physical optics...physical optics: content 2 no date subject ref detailed content 1 05.04. wave...

59
www.iap.uni-jena.de Physical Optics Lecture 12: Polarization 2017-05-03 Herbert Gross

Upload: others

Post on 25-Jan-2021

9 views

Category:

Documents


1 download

TRANSCRIPT

  • www.iap.uni-jena.de

    Physical Optics

    Lecture 12: Polarization

    2017-05-03

    Herbert Gross

  • Physical Optics: Content

    2

    No Date Subject Ref Detailed Content

    1 05.04. Wave optics G Complex fields, wave equation, k-vectors, interference, light propagation,

    interferometry

    2 12.04. Diffraction B Slit, grating, diffraction integral, diffraction in optical systems, point spread

    function, aberrations

    3 19.04. Fourier optics B Plane wave expansion, resolution, image formation, transfer function,

    phase imaging

    4 26.04. Quality criteria and

    resolution B

    Rayleigh and Marechal criteria, Strehl ratio, coherence effects, two-point

    resolution, criteria, contrast, axial resolution, CTF

    5 03.05. Polarization G Introduction, Jones formalism, Fresnel formulas, birefringence,

    components

    6 10.05. Photon optics D Energy, momentum, time-energy uncertainty, photon statistics,

    fluorescence, Jablonski diagram, lifetime, quantum yield, FRET

    7 17.05. Coherence G Temporal and spatial coherence, Young setup, propagation of coherence,

    speckle, OCT-principle

    8 24.05. Laser B Atomic transitions, principle, resonators, modes, laser types, Q-switch,

    pulses, power

    9 31.05. Gaussian beams D Basic description, propagation through optical systems, aberrations

    10 07.06. Generalized beams D Laguerre-Gaussian beams, phase singularities, Bessel beams, Airy

    beams, applications in superresolution microscopy

    11 14.06. PSF engineering G Apodization, superresolution, extended depth of focus, particle trapping,

    confocal PSF

    12 21.06. Nonlinear optics D Basics of nonlinear optics, optical susceptibility, 2nd and 3rd order effects,

    CARS microscopy, 2 photon imaging

    13 28.06. Scattering G Introduction, surface scattering in systems, volume scattering models,

    calculation schemes, tissue models, Mie Scattering

    14 05.07. Miscellaneous G Coatings, diffractive optics, fibers

    D = Dienerowitz B = Böhme G = Gross

  • Introduction

    Fresnel formulas

    Jones calculus

    Further descriptions

    Birefringence

    Components

    Applications

    3

    Contents

  • Scalar:

    Helmholtz equation

    Vectorial:

    Maxwell equations

    Scalar / vectorial Optics

    0)(2 rEnko

    k

    E

    H

    k

    0

    Bk

    iDk

    BEk

    jiDHk

    EJ

    Jk

    MHB

    PED

    r

    r

    0

    0

    4

  • 1. Linear components in phase

    2. circular phase difference of 90° between components

    3. elliptical arbitrary but constant phase difference

    x

    y

    z

    E

    E

    x

    y

    z

    EE

    x

    y

    z

    E

    E

    Basic Forms of Polarisation

    5

  • Description of electromagnetic fields:

    - Maxwell equations

    - vectorial nature of field strength

    Decomposition of the field into components

    Propagation plane wave:

    - field vector rotates

    - projection components are oscillating sinusoidal

    yyxx etAetAE )cos(cos

    z

    x

    y

    Basic Notations of Polarization

    6

  • Elimination of the time dependence:

    Ellipse of the vector E

    Different states of polarization:

    - sense of rotation

    - shape of ellipse

    0° 45° 90° 135° 180°

    225° 270° 315° 360°

    2

    2

    2

    2

    2

    sincos2

    yx

    yx

    y

    y

    x

    x

    AA

    EE

    A

    E

    A

    E

    Polarization Ellipse

    7

  • Representation of the state of polarization by an ellipse

    Field components

    Axes of ellipse: a, b

    Rotation angle of the field

    Angle of eccentricity

    a

    btan

    Polarization Ellipse

    )sinsincos(cos xxxx AE

    )sinsincos(cos yyyy AE

    cos2

    2tan22

    yx

    yx

    AA

    AA

    x

    y

    x'

    y'

    a

    b

    Ax

    Ay

    Ex

    Ey

    8

  • Circular Polarization

    Spiral curve of field vector

    Superposition of left and right handed circular

    polarized light:

    resulting linear polarization

    Ref: Manset

    tx

    y

    E

    Er

    El

    t

    t1

    t2

    t3

    9

  • Rotation of plane of polarization with t / z

    Phase angle 90°

    Generation by l/4 plate out of linear polarized light

    Erzeugung :

    Polarisator und l / 4 -

    Platte

    b1

    x

    y

    E

    Er

    El

    t1

    El

    Er E

    t2

    b2

    SA z

    y

    x

    TA

    45°

    l / 4 - plate

    linear

    polarizer

    LA

    Circular polarized Light

    10

  • Fresnel Formulas

    n n'

    incidence

    reflection transmission

    interface

    E

    B

    i

    i

    E

    B

    r

    r

    E

    Bt

    t

    normal to the interface

    i

    i'i

    a) s-polarization

    n n'

    incidence

    reflection

    transmission

    interface

    B

    E

    i

    i

    B

    E

    r

    r

    B

    E t

    t

    normal to the interface

    i'i

    i

    b) p-polarization

    Schematical illustration of the ray refraction ( reflection at an interface

    The cases of s- and p-polarization must be distinguished

    11

  • Fresnel Formulas

    Electrical transverse polarization

    TE, s- or -polarization, E perpendicular to incidence plane

    Magnetical transverse polarization

    TM, p- or p-polarization, E in incidence plane

    Boundary condition of Maxwell equations

    at a dielectric interface:

    continuous tangential component of E-field

    Amplitude coefficients for

    reflected field

    transmitted field

    Reflectivity and transmission

    of light power

    TEe

    rTE

    E

    Er

    1 TETEe

    tTE r

    E

    Et 1

    ' TMTM r

    n

    nt

    nn EE 2211

    tt EE 21

    TMe

    rTM

    E

    Er

    2r

    e

    PR r

    P

    2' cos '

    cos

    t

    e

    P n iT t

    P n i

    ||

    12

  • Fresnel Formulas

    Coefficients of amplitude for reflected rays, s and p

    Coefficients of amplitude for transmitted rays, s and p

    tzez

    tzezE

    kk

    kk

    inin

    inin

    innin

    innin

    ii

    iir

    'cos'cos

    'cos'cos

    sin'cos

    sin'cos

    )'sin(

    )'sin(

    222

    222

    tzez

    tzezE

    knkn

    knkn

    inin

    inin

    innnin

    innnin

    ii

    iir

    22

    22

    2222

    2222

    ||'

    '

    'coscos'

    'coscos'

    sin'cos'

    sin'cos'

    )'tan(

    )'tan(

    tzez

    ezE

    kk

    k

    inin

    in

    innin

    in

    inin

    int

    2

    'cos'cos

    cos2

    sin'cos

    cos2

    'cos'cos

    cos2

    222

    tzez

    ezE

    knkn

    kn

    inin

    in

    innnin

    inn

    inin

    int

    22

    2

    2222||

    '

    '2

    'coscos'

    cos2

    sin'cos'

    cos'2

    'coscos'

    cos2

    13

  • Fresnel Formulas

    Typical behavior of the Fresnel amplitude coefficients as a function of the incidence angle

    for a fixed combination of refractive indices

    i = 0

    Transmission independent

    on polarization

    Reflected p-rays without

    phase jump

    Reflected s-rays with

    phase jump of p

    (corresponds to r

  • Fresnel Formulas: Energy vs. Intensity

    Fresnel formulas, different representations:

    1. Amplitude coefficients, with sign

    2. Intensity cefficients: no additivity due to area projection

    3. Power coefficients: additivity due to energy preservation

    r , t

    0 10 20 30 40 50 60 70 80 90-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    i

    t

    r

    r

    t

    R , T

    i0 10 20 30 40 50 60 70 80 90

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    T(In)

    T(In)

    R(In)

    R(In)

    R , T

    i0 10 20 30 40 50 60 70 80 90

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    T

    T

    R

    R

    15

  • Decomposition of the field strength E

    into two components in x/y or s/p

    Relative phase angle between

    components

    Polarization ellipse

    Linear polarized light

    Circular polarized light

    y

    x

    i

    y

    i

    x

    y

    x

    eA

    eA

    E

    EE

    0

    xy

    0

    10E

    1

    00E

    sin

    cos0E

    iErz

    1

    2

    1

    iElz

    1

    2

    1

    Jones Vector

    222

    sincos2

    yx

    yx

    y

    y

    x

    x

    AA

    EE

    A

    E

    A

    E

    16

  • Jones representation of full polarized field:

    decomposition into 2 components

    Cascading of system components:

    Product of matrices

    In principle 3 types of components influencing polarization:

    1. Change of amplitude polarizer, analyzer

    2. Change of phase retarder

    3. Rotation of field components rotator

    Jones Calculus

    1121 EJJJJE nnn

    p

    s

    trans t

    tJ

    10

    01

    cossin

    sincos)(rotJ

    2

    2

    0

    0

    i

    i

    ret

    e

    eJ

    os

    op

    ppps

    spss

    s

    p

    oE

    E

    JJ

    JJ

    E

    EEJE ,

    System 1 :

    J1

    E1 System 2 :

    J2

    E2 System 3 :

    J3

    E3 System n :

    Jn

    En-1 EnE4

    17

  • Rotated component

    Rotation matrix

    Intensity

    Three types of components to change the polarization:

    1. amplitude: polarizer / analyzer

    2. phase: retarder

    3. orientation: rotator

    Propagation:

    1. free space

    2. dielectric interface

    3. mirror

    )()0()()( DJDJ

    cossin

    sincos)(D

    1

    *

    12 EJJEI

    Jones Matrices

    10

    012 OPLiPRO eJ

    l

    p

    p

    s

    TRA t

    tJ

    0

    0

    p

    s

    REF r

    rJ

    0

    0

    10

    01rJ SP

    18

  • Birefringence: index of refraction depends on field orientation

    Uniaxial crystal:

    ordinary index no perpendicular to crystal axis

    extra-ordinary index ne along crystal axis

    Difference of indices

    Jones matrix

    Relative phase angle

    0

    0

    i n z

    neo i n z

    eJ

    e

    p

    l

    p

    l

    2 2

    2 2

    sin cos sin cos 1( , )

    sin cos 1 cos sin

    i i

    neoi i

    e eJ

    e e

    2

    e o

    zn n

    p

    l

    oe nnn

    Birefringence: Uniaxial Crystal

    19

  • Descriptions of Polarization

    E

    Parameter Properties

    1

    Polarization ellipse

    Ellipticity ,

    orientation only complete polarization

    2

    Complex parameter

    Parameter

    only complete polarization

    3

    Jones vectors

    Components of E

    only complete polarization

    4

    Stokes vectors

    Stokes parameter So ... S4

    complete or partial

    polarization

    5

    Poincare sphere

    Points on or inside the

    Poincare sphere only graphical representation

    6

    Coherence matrix

    2x2 - matrix C

    complete or partial

    polarization

    20

  • Description of polarization from the energetic point of view

    - So total intensity

    - S1 Difference of intensity in x-y linear

    - S2 Difference of intensity linear under 45° / 135°

    - S3 Difference of circular components

    )0,90()0,0(0 IIS

    )0,90()0,0(1 IIS

    )0,135()0,45(2 IIS

    )90,45()90,45(3 IIS

    Stokes Vector

    22

    yxo EES

    22

    1 yx EES

    cos22 yxEES

    sin23 yxEES

    21

  • Description of a polarization state with Stokes parameterInterpretation:

    Components of the field on the Poincare sphere

    Also partial polarization is taken into account

    Relation

    Unequal sign: partial polarization

    Stokes vector 4x1

    Propagation:

    Müller matrix M

    2

    3

    2

    2

    2

    1

    2

    0 SSSS

    3

    2

    1

    0

    S

    S

    S

    S

    S

    Stokes Vector

    S

    mmmm

    mmmm

    mmmm

    mmmm

    SMS

    33323130

    23222120

    13121110

    03020100

    '

    22

  • Linear horizontal / vertical

    LInear 45°

    Circular clockwise / counter-clockwise

    0

    0

    1

    1

    S

    0

    0

    1

    1

    S

    0

    1

    0

    1

    S

    1

    0

    0

    1

    S

    1

    0

    0

    1

    S

    Examples of Stokes Vectors

    23

  • Partial polarized light:

    degree of polarization

    p = 0 : un-polarized

    p = 1 : fullypolarized

    0 < p < 1 : partial polarized

    Determination of Stokes parameter:

    Unpolarized light

    Fully polarized light

    Partial Polarization

    ges

    pol

    I

    Ip

    pS S S

    S

    12

    2

    2

    3

    2

    0

    pu SS

    pSSpS

    000 )1(

    0321 SSS

    2

    3

    2

    2

    2

    1

    2

    0 SSSS

    24

  • Every point on a uni sphere describes one state of polarization

    In spherical coordinates:

    Points on z-axis: circular polarized light

    Meridian line: linear polarization

    Points inside

    partial polarization

    Sphere of Poincare

    2sin

    2cos2cos

    2sin2cos1

    222

    z

    y

    x

    zyxr

    y

    x

    z

    right handed

    circular polarized

    left handed

    circular polarized

    elliptical

    polarized

    linear

    polarized

    2

    2

    25

  • Fully polarized: point

    Unpolarized: full surface

    Partial polarized: probability distribution, points inside

    y

    x

    z

    P

    y

    x

    z

    y

    x

    z

    fully polarized un-polarizedpartial

    polarized

    Partial Polarization on the Poincare Sphere

    26

  • Stokes parameter S1 , S2 , S3 :

    Componenst along axis directions

    Radius of sphere, length of vector: So

    Projection into meridional plane:

    angle 2 of polarization ellipse

    Projection into meridian plane:

    eccentricity angle 2

    Poincare Sphere and Stokes Vector

    So

    S1

    S2

    S3

    y

    x

    z

    P

    2

    2

    27

  • Polarization

    Polarization of a donat mode in the focal region:

    1. In focal plane 2. In defocussed plane

    Ref: F. Wyrowski

    28

  • Jones matrix changes Jones vector

    Müller matrix changes Stokes vector

    Change of coherence matrix

    Procedure for real systems:

    1. Raytracing

    2. Definition of initial polarization

    3. Jones vector or coherence matrix local on each ray

    4. transport of ray and vector changes at all surfaces

    5. 3D-effects of Fresnel equations on the field components

    6. Coatings need a special treatment

    7. Problems: ray splitting in case of birefringence

    JCJC'

    SMS

    '

    EJE

    '

    Propagation of Polarization

    29

  • 3D calculus in global coordinates according to Chipman

    Ray trace defines local coordinate system

    Transform between local and

    global coordinates

    Polarization Raytrace

    inLLinjL

    in

    inL szxsy

    ss

    ssx

    1,1,,

    1

    11, ,,

    '

    '

    '',',' 11,1,1,1,1, szxsyxx LLinLLL

    zzLzL

    yyLyL

    xxLxL

    out

    inzinyinx

    zLyLxL

    xLyLxL

    in

    syx

    syx

    syx

    T

    sss

    yyy

    xxx

    T

    11,1,

    11,1,

    11,1,

    ,1

    ,,,

    1,1,1,

    1,1,1,

    ,11

    ''

    ''

    ''

    ,

    plane of

    incidence

    interface

    plane

    incoming

    ray

    outgoing

    ray

    kj-1 kj

    xj

    yj

    y'j

    30

  • Embedded local 2x2 Jones matrix

    Matrices of refracting surface

    and reflection

    Field propagation

    Cascading of operator matrices

    Transfer properties

    1. Physical changes

    2. Geometrical bending effects

    Polarization Raytrace

    1,

    1,

    1,

    ,

    ,

    ,

    1

    jz

    jy

    jx

    zzyzxz

    zxyyxy

    zxyxxx

    jz

    jy

    jx

    jjj

    E

    E

    E

    ppp

    ppp

    ppp

    E

    E

    E

    EPE

    121 .... PPPPP MMtotal

    100

    00

    00

    ,

    100

    00

    00

    s

    p

    rs

    p

    t r

    r

    Jt

    t

    J

    100

    0

    0

    2221

    1211

    ,1 jj

    jj

    J refr

    1

    ,1,1,11

    inrefrout TJTP

    1

    ,1,1,11

    inbendout TJTQ

    31

  • Change of field strength:

    calculation with polarization matrix,

    transmission T

    Diattenuation

    Eigenvalues of Jones matrix

    Retardation: phase difference

    of complex eigenvalues

    To be taken into account:

    1. physical retardance due to refractive index: P

    2. geometrical retardance due to geometrical ray bending: Q

    Retardation matrix

    Diattenuation and Retardation

    EE

    EPPE

    E

    EPT

    T

    *

    *

    2

    2

    minmax

    minmax

    TT

    TTD

    2/12/12/12/12/1 wewwJ

    i

    ret

    21 argarg

    totaltotalPQR

    1

    32

  • Müller matrix visualization

    Interpretation not trivial

    Retardation and diattenuation map

    across the pupil

    Polarization Zernike pupil aberration

    according to M. Totzeck (complicated)

    Polarization Performance Evaluation

  • 34

    Anisotropic Media

    Different types of anisotropic media

    Ref: Saleh / Teich

  • Classical geometry of birefringent refraction refers on interface plane

    Grandfathers method:

    Calculation iterative due to non-linear equations in prism coordinates

    History: formulas according to Muchel / Schöppe

    Only plane setup considered, crystal axis in plane of incidence

    Geometry of Raytrace at an Interface

    incidentray

    e

    o

    crystalaxis

    wavenormal

    '

    o

    ''eo

    air crystal

    a

    s'

    s

    n

    35

  • Incident plane wave

    Different refractive indices for polarization direction

    Important: relative orientation against crystal axis

    Arbitrary incidence: splitting of rays

    - ordinary ray: perpendicular to optical axis

    - extra ordinary ray: in plane of incidence

    Ray Splitting in Case of Birefringence

    crystal axis

    extraordinary ray

    ordinary ray

    36

  • Birefringence

    Different directions of E and D

    Ray splitting not identical to wave splitting

    37

    k / s

    P

    DE

    H , B energy / wave /

    Poynting

    ray / phase

  • Relationship between electric field and

    displacement vector

    Linear relationship of tensor-equation

    First term, coefficient :

    local direction, birefringence

    Second term, coefficient :

    gradient of field, third order, optical activity, polarization rotated

    Third term, :

    forth order, intrinsic birefringence, spatial dispersion of birefringence

    General:

    Due to the tensor properties of the coefficients, all these effects are anisotropic

    The field E and the displacement D are no longer aligned

    Anisotropic Media

    ED r

    0

    qml

    lqmjlmq

    ml

    lmjlm

    l

    ljlj EEED,,,

    EEssnEssnD

    22

    38

  • Vanishing solution determinante of the

    wave equation

    Value of speed of ligth depending on the ray

    direction (phase velocity)

    Alternative: axis 1/n

    Fresnel or Ray Ellipsoid

    022

    2

    22

    2

    22

    2

    z

    z

    y

    y

    x

    x

    cc

    k

    cc

    k

    cc

    k

    1/nx

    x

    y

    z

    1/ny

    1/nz

    Ey

    electric

    field

    constant

    energy

    density

    Ex

    E

    D

    displacement

    vector

    39

  • Inverse matrix of the dielectric tensor:

    index or normal ellipsoid

    Gives the refractive index as a function of

    the orientation

    Also possible: ellipsoid of k-values

    Index or Normal Ellipsoid

    constn

    z

    n

    y

    n

    x

    zyx

    2

    2

    2

    2

    2

    2

    z

    y

    x

    r

    100

    01

    0

    001

    1iin

    x

    y

    z

    ny

    nz

    nx

    022

    22

    22

    22

    22

    22

    z

    zz

    y

    yy

    x

    xx

    nn

    nk

    nn

    nk

    nn

    nk

    Dy

    electric

    fieldconstant

    energy

    density

    Dx

    D

    E

    displacement

    vector

    40

  • Special case uniaxial crystal:

    ellipsoid rotational symmetry

    no ordinary direction valid for two directions

    ne extra ordinary valid for only one direction

    Two cases:

    ne > no : positive ( prolate, cigar )

    ne < no : negativ ( oblate, disc )

    Arbitrary orientation : intersection points

    Index Ellipsoid for Uniaxial Crystals

    optical

    axis

    a) positive birefringence ne > no

    o-ray

    e-ray

    optical

    axis

    b) negative birefringence ne < no

    o-ray

    e-ray

    k2

    k3

    kn0k0

    n0k0

    n() k0

    n0k0 nek0

    41

  • Incident plane wave

    Osculating tangential plane at the ordinary index-sphere:

    defines normal to o-ray direction

    Osculating tangential plane at the index o/e-index ellipsoid:

    normal to e-direction

    Wave-Optical Construction of the o/e-direction

    crystal

    axis

    incident ray

    o - rayeo-ray

    velocity

    ellipsoid

    wavefronts

    42

  • Classical uniaxial media used in polarization components:

    1. Quartz, positive birefringent, small difference

    2. Calcite, negative birefringent, larger difference

    Birefringent Uniaxial Media

    oe

    e

    o

    quartz calcite

    material sign no neo

    Calcite negative 1.6584 1.4864

    Quarz, SiO2 positive 1.5443 1.5534

    43

  • Optical symmetry axis of crystal

    material breaks symmetry

    Split of rays depends on the

    axis orientation

    Split of field into two orthogonal

    polarisation components

    Energy propagation (ray,

    Poynting) in general not

    perpendicular to wavefront

    Refraction with Birefringence

    divergent rays

    crystal

    axis

    parallel rays

    with phase difference

    crystal

    axiscrystal

    axis

    parallel rays

    in phase

    o-ray e-ray

    44

  • Polarizer with attenuation cs/p

    Rotated polarizer

    Polarizer in y-direction

    p

    s

    LIN c

    cJ

    10

    01

    z

    y

    x

    TA

    2

    2

    sincossin

    cossincos)(PJ

    10

    00)0(PJ

    Polarizer

    45

  • Polarizer and analyzer with rotation

    angle

    Law of Malus:

    Energy transmission

    TA

    z

    y

    x

    TA

    linear

    polarizer y

    linear

    polarizer

    E

    E cos

    2cos)( oII

    I

    0 90° 180° 270° 360°

    Pair Polarizer-Analyzer

    parallel

    polarizer

    analyzer

    perpendicular

    46

  • Crossed pair of polarizer - analyzer plates

    No sample: transmission zero

    Polarized sample between the plates:

    - spatial resolved rotation of polarization

    - analysis of stress and strain

    TA z

    y

    x

    TA

    linear

    polarizer x

    linear

    polarizer y

    analyzer

    Stress Analysis: Polarizer / Analyzer

    47

  • Phase difference between field

    components

    Retarder plate with rotation angle

    Special value:

    l / 4 - plate generates circular polarized light

    1. fast axis y

    2. fast axis 45°

    2

    2

    0

    0

    i

    i

    RET

    e

    eJ

    z

    y

    x

    SA

    LA

    ii

    ii

    Vee

    eeJ

    22

    22

    cossin1cossin

    1cossinsincos),(

    iJ V

    0

    01)2/,0( p

    1

    1

    2

    1)2/,4/(

    i

    iiJ V pp

    Retarder

    48

  • Rotate the of plane of polarization

    Realization with magnetic field:

    Farady effect

    Verdet constant V

    bb

    bb

    cossin

    sincosROTJ

    z

    y

    x

    b

    VLB

    b

    Rotator

    49

  • Types of LC media:

    - nematic long molecules, oriented in one direction

    - smectic long molecules, oriented in one direction in several layers

    different types A, B, C

    - discotic plate-shapes molecules, oriented in a plane

    - cholesteric skrew-shaped molecules

    Functional principle:

    - interaction creates domaines

    - orientation of the domaines by voltage

    - anisotropic behavior, birefringence

    - strong influence of temperature

    Parameter to describe the order / entropy:

    Application:

    - displays

    - spatial light modulator

    Liquid Crystals

    1cos32

    1 2 S

    50

  • Orientation of the molecules in an external field (voltage)

    LCD Cell

    moleculesglass plate

    field : E = 0 field : E > 0

    51

  • Types of Liquid Crystals

    nematic smectic A smectic C

    52

  • Types of Liquid Crystals

    smectic C

    cholesteric

    53

  • Transmission changes due to polarization

    Black-White switch possible

    Reflective or refractive

    Liquid Crystal Display

    polarizer analyzer90° - TN-LC cell

    black

    white

    polarizer LC cell mirror

    54

  • epi

    illumination trans

    illumination

    Microscopic Contrast

    Ref: M. Kempe

    polarization bright field fluorescence

    55

  • Differential Interference Contrast

    ),(

    ),()1(),(

    yxxEeR

    yxxEeRyxE

    psf

    i

    psf

    i

    psfdic

    condenser

    object

    Wollaston

    prism

    Wollaston

    prism

    compensator

    objective

    polarizer

    analyzer

    shear

    distance

    x

    adjustment

    phase

    splitting

    ratio

    R1-R

    Point spread function

    Parameter:

    1. Shear distance

    2. Phase offset

    3. Splitting ratio

    56

  • original / shifted differential splitting

    Differential Interference Contrast

    Differential splitting:

    Large contrast at phase

    gradients

    57

  • Differential Interference Contrast

    Lateral shift : preferred direction

    Visisbility depends on orientation of details

    shift 45° x-shift (0°) y-shift (90°)

    58

  • 59

    DIC Phase Imaging

    Orientation of prisms and shift size determines the anisotropic image formation

    Ref.: M. Kempe