatic analogs:

1/

1

LL

LL

c t

c t

A

A J

In your “bag” of tricks: Direct (analytic or numerical) solution of

differential equations Solution by expanding in appropriate

orthogonal functions Green’s function techniques

Page 14: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 1404/25/2014

How to choose most effective solution method -- In general, Green’s functions methods work well when

source is contained in a finite region of space

2

2

3

0

0

3

2

( , ) 4 ( )

1( )

Con

( ) ( , )4

1ˆ ( , ) (

sider the electrostatic problem:

/

Define:

) ( ) ( , ) .4

' '

L V

S

L

G

d r G

d r G G

r r

r r r r

r r r r r r r

r r

Page 15: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 1504/25/2014

lm

*lmlml

l

,φθYθ,φYr

r

l''

12

4

'

11

rr

( ) is contained in a small

1 region of

For electrostat

space a

ic problems

nd , ( , )'

where

S G

r rr r

r

Page 16: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 1604/25/2014

Electromagnetic waves from time harmonic sources

0,~

,~ 0,,

:condition continuity that theNote

,~

, :densityCurrent

,~, :density Charge

rJrrJr

rJrJ

rr

itt

t

et

etti

ti

'

( ) and ( ) are

contained in a small region of space and

For dynamic problems

,

wh

( , ', )

e , ,

'

re

ic

S

eG

r r

Jr

r r

r

r r

Page 17: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 1704/25/2014

Electromagnetic waves from time harmonic sources – continued:

,'~'

'4

1,

~,

~

) gauge, (Lorentz potentialscalar For

'3

00

rrr

rrrr

ike

rd

ck

,'~

''

4,

~,

~

) gauge, (Lorentz potential For vector

'30

0

rJrr

rArArr

ike

rd

ck

Page 18: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 1804/25/2014

Electromagnetic waves from time harmonic sources – continued:

:function Hankel Spherical

:function Bessel Spherical

'ˆˆ'4

:expansion Useful

*'

krinkrjkrh

krj

YYkrhkrjike

lll

l

lmlmllm

l

ik

rrrr

rr

'ˆ,'~',~

ˆ,~

,~

,~

*3

0

0

rr

rrr

lmlllm

lmlm

lm

Ykrhkrjrdik

r

Yr

Page 19: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 1904/25/2014

Model of dielectric properties of matter:

iii

ti

ti

ti

eim

qq

im

qe

mmeqm

rrpP

PEED

Erp

Errr

rrEr

3

0

220

02

220

000

200

:fieldnt Displaceme

1

:dipole Induced

1 ,For

http://img.tfd.com/ggse/d6/gsed_0001_0012_0_img2972.png

Drude model Vibrations of charged particles near equilibrium:

dr

Page 20: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 2004/25/2014

rrEr 200 mmeqm ti

Drude model: Vibration of particle of charge q and mass m near equilibrium:

dr http://img.tfd.com/ggse/d6/gsed_0001_0012_0_img2972.png

dipoles typeoffraction

umedipole/volnumber

:fieldnt Displaceme

3

0

i f

N

fN

i

iii

iii

prrpP

PEED

Page 21: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 2104/25/2014

Drude model dielectric function:

i ii

i

i

ii

I

i ii

i

i

ii

R

IR

i iii

ii

m

qfN

m

qfN

i

im

qfN

222220

2

0

22222

22

0

2

0

00

220

2

0

1

11

Page 22: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 2204/25/2014

Kramers-Kronig transform – for use in dielectric analysis

z-α

f(z)dz

-αz

)f(zdz

πi

z-α

f(z)dz

πif

restR

RR

includes

2

1

2

1

Re(z)

Im(z)

a

=0

f-αz

)f(zdzP

πi

-αz

)f(zdz

πi f

R

RR

R

RR )(

2

1

2

1

2

1

Page 23: PHY 712 Electrodynamics 10-10:50 AM  MWF  Olin 107 Plan for Lecture 35:

PHY 712 Spring 2014 -- Lecture 35 2304/25/2014

Kramers-Kronig transform – for dielectric function:

IIRR

RI

IR

-dP

-dP

;with

'

1 1

''

1

'

1

''

11

00

00

Further comments on analytic behavior of dielectric function

00

0

0

1

, ,,

:fields and between iprelationsh Causal""

ieGd

tGdtt rErErD

DE