phy10t4ucm&ulg

Upload: john-luke-cruz

Post on 20-Feb-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 PHY10T4UCM&ULG

    1/37

    s or x

    UNIFORM CIRCULAR MOTION (UCM)

    ANGULAR QUANTITIES

    r

    r

    or

    From 1 to 2 there is a change in

    linear displacement (arc s), and alsoa change in angle from 0 to . As thearc length increases the angle in thecircle also increases

    s s =r

    x =r

    1. ANGULAR DISPLACEMENT ( or)

    = x / r

  • 7/24/2019 PHY10T4UCM&ULG

    2/37

    =

    v=

    r

    UNIFORM CIRCULAR MOTION (UCM)

    ANGULAR QUANTITIES

    2. ANGULAR VELOCITY ()

    x r

    This is the change indisplacement with respect to an

    interal of time

    tt = v / r

    AVE=

    t

    INS=d

    dt

  • 7/24/2019 PHY10T4UCM&ULG

    3/37

    UNIFORM CIRCULAR MOTION (UCM)

    ANGULAR QUANTITIES

    =

    a=r

    . ANGULAR ACCELERATION( )

    v r!

    This is the change in elocit" with

    respect to an interal of time

    tt

    = a / r

    AVE=!

    t

    INS=d!

    dt

    * a = r (refers to !"#$%#!&"'acceleration)

  • 7/24/2019 PHY10T4UCM&ULG

    4/37

    s C&r*+,%r%#% 2-r

    UNIFORM CIRCULAR MOTION (UCM)

    ANGULAR QUANTITIES

    r

    = 3

    60 = 2 rad =1 rev

    #eriod is Time for 1 reol$tion. %t is$s$all" in seconds orsecond&reol$tion

    . PERIOD (T) /. FREQUENCY(,)A '$antit" that is the reciprocal of

    #eriod .

    %t is $s$all" in radians per secondsor reol$tion&second

    f= 1 / T

    T 0. ANGULAR FREQUENCY(,)This is the (aerage) ang$lar

    elocit" for a reol$tion

    f= !f f=

    !/T

  • 7/24/2019 PHY10T4UCM&ULG

    5/37

    UNIFORM CIRCULAR MOTION (UCM)

    CENTRIPETAL FORCE(FC)T

    % N%! ,or% !"! !%#s !o %3%! "# o45%! ,ro++o6$ " s!r"&$! 7"! "# "*s%s !o $o "&r*'"r 7"!. T&s &s &r%!% !o !% "x&s o, ro!"!&o#

    CENTRIPETAL ACCELERATION ("C)

    A'so 8#o9# "s !% r"&"' "%'%r"!&o#. T&s &s !%"%'%r"!&o# "sso&"!% 9&! %#!r&7%!"' ,or% "#,o''o9 !% NSLM: &! "'so $o%s !o !% "x&s o, ro!"!&o#.

  • 7/24/2019 PHY10T4UCM&ULG

    6/37

    UNIFORM CIRCULAR MOTION (UCM)

    CENTRIPETAL FORCE (FC)

    6T

    ac

    FC

    r

    +

    NS"# F#%! ;Fx +" and $%

    o$servation t&ere is no vertical'ove'ent ;F< =F#%! +"

    FC +"

    " 6T2>r FC +(6T2> r)

    (T)Tangential elocit" is also the inear

    elocit". %f the ang$lar elocit" is *nownthen

    6T r

    FC +r2

    "C r(2->T)2

    (-2r)>T2

    %f the ang$lar fre'$enc" is *nown (!f) +

    FC +-2,2r

    FC (+-2

    r) >T2

    " r2

    %f the period or fre'$enc" is *nown +

    "C r(2-,)2

    -2,2r

  • 7/24/2019 PHY10T4UCM&ULG

    7/37

    UNIFORM CIRCULAR MOTION (UCM)

    %n -, the ang$lar elocit" /ang$lar acceleration at A

    point or radial distance withinthat circle is constant.

    6T

    ac

    +

    12

    ?2

    ?1

    ??

    6T

    +616266

    T, the linear or tangentialelocit" / ( acceleration )di3ers at A point or radialdistance within that circle.

  • 7/24/2019 PHY10T4UCM&ULG

    8/37

    6F2 6O

    2 @ 2"(x)

    6F 6O@ "!

    x xO @ 6O! @

    "!2

    L%"r Mo!&o# EB*"!&o#s Ro!"!&o#"' Mo!&o# EB*"!&o#s

    x 6O! @

    "!2

    F2 O

    2 @ 2?()

    F O@ ?!

    O @ O! @

    ?!2 O! @

    ?!2

    is in radians

    UNIFORM CIRCULAR MOTION (UCM)

  • 7/24/2019 PHY10T4UCM&ULG

    9/37

    1 A oint on a +&eel rotatin, - rev/s and located . ' fro' t&e axis

    exeriences +&at centrietal acceleration

    r= .'

    ac =

    = - rev/s

    ac = r

    = (- rev/s)x(! rad/ 1 rev) = 1=-

    r">sac = (. ')(1.!

    rad/s)ac = 1020

    '/s

  • 7/24/2019 PHY10T4UCM&ULG

    10/37

    A sled +it& 'ass = -3, rest on a &ori4ontal s&eet of frictionless iceIt is attac&ed $% a - ' roe to a ost set in t&e ice 5nce 6s&ed7 t&esled revolves 6nifor'l% in a circle aro6nd t&e ost If t&e sled 'a3es8ve co'lete revol6tions er 'in6te 9ind t&e force exerted on it $% t&e

    roeTo Vie+

    = (- rev/'in) : (! rad/1rev) :

    (1'in/;. sec) =./2

    T F

    +r2T (2/ 8$)(/+)(=./2

    r">s)2T .22 N

    '=- 3,

    r=- '

    T T

    Isolating thesled

  • 7/24/2019 PHY10T4UCM&ULG

    11/37

    UNIFORM CIRCULARMOTION U#&,or+ or&o#!"' C&r*'"r

    Mo!&o#

    9

    6T

    ac

    6T

    6T

    ac

    ac

    < =

    ',

    6T

    ac

    6T

    ac

    6Tac

    6Tac

    Tangential or inear elocit"(T) is constant and

    perpendic$lar to the radial orcentripetal acceleration (a-)

    !" #I$%

    a&is

    r

    F'! #I$%(hal)

    Fc or an*net force is not

    drawn on the F4

    ;Fx F

    +";F< =

  • 7/24/2019 PHY10T4UCM&ULG

    12/37

    2 A . 3, $loc3 in t&e 8,6re is attac&ed to a vertical rod $% 'eans of t+ostrin,s o+ 'an% revol6tions er second '6st t&e s%ste' '6st 'a3e in order t&att&e tension in t&e 6er strin, s&all $e 1- N

    ($)

  • 7/24/2019 PHY10T4UCM&ULG

    13/37

    2 A . 3, $loc3 in t&e 8,6re is attac&ed to a vertical rod $% 'eans of t+ostrin,s o+ 'an% revol6tions er second '6st t&e s%ste' '6st 'a3e in order t&att&e tension in t&e 6er strin, s&all $e 1- N

    ($)

  • 7/24/2019 PHY10T4UCM&ULG

    14/37

    2 A . 3, $loc3 in t&e 8,6re is attac&ed to a vertical rod $% 'eans of t+ostrin,s o+ 'an% revol6tions er second '6st t&e s%ste' '6st 'a3e in order t&att&e tension in t&e 6er strin, s&all $e 1- N

    ($)

    (=. 8$)

    = 3+

  • 7/24/2019 PHY10T4UCM&ULG

    15/37

    2 A . 3, $loc3 in t&e 8,6re is attac&ed to a vertical rod $% 'eans of t+ostrin,s o+ 'an% revol6tions er second'6st t&e s%ste' '6st 'a3e in order t&att&e tension in t&e 6er strin, s&all $e 1- N

    ($)

  • 7/24/2019 PHY10T4UCM&ULG

    16/37

    UNIFORM VERTICAL CIRCULAR MOTION

    Tangential or Linear

    Velocity (vT) is constant

    and perpendicular to the

    radial or centripetal

    acceleration (aC)

    W = mg

    vT

    ac

    vT

    vT

    ac

    ac

    vT

    ac

    vT

    ac

    vTa

    c

    FRONT VIEWW = mg

    W = mg

    W = mgW = mg

    W = mg

    F

    F

    F

    F

    F

    F

    Effect of Weight is

    present and its

    reaction force (F) is

    considered in the

    analysis.

    ;F< F

    +";Fx =

  • 7/24/2019 PHY10T4UCM&ULG

    17/37

    NON- UNIFORM VERTICAL CIRCULAR MOTION

    Tangential or Linear

    Velocity (vT) is not

    constant and but still

    perpendicular to the

    radial or centripetal

    acceleration (aC) which

    also varies.

    W = mg

    vT

    ac

    vT

    vT

    ac

    ac

    vT

    ac

    vT

    ac

    vTa

    c

    FRONT VIEW

    W = mg

    W = mg

    W = mgW = mg

    W = mg

    F

    F

    F

    F

    F

    FEffect of Weight is

    present and its

    reaction force (F) is

    considered in the

    analysis.

    Fc or anynet force is not

    drawn on the F!

    ;F< F

    +";Fx =

  • 7/24/2019 PHY10T4UCM&ULG

    18/37

    Vertical Circ. Motion

    1. Tarzan (m=85 kg) tries to cross a river by singing !rom a 1"m long vine. #is s$ee% at t&e bottom o!

    t&e sing (as &e 'st clears t&e ater) is 8 ms. Tarzan %oesn*t kno t&at t&e vine &as a breaking

    strengt& o! 1""" +. ,oes &e make it sa!ely across t&e river-

    ac

    vT= 8 m/smT= 85 kg

    r = 10 m

    Tmax= 1000 N

  • 7/24/2019 PHY10T4UCM&ULG

    19/37

    UNIFORM CIRCULAR MOTION APPLICATIONS

    ROAD CURVES DESIGN

    FLAT CURVESTOP VIEW REAR VIEW

    ris "radius of curvature#

    axis

    A FLAT !RVE" ROA" #A$ A %A&I%!% VELOIT' LI%IT IN

    W#I# (ELOW T#I$ $PEE" T#E AR AN $AFEL' RO!N"

    T#E !RVE WIT#O!T $)I""IN* FRO% T#E ROA"+ T,is can

    -. caca.2 sing !% 3 N$L%

    vTmax = 4

  • 7/24/2019 PHY10T4UCM&ULG

    20/37

    UNIFORM CIRCULAR MOTION APPLICATIONS

    ROAD CURVES DESIGN

    FLAT CURVES F

    ris 5radi$s of c$rat$re6

    +

    $

    N

    a&is

    ac

    fis t&e (net) side frictional force actin,on t&e car It is t&e onl% force alon, t&e

    xFaxis rovidin, t&e net force Fcentrietal force

    N

    +$

    ac

    NS"# ;F +" and $% o$servation t&ere isno vertical 'ove'ent ;F< =

    ;Fx +"xH (@)

    @ , @+" ;F< =K(@)@ N =

    , (+6T+"x2) >

    r

    N

    +$ = s

    sN (+6T+"x2) >

    rs+$

    (+

    6T+"x

    2) > rs$ (6T+"x

    2

    ) > r

    6T+"x2 sr$

    6T+"xr

  • 7/24/2019 PHY10T4UCM&ULG

    21/37

    UNIFORM CIRCULAR MOTION APPLICATIONS

    ROAD CURVES DESIGN

    ANED CURVES!" #I$% '$' #I$%

    C4'#$ '!5 '$ $ 78$ (9)"'I:'I8; F!' 5F$; '$5!5 4'I7 %$ !'F'!

  • 7/24/2019 PHY10T4UCM&ULG

    22/37

    UNIFORM CIRCULAR MOTION APPLICATIONS

    ANED CURVES

    F

    ris 5radi$s of c$rat$re6

    +$N

    N< N os

    +$

    a&is

    ac

    ac

    N

    +$

    ac

    Nx N s

    NS"# ;F +" and $% o$servation t&ere isno vertical 'ove'ent ;F< =

    ;Fx +"xH (@)

    @ Nx @+"

    ;F< =K(@)@ N<

    =N s +" N os

    +$

    N (+$) > os

    $6t

    ac = vT'ax /r

    (+$ > os ) s +"+$ !"# +"

    $ !"# "

    !"# ">$

    !"# 1

    (">$)

    !"# 1(6T+"x2>

    (r$)J

  • 7/24/2019 PHY10T4UCM&ULG

    23/37

    1 A Gat (6n$an3ed) c6rve on a &i,&+a% &as a radi6s of H. ' A carro6nds t&e c6rve at a seed of '/s s)2>(==,!)(2,!>s2)JW

    12.2

  • 7/24/2019 PHY10T4UCM&ULG

    24/37

    2 T&e radi6s of a 9erris +&eel is '7 and it 'a3es one revol6tion in1 s9ind t&e aarent +ei,&t (Nor'al 9orce) of an . 3, assen,er at t&e

    &i,&est O lo+est oints

    +$

    N

    NT

    +$

    ac

    a

    c

    r

    A ferris wheel is a ertical circle moing atconstant speed (%F78 98T%-A-%8-A8 7T%7). Apparent weight meansthe e3ect of feeling light or hea" at certain

    portions of the ride as the ferris wheel isoperated. This is d$e to the normal force

    e:erted ;" wheels ca; in reaction to "o$rweight and the motion of the wheel

    T 12s%

    "C (-2)(+)J>(12s)2

    = 8$( . +>s2) N

    "C (-2r)>T2

    "C 2.1 +>s2

  • 7/24/2019 PHY10T4UCM&ULG

    25/37

    NT

    +$

    ac +$

    ac

    NT

    ;F< +"s2X 2.1

    +>s2

    )NT 0=./0=

    N

    N

    +$

    ac

    +$

    N

    ;F< +"s2@ 2.1

    +>s2

    )

    !% TOP o, !% F%rr&s%%'

    !% OTTOM o, !% F%rr&s%%'

  • 7/24/2019 PHY10T4UCM&ULG

    26/37

    H A cord is tied to a ail of +ater7 and t&e ail is s+6n, in a verticalcircle +it& radi6s 1H'

  • 7/24/2019 PHY10T4UCM&ULG

    27/37

    T1W = mg

    ac

    vT

    To get the $ini$u$ velocity% the tension

    in the cord $ust also be the $ini$u$%which is &ero.

    T1

    W = mg

    ac

    Fy = may (+

    !T1" W = "ma#

    !T1" mg = "ma#

    !(T1+ mg = "(mvT$ % &

    a# = vT$% &

    T1+ mg = (mvT$ % &

    ' + mg = (mvMIN$ % &

    g = vMIN$% &

    vMIN$

    = g& = ()* m%$

    (1), m = 1).$ m$

    %$

    vMIN= ).',m%

  • 7/24/2019 PHY10T4UCM&ULG

    28/37

    T&is +as discovered $% Sir Isaac Ne+ton

    States t&at P Ever% article of 'atter in t&e 6niverse

    attracts ever% ot&er article +it& a force t&at is directl%roortional to t&e rod6ct of t&e 'asses of t&e articleand inversel% roortional to t&e sJ6are of t&e distance$et+een t&e'Q

    +1 +

    +2

    F12

    F21 F2

    F2

    F1F1

    Ill6stration

    r

    r 1 r2

    91= F 91

    92= F 92

    912= F 921

    Us$ N%9!o#Zs T&r L"9 o,

    Mo!&o#

    T +To eer" actionthere is alwa"s opposedan e'$al reaction, same inmagnit$de ;$t opposite in

    direction.

    UNIVERSAL LA OF GRAVITATION

  • 7/24/2019 PHY10T4UCM&ULG

    29/37

    UNIVERSAL LA OF GRAVITATION

    Ronsider T+o 5$ects

  • 7/24/2019 PHY10T4UCM&ULG

    30/37

    MR

    9#E= BM ME

    RE2

    G 0.0 x 1= 11N+2>8$2

    FORCE OFGRAVITY

    ME /. x 1=2

    8$

    (+"ss o, !%

    %"r!)RE 0. x 1=0

    +(r"&*s o, !%%"r!)

    (0.0 x 1= 11 N+2>8$2)M (/. x 1= 2

    8$)(0. x 1=0 +)2

    9#E= (0 '/s) #

    M [ (+"ss o, "#

  • 7/24/2019 PHY10T4UCM&ULG

    31/37

    1 T&e 'ass of t&e 'oon is a$o6t 127 and its radi6s is -7 t&at oft&e eart& Ro'6te for t&e acceleration d6e to ,ravit% on t&e 'oonUss6rface fro' t&is data

    ME /. x 1=2

    8$ (+"ss o, !% %"r!)RE 0. x 1=

    0 + (r"&*s o, !%

    %"r!)G 0.0 x 1= 11N+2>8$2 (U#&6%rs"') Gr"6&!"!&o#"'Co#s!"#!

    M+ (=.=12)(/. x 1=2 8$) . x 1=228$

    R+ (=.2/)(0. x 1=0 +) 1.// x 1=0+

    ,'= ?#'/ '

    ,'= (;;x1.F11N'/3,)(22x1.3,)/

    (1-0-x1.;')$+ 1.0

    +>s2

  • 7/24/2019 PHY10T4UCM&ULG

    32/37

    ,'= ?#'/ '

    $+ 1.2

    +>s2

    ,E= ?#E/

    E ? = ?

    ,E

    E

    / #E

    =,'

    '

    / #'

    ,' = ,E(#'/#E)(E/')

    1 T&e 'ass of t&e 'oon is a$o6t 127 and its radi6s is -7 t&at oft&e eart& Ro'6te for t&e acceleration d6e to ,ravit% on t&e 'oonUss6rface fro' t&is data

    9ro' ,iven #'= (..12)#EO '=

    (.-)E,E= 0 '/s

    ,' = (0 '/s)(..12#E/#E)(E/.-E)

    ,' = (0 '/s)(..12)(H)

    ALTERNATIVE SOLUTION

  • 7/24/2019 PHY10T4UCM&ULG

    33/37

    At +&at oint $et+een t&e Eart& and t&e #oon is t&e ,ravitational6ll of t&e Eart& eJ6al in 'a,nit6de to t&at of t&e 'oon Ass6'e ano$ect +it& 'ass # in $et+een t&e eart& and t&e 'oon (Avera,e

    distance $et+een Eart& O #oon 2Hx1.

    ')D = 2Hx1.'

    SE S#

    ME /. x

    1=2 8$

    MM .0x

    1=22 8$

    M

  • 7/24/2019 PHY10T4UCM&ULG

    34/37

    At +&at oint $et+een t&e Eart& and t&e #oon is t&e ,ravitational6ll of t&e Eart& eJ6al in 'a,nit6de to t&at of t&e 'oon Ass6'e ano$ect +it& 'ass # in $et+een t&e eart& and t&e 'oon (Avera,e

    distance $et+een Eart& O #oon 2Hx1.

    ')D = 2Hx1.'

    SE S#

    ME /. x

    1=2 8$

    MM .0x

    1=22 8$

    MFES FSE

    FES

    FSE

    FSM FMS

    FSM FMS

  • 7/24/2019 PHY10T4UCM&ULG

    35/37

    At +&at oint $et+een t&e Eart& and t&e #oon is t&e ,ravitational6ll of t&e Eart& eJ6al in 'a,nit6de to t&at of t&e 'oon Ass6'e ano$ect +it& 'ass # in $et+een t&e eart& and t&e 'oon (Avera,e

    distance $et+een Eart& O #oon 2Hx1.

    ')

    ME /. x

    1=2 8$

    SE S#

    MFSE FSM

    FSE GMEM > RSE2FSM GMMM >

    RSM2

    FSE FSM

    GMEM> RSE2

    GMMM>RSM2

    ME>RSE2 MM>RSM

    2

    GMEM>RSE2

    GMMM>RSM2

    MERSM2 MMRSE

    2

    RSM2 (MM>ME)RSE

    2

    RSM2 (=.=12)RSE

    2

    RSM

    =.11=RSE

  • 7/24/2019 PHY10T4UCM&ULG

    36/37

    At +&at oint $et+een t&e Eart& and t&e #oon is t&e ,ravitational6ll of t&e Eart& eJ6al in 'a,nit6de to t&at of t&e 'oon Ass6'e ano$ect +it& 'ass # in $et+een t&e eart& and t&e 'oon (Avera,e

    distance $et+een Eart& O #oon 2Hx1.

    ')

    SE S#

    MFSE FSM

    RSM =.11=RSE

    D = 2H x 1.'

    D RSM @ RSE

    .x1=+ =.11=RSE

    @ RSE.x1=+ 1.11=RSE

    (.x1=+)>1.11= RSE

    RSE

    .0x1=+

    RSM

    .x1=0+

  • 7/24/2019 PHY10T4UCM&ULG

    37/37

    Satellite#otion