physics of flat‐panel detectorsbml.pusan.ac.kr/.../graduates/imagedetectors/6_fpd.pdf · 2020. 3....

33
Physics of Flat‐panel Detectors Ho Kyung Kim [email protected] Pusan National University Medical Imaging Detectors Routine Load a film into a cassette (in the dark room) Carry it to the examination room Insert it into the x‐ray table Position the patient Make the x‐ray exposure Carry the cassette back to the processor to develop the film Check if the film is suitable for making a medical diagnosis Hang the film in a view box Key issue in the development of digital diagnostic radiology Large‐area availability of a digital sensor enough to cover the patient body Flat‐panel active matrix array, originally developed for laptop‐computer displays 2

Upload: others

Post on 30-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Physics of Flat‐panel Detectors

Ho Kyung [email protected]

Pusan National University

Medical Imaging Detectors

Routine

• Load a film into a cassette (in the dark room)

• Carry it to the examination room

• Insert it into the x‐ray table

• Position the patient

• Make the x‐ray exposure

• Carry the cassette back to the processor to develop the film

• Check if the film is suitable for making a medical diagnosis

• Hang the film in a view box

Key issue in the development of digital diagnostic radiology

• Large‐area availability of a digital sensor enough to cover the patient body

• Flat‐panel active matrix array, originally developed for laptop‐computer displays

2

Page 2: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Requirements

• Field of view (FOV)

• Dynamic range (DR)

‒ Range of x‐ray factors (attenuation) used to create images

• Pixel size

‒ Spatial resolution

• Noise level

‒ Lowest possible x‐ray exposure at which the system should be quantum‐noise limited

3

General concepts

Digitization

• Sampling in space => pixels checkboard artifacts

• Quantization in intensity => bits contouring artifacts

4

Page 3: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Dynamic range = the attenuation divided by precision

• Ratio between x‐ray attenuation of the most radiolucent & the most radio‐opaque paths

‒ 𝑒

• Precision of the x‐ray signal measured in the most radio‐opaque anatomy

‒ e.g., 1% precision in the signal attenuated by a factor of 50 results in the dynamic range of 5000

‒ Chest: 

500, mammography: 

4000, & fluoroscopy: 

. 100

‒ Corresponding to 54 dB, 72 dB, & 40 dB or 10 bits, 12 bits, & 7 bits with the noise level of 1 LSB

5

Dynamic range

Accounting for typical # x‐ray photons per pixel is ~5000, the design of 1 pF seems to be reasonable (5000 ph  18 keV / 18 eV for CsI  5  106 e– with 100% quantum efficiency)

6

-5 V

Gate ~ 3,430 lines for 24 cm

1 M70 m

0.5 m

Data

𝐶 𝜀 𝜀𝐴𝑑

1 pF

𝜏 10𝑁 𝑅 𝐶 35 ms

𝑛𝐶 𝑉

𝑒3.2 10 𝑒

𝑛 𝜎 𝜎 𝜎𝐽 𝐴𝜏

𝑒𝜎

𝜎 100 𝑒 if 𝐽 10 pA mm

𝑛 𝜎 2 10 𝑒 (assumption)

DR 20 log 84 dB 14 bits (1 LSB is defined by the electronic noise level)

Page 4: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Intrinsic dynamic range

Implications

• Adjustment of the beam energy should be done to control the required dynamic range and dose w.r.t. imaging tasks. Optimization of spectrum is important (e.g., 25 keV results in 37 attenuation; hence the 12‐bit works)

• Without understanding x‐ray interaction physics, the proper design of detector cannot be achieved

7

DR ≡ 𝑒 1207

whereas DR 2048 (11 bits); 

enough then?

• ADC number around the full attenuation region would be "1" or "2" (2048/1027)

• Impossible to obtain any subtlety in image tone

What is the DR when considering 

1% precision of attenuation measurements?

• DR.

120700, and 

which requires 131,071 grayscale levels (or 17 bits)

8 cm70%

Fibroglandular

I0

I0/1,207

18 keV

2,048

Refer to E. D. Pisano, M. J. Yaffe, & C. M. Kuzmiak, Eds. | Digital Mammography | 2004

In this region, we have to discriminate lesion from neighboring background!

Imaging field (or field of view, FOV)

• Scanning

‒ Scanning with a 1D array detector

‒ Scanning with a multi‐line array (slot) detector

‒ Excellent scatter rejection

‒ Heavy load of x‐ray tube

• Optical coupling

‒ Lens, tapered fiber‐optic bundles

‒ Secondary quantum noise: secondary quantum sink (𝑁 𝑁 ) due to optical inefficiency

• Mosaic

‒ Fixed pattern noise, high dark current

‒ Stitching problems

8

Page 5: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

9

Flat‐panel detectors

Traditional x‐ray detection materials + large‐area active matrix readout structure

• X‐ray interactions with phosphors & photoconductors to generate a measurable response (detection)

• Storage of the response with a recording device

• The measurement of the stored response

Integrating the incoming signal over a finite period of time

• X‐ray fluence detector or charge‐integration detector

• Not a photon‐counting detector

Pixel = switch + sensor/storage

10

Page 6: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Operation

11

CCD transfers signal from pixel to neighboring pixel, whereas active‐matrix array transfers from the pixel directly to the readout amplifier

Energy band structures

12

Page 7: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Resolution losses

Main intrinsic causes

• Geometrical blurring

‒ Oblique incidence of x‐ray beam

• Electron‐range blurring

‒ ~1 3 𝜇m at 10‐30 keV

‒ ~10 30 𝜇m at 50‐100 keV

• K‐fluorescence reabsorption

‒ ~50 200 𝜇m

13

14

Independence of a‐Se thickness on MTF (due to high E‐field)

Mainly due to electron range

Mainly due to K fluorescence

Page 8: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Photoconductors

Typical properties

• 𝐸 ~ 2 eV; insulator with negligible free carriers at room temp.

• Sufficient lifetime of radiation‐induced carriers to reach the surface of the detection vol.

• High E‐field => fast traverse of charges => less time for lateral diffusion => high resolution

• 𝑊~3𝐸 to release an e‐h pair

Amorphous selenium

• 𝑊~ 50 eV at typ. 10 V/m due to (germinate & columnar) recombination of e‐h pairs

• Blocking contact (limited by the field strength)

• Low surface (transverse) conductivity (by introducing a high density of traps)

• a‐Se:0.5%As to prevent from crystallization; adversely, As causes large density of ℎ traps (short 𝜏 )

• a‐Se:0.5%As + 10‐20 ppm Cl (stabilized a‐Se) to reduce ℎ traps

‒ 𝜇 0.13 cm V s ; 𝜇 0.003 0.006 cm V s‒ 𝜏 50 500 𝜇s; 𝜏 100 1000 𝜇s‒ 𝑆 ~6.5 65 mm; 𝑆 ~0.3 3 mm @ 10 V/m (Schubweg, 𝑆 𝜇𝜏𝐸)

• 𝑍 = 34

15

Other possible photoconductors

PbI2 & PbO have been used for nuclear radiation detectors & vidicon

TlBr has a high ionic conductivity, causing large dark current

Further candidates include CdZnTe, CdTe, & HgI2

16

Page 9: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

17

~𝟐. 𝟔𝑬𝒈 𝟎. 𝟕𝟓

~𝟐. 𝟐𝑬𝒈 𝟎. 𝟕𝟓

Phosphors

Conversion gain (or quantum amplification)

• Deexcitation of conduction‐band electrons through activators, emitting light (~2‐3 eV)

• In Gd2O2S:Tb, the intrinsic conversion efficiency of ~14.4% yields ~3,600 green‐light quanta (2.4 eV) for the absorption of x‐ray photon w/ 60 keV

18

Page 10: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

X‐ray screens

Highly scattering (or turbid) rather than transparent to light

• Phosphor powder (high refractive index) + binder (optically transparent)

• Trade‐off between the phosphor thickness (x‐ray interaction efficiency) & spatial resolution

‒ Thin phosphor for a high‐resolution imaging task

Factors affecting image quality

• Phosphor grain size, size distribution, bulk absorption, & surface reflectivity

• Back‐screen configuration improves the spatial resolution compared to the front‐screen one

• FPDs are configured in the front‐screen design because of the thickness (~0.7 mm) of glass substrate

Poor light‐collection eff. can limit the overall performance of the complete system

19

20

A. Transparent w/ reflective backingB. Transparent w/ absorptive backingC. Turbid w/ reflective backingD. Turbid w/ 50% bulk absorptionE. Turbid w/ 50% absorptive backingF. Ideal

Swank's model Design C

Page 11: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Structured phosphors

CsI

• Needle‐like closely packed crystallites => pillar‐like (columnar) structure (~10 m, reduced density of ~80‐90% of single crystal)

• Fiber‐optic light guide (𝑛 1.78 𝑛 1): 83% internal reflection• Activator controls the emission spectrum

‒ Na: blue (~450 nm) well matched to the response of photocathodes of XRII

‒ Tl: green (~550 nm) well matched to the response of a‐Si:H layers

• Hygroscopic & mechanically weak

Fiber‐optic faceplates with scintillation impurities

• Intrinsic conversion efficiency = ~0.1 – 0.3%

Micro‐channel array filled with scintillators

21

22

Higher light output

Page 12: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Noise in x‐ray converters

Mainly related to the x‐ray exposure

Further degraded by

• Lack of x‐ray absorption (quantum‐absorption inefficiency)

‒ 𝛼 𝐸 1 𝑒

• Fluctuations in the detector response to the x‐ray absorption

‒ Gain‐fluctuation noise or the Swank noise factor, 𝐼

• DQE 0 quantum absorption inefficiencygain fluctuation 𝛼 𝐼

23

Wrong!

Upper limit of Swank noise considering only x‐ray interactions

Measurement of the Swank noise

24

Page 13: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Depth‐dependent signal & noise transfer

• Known as the Lubberts effect

• Decreasing DQE as 𝑓 increases

25

Fabrication

Amorphous Si by PECVD

• 𝜇 ~1 cm V s ; 𝜇 0.003 cm V s• Microcrystalline Si with an order of magnitude higher mobilities

• Polycrystalline Si with an order of magnitude higher again

• Crystalline Si: 𝜇 ~1300 cm V s ; 𝜇 ~500 cm V s

Difference in the pixel design compared to the conventional LCD process

• p+ deposition; thick i layer ( 1 μ𝑚)

Photolithography

26

Page 14: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Indirect‐conversion pixel

Photodiode

• Light absorption coeff. of a‐Si:H (~10 to ~10 cm‐1) > that of c‐Si by an order of magnitude

‒ a‐Si:H 𝐸 ~1.7 eV whereas c‐Si 𝐸 ~1.1 eV

‒ ~0.5 μm‐thick i‐layer is sufficient to absorb most visible photons

‒ 1~2 μm is typical to reduce pixel capacitance

• Photoconductive gain mode with ohmic contacts

‒ Large dark current & low dynamic range

• Blocking contacts preventing the injection current

27

Increased penetration of the i‐layer w/ increasing 𝜆

Increased absorption in the p‐layer w/ decreasing 𝜆

pin photodiode

• ITO (~50 nm + p+ (c‐Si:H alloy) (~10 20 nm + i (~1.5 μm + n+ (~10 50 nm‒ Lower dark current (~10 A cm )

Schottky photodiode

• No p+ layer

‒ Higher quantum efficiency; more compatible with the AMLCD process

‒ Higher dark current (~10 A cm )

MIS photodiode

• Insulator instead of the p+ layer; hence reverse n‐i‐p configuration

‒ Requiring the refresh cycle to remove hole build‐up (switching polarity)

28

Charge capacity = 𝐶 𝑉 𝜀 𝜀 𝑉 8.85

10 Fcm 12.

5 V ~5 pC

Page 15: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Direct‐conversion pixel

Charge storage capacitor (insulator) + collection electrode (metal)

Require an electric field strength ~10 V μm• Additional designs protecting from the high voltage damage

29

~1 pF (~10 V)

~5 pF cm‐2 => 0.002 pF for 200 m pixel (~4990 V)

Switch

Diodes

• Improvement in device yield because of the same as the sensor

• Smaller in area (~5%), increasing pixel fill factor

• Larger resistance at lower on bias voltage, causing image lag

• Large charge transient (i.e., pixel cross‐talk) during switching (due to higher capacitance)

TFT

• Structure

‒ Gate dielectric a‐Si3N4:H (~0.3 0.4 μm)/intrinsic a‐Si:H (~0.1 μm)/drain & source n+ a‐Si:H/passivation

‒ Additional metallic light shield

30

Page 16: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

• On (~+10 – 20 V)/off (~‐5 – 10 V)

‒ 𝐼 ~0.1 1 10 A per W in μm• 𝑊 ~8 128 μm• 𝐿 ~5 10 μm

‒ 𝑅 ~1 MΩ; independent of 𝑉 in contrast to the diode switch

31

• Coupling capacitance due to geometrical overlaps

– Depending on the exact details of the array designs

• Gate/source‐drain; bias/gate/data lines

– Can be a significant contributor to the total data line capacitance (seen by the external electronics)

• Charge is injected into the sensor & onto the data line whenever the gate voltage is switched

– Small changes in the gate voltage along a data line can result in line‐correlated noise

– Fluctuations in the bias voltage are coupled into the data line

– Changes in the threshold voltage, 𝑉 affects the TFT resistance

Array design

Aperture: the dimension of active portion of each detector element

• Determine the spatial frequency response of the detector; MTF 𝑢 sinc 𝜋𝑎𝑢

Pitch: the sampling interval of the detector

• Nyquist frequency =  2𝑝• Aliasing

• Pre‐sampling blurring to reduce aliasing

Fill factor

• Geometrical fill factor: the fraction of the pixel area sensitive to the incoming signal

• Effective fill factor

32

Page 17: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

33

Build‐up potential on the insulator repels the electric lines, hence achieving the unity fill factor 

Switch

• e.g. Larger switch has lower on resistance which improves the speed but lower off resistance which increases pixel leakage

Metal lines

• High resistive Cr (~12 μΩcm) vs. low resistive Al (~3 μΩcm)

34

Page 18: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

35

TFT

CSPAGround

Noise source intrinsic to array

kTC switching (thermal noise on capacitors)

• Switching = changing the value of a resistor (Johnson noise) = trapping charge on the capacitor

• 𝜎 2𝑘𝑇𝐶 /𝑒

• 𝜎 ~560 𝑒 if 𝐶 1 pF @ room temp.

TFT channel resistance (related to the bandwidth of the readout circuit)

• Thermal (Johnson) noise

• 1/f flicker noise

Dark current

• Shot noise

• 1/f noise

Distributed resistance/coupling capacitance of the metallic lines

36

Page 19: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

37

Radiation damage

Typical lifetime ~50 Gy

38

Page 20: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Peripheral electronics

Circuitry that supplies the required voltages to the array elements, and amplifies & digitizes the signals from the pixels

Potential noise sources tending to reduce the quality of the final image

Preamplifier

• Charge‐integrating design (CSPA)

• Feedback capacitor determines the electronic gain (mV/pC)

• 𝜎 noise floor 𝑒 slope 𝐶 ~300 500 ~3 6 𝐶

‒ 𝐶 ~50 100 pF typical, so that 𝜎 ~500 2000 𝑒

Correlated‐double sampling

• To correct the kTC charge trapped on the CSPA feedback capacitor

Bias voltage/gate lines

• Line‐correlated noise to which human vision is extremely sensitive

39

Example)

• Amplifier noise = 1000 𝑒• Coupling capacitance between TFT & gate/data lines = ~20 fF• 2000 pixels per a data line

• 5 μV variation in the bias voltage source during the pixel integration time (~10 50 μs)• Total coupling capacitance = ~40 pF

• Feedthrough charges coupled to the amplifier by un‐addressed 1999 pixels = ~

. ~1250 𝑒

Imply the careful design of the components & circuit boards supplying the bias voltages

Overlap capacitance b/w gate & data lines per intersection = ~0.01 0.1 pF• 10‐V gate operation gives rise to ~0.1 1 pC or ~6 10 6 10 𝑒• Fortunately, the on‐off cycle of each row of pixels sums to zero, but the amplifier should be 

extremely linear!

40

Page 21: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

41

Image processing

To obtain a diagnostic‐quality radiograph, remove artifacts & adjust the appearance of the raw image information

Flat‐fielding correction

• Correction of variations in pixel sensitivity & offset (due to thickness & quality of layers)

• Dark‐field images for variations in pixel & electronic offsets

• Flood‐field images for variations in pixel sensitivity & electronic gain

Defects

• Thresholding to identify defects

• Difficult to set up the threshold limits for partially functional or nonlinear response pixels

• Median filter

‒ Difficult to correct the clusters of bad pixels/several adjacent bad lines

Image lag & ghosting

42

Page 22: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

43

Performance

Dynamic range

44

𝑆100 1 mR𝑋 in mR

Page 23: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Imaging performance

DQE 𝑢

‒ 𝑊 𝑢 = normalized NPS

• A basis to determine the physical principles involved in the detectors

MTF 𝑢 MTF 𝑢 MTF 𝑢• MTF 𝑢 MTF 𝑢

‒ ~60% @ 𝑢

‒ Noise aliasing

‒ 𝛾 𝑢 𝑝 ; 𝑢 = the first zero freq.

• MTF 𝑢 MTF 𝑢‒ ~10% @ 𝑢

NPS 𝑢 const. NPS 𝑢 ~𝑢

45

NPS shows a marked exposure dependence

DQE increases with exposure and a plateau is finally reached where further increase in exposure makes no difference to the DQE

DQE 0 DQE 0 ; DQE 𝑢 DQE 𝑢

46

Page 24: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

System performance modeling

Fill factor

• Sub‐unity 𝛾 reduces DQE(0) of the directdetector by the same factor, whereas no loss in the indirect detector due to sharing of signals from each x‐ray photon with many pixels

Aliasing

• Always present in Se detectors

• Reduction/removal by blurring prior to pixel sampling

‒ Inevitable in reduction of the high‐freq. components of signal

‒ Much more susceptible to external noise (e.g., electronic noise or secondary quantum statistics)

47

DQE 𝑢 losses

• Lubberts effect

‒ Due to the depth‐dependent MTF characteristics in an x‐ray conversion layer (usually phosphors)

‒ Less or none effective in Se & fiber‐optic scintillation layer

‒ Vulnerable to aliasing

‒ Requiring anti‐aliasing blurring layer just before sampling

• K‐fluorescence reabsorption

‒ Partial energy absorption with K‐fluorescence escape or reabsorption at remote site give rise to substantial blurring & noise

48

Page 25: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Predictive DQE

DQE 𝐮𝑞𝐺 MTF 𝐮

NPS 𝐮

𝑞 𝑎 𝛼𝛽𝜅𝜂 𝑇 𝐮 sinc 𝑎𝐮

𝑞𝑎 𝛼𝛽𝜅𝜂1𝛾 𝜅𝜂 ∑ 𝑇 𝐮 sinc 𝑎 𝐮

𝑇 𝐮 sinc 𝑎𝐮1

𝛼𝛽𝜅𝜂1𝛾 𝜅𝜂 ∑ 𝑇 𝐮 sinc 𝑎 𝐮

49

DQE is dose‐independent only if the additive NNPS can be ignored

Additive noise is harmful to DQE at high frequencies where the number of secondary quanta lessens

H. K. Kim | JINST | 2011

Low‐resolution FPD

DQE 𝐮𝑇 𝐮

1𝛼𝛽𝜅𝜂

1𝛾 𝜅𝜂 𝑇 𝐮

𝛼𝐼𝑇 𝐮𝑇 𝐮

≡ 𝛼𝐼 𝐮

• Swank noise = the gap (or correction factor) between 𝛼 and DQE 0

High‐resolution FPD

DQE 𝐮sinc 𝑎𝐮

1𝛾𝛼𝛽𝜅𝜂 1 𝜅𝜂

𝛾𝛼𝐼sinc 𝑎𝐮

• Fill factor  Swank noise = the gap between 𝛼 and DQE 0

50

H. K. Kim | JINST | 2011

Page 26: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

How to avoid secondary quantum sink?

𝜎𝛾𝑞𝑎 𝛼𝛽𝜅𝜂

→ 0

𝜎 ↓• Metal line coupling capacitance

• New metal line process

𝛾 ↑• Limited by the TFT design rule

• Critical to high‐resolution FPD (e.g. a‐Se)

‒ Electrostatic lens design

51

H. K. Kim et al. | Int. J. Precis. Eng. Manuf. | 2008

H. K. Kim et al. | IEEE TNS | 2005

𝜎𝛾𝑞𝑎 𝛼𝛽𝜅𝜂

→ 0

𝑞𝑎 ↑ (quanta/active pixel)

• Wrong approach (∵ patient dose )

𝛼 ↑• High Z converters

• Thick converters ⇒ MTF 𝑢 ↓

𝛽 ↑• Converters having a lower W‐value

‒ e.g. CdZnTe, HgI2 10 a‐Se

𝜅𝜂 ↑• Block small leakages (optical and charge leakages)

• Optical mismatch, poor charge‐collection efficiency …

52

H. K. Kim et al. | Int. J. Precis. Eng. Manuf. | 2008H. K. Kim et al. | Med. Phys. | 2012

Page 27: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

DQE comparison of two different CsI‐based detectors

53

(Taken from) I. A. Cunningham | SPIE Short Course | 2008

Good optical coupling

Less good optical coupling

Easy to maximize  ?

Competition between x‐ray interaction & light collection

One possible solution:

• Flatten 𝜅 𝑧 : uniform escape regardless of 𝑧‒ 𝑡 ↓ ⇒ 𝛼 ↓‒ 𝑅 at surface ⇒ MTF ↓

𝑧

X-ray interaction

Light escape

𝑧𝐸

𝑛 photons

𝑛 ( 𝑛 ) photons

𝐸

Uncertain! ⇒ 𝐼

𝐸

𝑛𝑛

54

J. Tanguay et al. | Med. Phys. | 2010

R. K. Swank | JAP | 1973

Page 28: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Swank noise effect

0 1 2 3 4 5 6 70.0

0.2

0.4

0.6

0.8

1.0

u (mm-1)

MT

F

(a)0 1 2 3 4 5 6 7

10-7

10-6

10-5

10-4

u (mm-1)

NN

PS

(m

m2 )

(b)0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

u (mm-1)

DQ

E

(Konstantinidis et al)

(c)

RadEye100

CsI (Monnin et al)

CsI (Rivetti et al)

a-Se (Monnin et al)

Dexela

J. C. Han et al. | JKPS | 2014

55

Lubberts effect

DQE 𝐮 will be independent of 𝑢 if MTF 𝐮; 𝑧 is not dependent upon a depth 𝑧 because NPS 𝐮 ~MTF 𝐮

56

G. Lubberts | JOSA | 1968 A. Badano et al. | Med. Phys. | 2004

PSF MTFX‐rays

Photodiode array

𝐿 𝑢MTF 𝑢

NPS 𝑢 /NPS 0where MTF 𝑢 d𝑧 𝑤 𝑧 MTF 𝑢; 𝑧

Page 29: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Direct x‐ray interaction

57

S. Yun et al. | IEEE TNS | 2009H. K. Kim | APL | 2006

Optical gap

58

Since noise due to direct x‐ray interactions is white in the spatial‐frequency domain, it is harmful to DQE at high‐spatial frequencies where the number of secondary quanta lessens

Therefore, optical gaps between the scintillator and the photodiode array further degradethe DQE performance by enhancing the direct interaction noise (for the less number of secondary quanta)

A. Koch (Thales Electron Devices) | Proc. SPIE | 2004

Page 30: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Substrate effect

Fluorescence x‐rays from glass substrates would cause a low‐frequency drop in MTF but their effect on NPS is modest; Ultimately, they cause a drop in DQE (a‐Se) of 10‐20%

K‐fluorescence backscatter from heavy elements in the glass substrates causes a low‐frequency drop in MTF of the Gd2O2S:Tb + a‐Si:H panel design

• Corning 7059F (~25% BaO), note: Ba, 𝐸 37 keV

• Corning 1737F (~10% BaO)

59

M. J. Flynn et al. | Proc. SPIE | 1998J. Yorkston et al. | Proc. SPIE | 1998

However, there would be an increase (~22%) in zero‐frequency DQE as a result of the additional signal from the backscatter

60

A. R. Rubinsky et al. | Proc. SPIE | 2006

Energies of 𝐾 fluorescence

• Gd: ~43 keV

• Cs: ~31 keV

• I: ~29 keV

Page 31: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Clinical applications

Chest radiography

• Difficult because of necessity of large dynamic range considering very radio‐lucent (lung fields) & very radio‐opaque (mediastinum) regions

• Possible solution with very highly penetrating x‐ray beams (130–150 kVp)

‒ Higher‐E x rays effectively reduce the contrast range of the image

• Dual‐energy imaging to isolate the bony details (i.e., the spine & ribs) from the soft tissues

61

Fluoroscopy

• The most demanding potential application for FPDs

• Must be x‐ray quantum‐limited even at extremely low exposure levels 

• XRII

‒ Bulky nature, veiling glare (x‐ray & light scatter w/i the XRII), geometric distortion

• FPDs

‒ Reduction of noise to permit quantum‐noise limited operation at the low end of fluoroscopic rates (i.e., 0.1 μR s )

‒ Reduction of the image carry over or lag

62

Contrast ratio (veiling glare) = 

Page 32: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Mammography

• X‐ray projection to visualize soft‐tissue contrast

• Breast compression to equalize the x‐ray path length to the point that the whole breast can be visualized

• Film followed by screen to ensure the highest possible image resolution (back‐screen design)

• FPDs with high dynamic range is compatible to visualize dense breasts

Tomography

• Blurring out the shadows of superimposed structures to allow better isolation of the structures of interest

• Digital tomosynthesis

• Volumetric CT

‒ Improved z‐direction resolution

‒ Problem with the increased level of scatter

63

64

Page 33: Physics of Flat‐panel Detectorsbml.pusan.ac.kr/.../Graduates/ImageDetectors/6_FPD.pdf · 2020. 3. 17. · 6-5 V Gate ~ 3,430 lines for 24 cm 1 M 70 m 0.5 m Data 𝐶 n g v𝜀 4𝜀

Portal imaging

• To confirm the correct positioning of the patient in the output portal of the therapy machine

• Not possible to see soft‐tissue contrast & difficult to visualize bones because of inadequate contrast/resolution

• Video‐based systems

‒ Secondary quantum sink where each x‐ray photon is represented by less than a single light photon

‒ Dominance of electronic noise

65

Future prospects

Increased numbers of active elements per pixel, allowing an amplifier at every pixel

Integrated readout electronics to make an x‐ray imager on glass

Increased x‐ray to charge conversion gain (lower W or avalanche gain)

More sophisticated switching structures with reduced coupling capacitance, lower leakage current, smaller physical area, & more robust operating characteristics

66