physics of the cosmos (pcos) strategic technology ... · physics of the cosmos (pcos) strategic...

15
Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016

Upload: others

Post on 09-Sep-2019

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physics of the Cosmos (PCOS) Strategic Technology ... · Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016. 2 Current PCOS SAT Portfolio Funding

PhysicsoftheCosmos(PCOS)StrategicTechnologyDevelopmentPortfolio

December2016

Page 2: Physics of the Cosmos (PCOS) Strategic Technology ... · Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016. 2 Current PCOS SAT Portfolio Funding

2

CurrentPCOSSATPortfolioFunding Source Technology Development Title Principal

Investigator Org Start Year, Duration

Science Area Tech Area

SAT2010 Directly-Deposited Blocking Filters for Imaging X-ray Detectors: Technology Development for the International X-ray Observatory Mark Bautz MIT FY2012, 4 years X-ray Detector

SAT2012 Demonstration of a TRL 5 Laser System for eLISA Jordan Camp GSFC FY2014, 2 years GW Laser

SAT2013 SAT2010 Reflection Grating Modules: Alignment and Testing Randy McEntaffer PSU FY2015, 2 years X-ray Optics

SAT2013 Technology Development for an AC-Multiplexed Calorimeter for ATHENA Joel Ullom NIST FY2015, 2 years X-ray Detector

SAT2013 Fast Event Recognition for the ATHENA Wide Field Imager David Burrows PSU FY2015, 2 years X-ray Detector

SAT2014 SAT2012 SAT2010

Superconducting Antenna-Coupled Detectors and Readouts for Space-Borne CMB Polarimetry Jamie Bock JPL FY2016, 2 years CMB Detectors

SAT2014 SAT2011

Telescope Dimensional Stability Study for a Space-based Gravitational Wave Mission Jeffrey Livas GSFC FY2016, 2 years GW Telescope

SAT2014 High Efficiency Feedhorn-Coupled TES-based Detectors for CMB Polarization Measurements Edward Wollack GSFC FY2016, 2 years CMB Detector

Directed 2016 Providing Enabling and Enhancing Technologies for a Demonstration Model of the Athena X-IFU Caroline Kilbourne GSFC FY2016, 2 years X-ray Detector

SAT2015 SAT2013 SAT2010

Development of a Critical Angle Transmission Grating Spectrometer Mark Schattenburg MIT FY2017, 2 years X-ray Optics

SAT2015 SAT2013 SAT2011

High-Resolution and Lightweight X-ray Optics for the X-Ray Surveyor William Zhang GSFC FY2017, 2 years X-ray Optics

SAT2015 SAT2012 Phase Measurement System for Gravitational Wave Detection William Klipstein JPL FY2017, 2 years GW Electronics

SAT2015 SAT2013

APRA2011Hybrid lightweight X-ray optics for half arcsecond imaging Paul Reid SAO FY2017, 2 years X-ray Optics

Page 3: Physics of the Cosmos (PCOS) Strategic Technology ... · Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016. 2 Current PCOS SAT Portfolio Funding

3

ObjectivesandKeyChallenges:• SiliconImagingX-raydetectorsrequirethinfilters(<300nm)to

blocknoise/backgroundfromUVandopticallight• State-of-the-art,free-standingfiltersusefragile,thinsubstrates• Objective: depositblockingfilterdirectlyonCCDX-raydetector,

eliminatingsubstrate• Challenges:

DepositfilterdirectlywithoutcompromisingCCDperformanceDepositsufficientlythin,uniformfilters

KeyCollaborators:• MITKavliInstitute(Bautz,Kisseletal.)• MITLincolnLaboratory(Suntharalingam,Ryu,Burke,O’Brien)

Application:EveryX-rayimagingorgratingspectroscopymission• Explorers(Lobster,Arcus…)• “Probes”(AEGIS,N_XGS,AXSIO,WFXT…)• Flagship(Athena,X-raysurveyor/Lynx)

Deposited Blocking Filters for X-ray Detectors

Approach:• Exploitexistingstocksof(engineeringgrade/flightspare)X-ray

CCDdetectorsatMITLincolnLaboratory• Screen,thin,passivate,package&applyfilterstodetectors• FilterisAlwithAlO2 cap• Startthick(220nmAl),getprogressivelythinner• UseexistingMITfacilitiesforX-raycharacterization• Useexisting&upgradedfacilitiesforopticalcharacterization

PI: Mark Bautz/MIT MKI

AccomplishmentsandNextMilestone:• Reducedpinholefractionto<1%(OD<7)for220nmOBF• Testeddevices70nm&100nmthickAlOBF.Opticalblockingas

expected.• WithREXIS,developed&qualifiedundersidecoatingaseffective

countermeasurefornear-IRleakagethroughpackage.• Long-termstabilitytestinprogress;nodegradationin8months• SupportedenvironmentaltestsofREXISflightCCDs/OBFsthrough

launch• Plan:demonstrateTRL-6,surpassingprojectgoals.

SignificanceofWork:• Filterdepositedondetectorrequiresnofragilesubstrate• Allowscheaper,morerobustsensors(novacuumhousing!)• ImprovesQE&makeslargerfocalplanespractical

TRLin = 5 TRLcurrent = 5+ TRLtarget = 6

CurrentFundedPeriodofPerformance:Jul1,2012– Jun30,2017

0 2000 4000 6000 8000

050

0010

41.

5×10

42×

104

Coun

ts/C

hann

el

Channel Energy (eV)

Fe Kα Fe Kβ

2xCa Kα

Ca Kα, KβS K αMg,Al,Si KZn L

O,F K

Excellent Resolution with Deposited OBF

Page 4: Physics of the Cosmos (PCOS) Strategic Technology ... · Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016. 2 Current PCOS SAT Portfolio Funding

4

Demonstration of a TRL 5 Laser System for eLISAPI: Jordan Camp/GSFC

DescriptionandObjectives:• Develop2WlightsourcefortheLISAgravitationalwavemission

usingaMasterOscillatorPowerAmplifierdesignwithanoveldiodelaseroscillator(ExternalCavityLaser,ECL)followedbya1.5WYbfiberamplifier,providingahighlystable,compact,andreliablesystem

• Testthelasersystemforreliability,andforamplitudeandfrequencystability,achievingtherequirednoiseperformance

• DemonstratesystemTRL5KeyChallenge/Innovation:• Development,withindustrialpartner(RedfernIntegratedOptics),

ofspacequalified,ultralow-noiseoscillator• Demonstrationoflow-noisepoweramplifierwithservocontrols• Noiseandreliabilitytestsoffulllasersystem

Approach:• Noiseoptimizationof1064nmExternalCavityLaser(RIO)• ReliabilitystudyofExternalCavityLaser• Implementationofamplitudeandfrequencyservocontrolsonfull

lasersystem,achievingRIN=10-4 at10-3 Hz,frequencynoise=300Hz/Hz1/2 at10-2 Hz,anddifferentialphasenoise=6x10-4 rad/Hz1/2at10-2 Hz

KeyCollaborators:• KenjNumata,MikeKrainak(NASA/GSFC)• LewStolpner(RedfernIntegratedOptics)

DevelopmentPeriod:• April2014– Oct2016

AccomplishmentsandNextMilestones:ü Rebuildandtest2Wlaseramplifier Feb2015ü PreliminarylasersystemtestwithNPRO Feb2015ü PreliminarylasersystemtestwithECL April2015ü ECLreliabilitytests Aug2015ü Preamplifierreliabilitytesting Jan2016ü Fulllasersystemnoisetesting Mar2016• NoiseoptimizationofECL Oct2018• DemonstrationofNPROoscillator Oct2018• Lasersystemlifetimetesting Oct2019

Applications:• LasersourceforLISAGravitationalWavemission• Oscillatorforground-basedGWLIGOproject• OscillatorforGRACE-IImissionTRLIn = 3 TRLCurrent = 3-5TRLTarget= 5

MasterOscillator/PowerAmplifier(MOPA)configurationofLISAlaser,includingECL,preamp,anddiodepumpedYtterbium(Yb)fiberamplifier

Page 5: Physics of the Cosmos (PCOS) Strategic Technology ... · Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016. 2 Current PCOS SAT Portfolio Funding

5

ObjectivesandKeyChallenges:• Implementanalignmentmethodologyspecifictooff-plane

reflectiongratings• Populateamodulewithalignedgratingscapableofachieving

spectralresolutions>3000(λ/δλ)withhighthroughputoverthe0.2– 2.0keVband

• AdvancetheOP-XGStechnologytoTRL5

KeyCollaborators:• WillZhang– NASA/GSFC• JessicaGaskin– NASA/MSFC

Application:• LargeX-rayobservatories• Explorerclassmissions• Suborbitalrocketinvestigations

Reflection Grating Modules: Alignment and Testing

Approach:• Quantifyalignmenttolerances• Formulatealignmentmethodology• Implementalignmentmethodology• Performanceandenvironmentaltestanalignedmodule• EvaluateprocessandrepeatinYear2

PI: Randall L McEntaffer/Penn State University

RecentAccomplishments:ü QuantifiedalignmenttolerancesforsuborbitalandExplorer

spacecraftü Alignmentmethodologyandgratingmodulehavecompleted

designphaseandimplementationü AlignedandtestedfourgratingswithslumpedglassopticsatMSFC

SLF

SignificanceofWork:• Enableshighthroughput,highspectralresolvingpowerbelow2keV

wherethemajorityofX-rayspectralfeaturesreside.• Thiswillbethefirsttimethatmultipleoff-planegratingshavebeen

alignedatthistolerancelevelwithassociatedperformancetesting.

CurrentFundedPeriodofPerformance:• Jan1,2015– Dec31,2016

AnInvarGratingModulewithfouraligned,largeformatgratings

NextMilestones:• Improvealignmentmetrology• Improvetestsetupmetrology

TRLIn =4 TRLCurrent=4 TRLTarget=5

Page 6: Physics of the Cosmos (PCOS) Strategic Technology ... · Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016. 2 Current PCOS SAT Portfolio Funding

6

Measurement*Setup

μmux

SRONLC+filter

SRONTransformer

TES

Ibias (1(2*MHz)

RTES

IFR

TES+DC+bias

AC-biased TES measurement circuit

ObjectivesandKeyChallenges:• IncreaseTRLofAC-biasedTransition-EdgeSensor(TES)X-ray

microcalorimetersfrom3to4• Toachievethis,weseektodemonstratethatAC-biasedTESscan

meettheanticipatedperformancerequirementsofESA’sATHENAmission,andinparticularthatAC-biasedTESscanroutinelyachieveenergyresolutionsof2.5eVorbetterat6keV

• Thekeychallengeisthat,sofar,TESsunderAC-biasdonothaveasgoodenergyresolutionasunderDC-bias

SignificanceofWork:• AC-biasedTESsandFrequencyDivisionMultiplexing(FDM)arethe

baselinereadoutarchitectureforATHENA;theperformanceofthisapproachstronglyimpactsmissiondesignandsuccess

Approach:• StudythebehaviorofsingleGSFCTESsunderAC-bias• Inoneexperiment,maximizetheuseofreadoutcomponentsfrom

theEuropeanATHENAteam• Inasecondexperiment,separatetheeffectsofthereadoutsystem

fromtheTESbyusinganovel,open-loopreadoutarchitecturebasedonmicrowaveSQUIDamplifiers

• StudyinteractionsamongsmallnumbersofAC-biasedTESsensors

KeyCollaborators:• CarolineKilbourne,SimonBandler,andRichardKelley(GSFC)• KentIrwin(StanfordUniversity)

CurrentFundedPeriodofPerformance:FY2015– FY2016

RecentAccomplishments:ü BestresolutionunderAC-biasimprovedto2.9eVat6keVü AC-biasedTEStestplatformsinstalledandoperationalatboth

GSFCandNISTü IncollaborationwithSRON,identifiedimportantloss

mechanismunderAC-biasinavarietyofTESdesigns

Applications:• ATHENAandfutureX-raymissionsbasedonTESmicrocalorimeters

NextMilestones:• CharacterizelossforavarietyofAC-biasedTESdesigns(Q1FY17)• MeasureinteractionsamongasmallnumberofAC-biasedTESs

withbothtestplatforms(Q2FY17)

TRLIn =3 TRLCurrent= 3TRLTarget= 4

Technology Development for an AC-Multiplexed Calorimeter for ATHENA

PI: Joel Ullom/NIST

SampleboxforreadoutofAC-biasedTESsusingopen-loopmicrowaveSQUIDs

Page 7: Physics of the Cosmos (PCOS) Strategic Technology ... · Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016. 2 Current PCOS SAT Portfolio Funding

7

PI: David Burrows/PSU

ObjectivesandKeyChallenges:• High-speedeventrecognitionanddatacompression

SignificanceofWork:• RequiredforseveralproposedX-rayimagers,includingAthenaWFI

(ESAL2),Arcus(MIDEX),X-raySurveyor(AstrophysicsRoadmap)

Approach:• FPGAcoding/simulation/testing• Developprototypeboard• Testwithfixedpatternsupto1GB/s• TestwithrealX-raydataupto1GB/s

KeyCollaborators:• Dr.KarlReichard,EliHughes(PSU/ARL)• Dr.AbeFalcone,Dr.TylerAnderson(PSU/ECOS)• Dr.MarkBautz(MIT)• Dr.RalphKraft(SAO)

CurrentFundedPeriodofPerformance:• 1/2015– 12/2016

RecentAccomplishments:ü Completeddevelopment/testingoflineprocessorü Completedbuildofprototypeboard(photoabove)ü Developingdataingestcode

Application:• includingAthenaWFI(ESAL2),Arcus(MIDEX),X-raySurveyor

(AstrophysicsRoadmap)…

TRLIn =3 TRLPI-Asserted= 3 TRLTarget= 4/5

NextMilestones:• CompleteandtestFPGAcode,Feb2017• TRLReview,March2017

Fast Event Readout

Page 8: Physics of the Cosmos (PCOS) Strategic Technology ... · Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016. 2 Current PCOS SAT Portfolio Funding

8

ObjectivesandKeyChallenges:Advanceantenna-coupledsuperconductingdetectortechnologiesforspacerequirements:• RFpropagationproperties• Beamcontrolandpolarizedmatching• Extended-frequencyantennas• Detectorstabilityandcosmic-rayresponse• Readout-noisestability• Large-format,modular,focal-planeunits

KeyCollaborators:• KokoMegerian,HienNguyen,RogerO’Brient,AnthonyTurner,and

AlexisWeber(JPL)• JonHunacek,HowardHui,SinanKefeli,andBryanSteinbach

(Caltech)• JeffFilippini(UIUC)

Applications:• NASAInflationProbemission• ExplorerandinternationalCMBmissions• TechnologycommonalitieswithFar-IRandX-Raymissions

Planar Antenna-Coupled Superconducting Detectors for CMB Polarimetry

Approach:• Planarantennasforentirelylithographedfabricationwithno

couplingoptics• Detectorsprovidephoton-limitedsensitivitiesinspace• Antennasprovideexcellentpolarizationandbeam-matching

properties• Modularfocal-planeunitforlargefocal-planearrays

PI: James Bock/JPL Caltech

SignificanceofWork:• AntennadesignsforallbandsrequiredbytheInflationProbe• Detectorsensitivity,stability,andminimizedparticlesusceptibility

appropriateforspace-borneobservations

RecentAccomplishments:ü Widebandantennastestedü 270GHzantennastestedü Analysisoflow-energycosmicrayeventsinSPIDERü ReceivedRFImitigationfilter

CurrentFundedPeriodofPerformance:Jan2016– Dec2017 TRLIn = 3-4 TRLPI-Asserted = 3-6TRLTarget= 4-6

NextMilestones:• Completescience-capable270GHzFPUs(Jan2017)• TestRFattenuationoffilteratroomtemperature(Dec2016)• Completedesignofcosmic-raycryogenictestbed(Dec2016)• Finish6”moduledesign(Jan2017)

Arraysofplanarantennasfor3frequencybands

Page 9: Physics of the Cosmos (PCOS) Strategic Technology ... · Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016. 2 Current PCOS SAT Portfolio Funding

9

Telescopes for Space-Based Gravitational-Wave Observatories

PI: Jeff Livas/GSFCObjectivesandKeyChallenges:• Design,fabricate,andtestalightweighteLISAtelescopedesignin

aflight-likeenvironmentanddemonstratetheabilitytosatisfymissionrequirementsforlowscatteredlightandhighdimensionalstabilityintimeforselectionfortheeLISAL3MissionOpportunity

• KeyChallenge1:dimensionalstability• KeyChallenge2:stray-lightperformance

KeyCollaborators:• J.Howard,G.West,P.Blake,L.Seals,R.Shiri,J.WardShannon

Sankar(NASA/GSFC),• Prof.GuidoMueller(UniversityofFlorida) Applications:

• Flagshipgravitationalwavemissions(eLISA)• Laserrangingand/orcommunications• precisionmetrologyapplications

Approach:• Userequirementsdevelopedforexistingtelescope• Modifybasedonexperience• Mergeahigh-thermal-conductivitymaterialinasimplesymmetric

mechanicalconfigurationwithalow-scatteropticaldesign• Fabricateandtestforcompliancewithspecifications

RecentAccomplishments:ü Opticaldesignoptimizedandtolerancedü Zygodesignstudykickedoffü ScatteredlightmodelsvalidatedbymirrorBRDFmeasurements

SignificanceofWork:• Firstdemonstrationofavalidatedscattered-lightmodelcombined

withapreviousdemonstrationofdimensionalstabilitywillprovideafirmbasisforarealisticengineeringmodeldesignforaflight-qualifiabletelescope

• PotentialtechnologycontributiontoESAL3CosmicVisions

CurrentlyFundedPeriodofPerformance:Oct2015– Sep2017

SectionViewofTelescopeDesignM1

TRLIn = 3 TRLCurrent= 3TRLTarget= 4

M1

M4 M3M2 ExitPupil

EntrancePupil Opticalbench(notional)

200mm

KeyMilestones:• Designpreparation/initiatepurchase(May2016)• Awardcontract(Oct2016)• Telescopedelivery(Dec2017)• Demonstratelowscatterperformance(Jul2018)• Demonstrateopticalpath-lengthstability(Sep2018)

Page 10: Physics of the Cosmos (PCOS) Strategic Technology ... · Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016. 2 Current PCOS SAT Portfolio Funding

10

High Efficiency Feedhorn-Coupled TES-based Detectors for CMB Polarization

PI: Edward J. Wollack/NASA GSFC

(left) Hybridized 90GHz Focal Plane; (right) Detector Wafer

ObjectivesandKeyChallenges:• DevelopmentoffocalplanesforcharacterizationofCMB

polarizationwiththefollowingdetectorproperties:• Backgroundlimitedmillimeter-wavepolarimetricsensorwithhigh

couplingefficiencyandsystematicerrorcontrol.• Inherentlybroadbanddesign,scalabletolargeformatarraysover

multiplefrequenciesofastrophysicalinterest.

SignificanceofWork:• Sub-orbitalandspace-borneoperationofdetectors,including

• Improvedrejectionofstraylightbydetectorarchitecture• Improvedbroadbandperformanceandcouplingefficiency• Mitigationofspaceenvironmentalconcerns(surface/deepdielectric

charging&cosmicrays)

Approach:• Theeffortisfocusedaround3fabricationrunstointegratethenew

technologiesintothedetectorarchitectures.Specifically,improved:• Straylightmitigationandpackagethermalization• Implementationofairbridgecrossoversandground-plane

contactsforlargebandwidth/lowlosssignalroutingathigherfrequencies

KeyCollaborators:• K.Denis(GSFC),K.Rostem(GSFC/JHU),

K.U-Yen(GSFC),S.H.Moseley(GSFC)• D.Chuss(Villanova)• T.Marriage,C.Bennett(JHU)

CurrentFundedPeriodofPerformance:• Start:10/1/2015,End:9/30/17

RecentAccomplishments:ü Airbridgedesignandfabricationdevelopmentü Devicebilayerdevelopmentü CE7packageheatsink/plating– validationon-goingü Testequipmentprocurements– I&Tongoing

Application:• CosmicMicrowaveBackgroundPolarimetry,CMBpol,suborbital

NextMilestones:• Devicerun#2(Winter2017)• Testfacilitycommissioning(Spring2017)

TRLIn =3-4 TRLPI-Asserted= 3-5TRLTarget= 4-6

Page 11: Physics of the Cosmos (PCOS) Strategic Technology ... · Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016. 2 Current PCOS SAT Portfolio Funding

11

LPA-1arrays

Providing Enabling & Enhancing Technologies forDemonstration Model of the Athena X-IFU

PI: Caroline Kilbourne/GSFC (662)

ObjectivesandKeyChallenges:• Developanddeliverlarge-formatarraysofX-ray

microcalorimetersfortheAthenaX-IFU,ESA’sL2mission.• Developtime-divisionandcode-divisionmultiplexingcapabilityto

screenlarge-formatarrays,andtoprovideback-upmultiplexedread-outcapability.

• StudyphysicsofTESsunderACbias.

Approach:• Developstate-of-the-artTESarrays(Mo/AuTESwithAu/Bi

absorbers).• OptimizeSQUIDtime-divisionmultiplexer(TDM)componentsand

back-endelectronicsforlowcrosstalk,acceptablepowerdissipation,andbandwidthsufficientforframetimesof160ns.

• Advancecode-divisionmultiplexer(CDM)readout.• Developsomeuniquecomponenttechnologicalcapabilitiesfor

focal-planeassemblyKeyCollaborators:• (GSFC)662:J.Adams,S.Bandler,M.Eckart,F.Finkbeiner,R.Kelley,

A.Miniussi,F.S.Porter,K.Sakai,S.Smith,N.WakehamW.Yoon• (GSFC)553:J.Chervenak,A.Datesman,A.Ewin,E.Wassell,• (NIST)J.Ullom,D.Bennett,W.Doriese,,C.Reintsema,D.Swetz• (Stanford)K.IrwinCurrentFundedPeriodofPerformance:• October2015– September2028

RecentAccomplishments:ü Uniformandreproduciblekilo-pixelarrayswithdesiredproperties

forDMnowyieldedandtestedunderDCbias.ü CDMwith30sensorssuccessfullydemonstratedwithnoenergy

resolutiondegradationfromtheread-out.

Application:• ContributiontotheX-rayIntegralFieldUnitinstrumentontheESAAthenamission.

• Otherpotentialmissionsneedinghigh-resolutionimagingx-rayspectroscopy.TRLIn = 4 TRLPI-Asserted = 4+TRLTarget= 5

NextMilestones:• Evolution of process and quality control for improved yield in DM-arrays.• Development of LPA2-style arrays for DM• Further studies of all pixel types under AC-bias

SignificanceofWork:• ProvideskeytechnologyfortheX-rayIntegralFieldUnit

Instrument,leveragingsubstantialNASAinvestmentoverthepast2decadesintransition-edgesensors.

• ProvideskeyknowledgeandheritagefromtheAstro-EthroughHitomidevelopment.

ResultsandphotographfromacandidateDemonstrationModelarrayfortheX-IFU

Page 12: Physics of the Cosmos (PCOS) Strategic Technology ... · Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016. 2 Current PCOS SAT Portfolio Funding

12

Advanced Packaging for Critical‐Angle X‐ray Transmission Gratings

PI: Mark Schattenburg/MIT MKI

TRLin = 3 TRLcurrent= 4 TRLtarget = 6

ObjectivesandKeyChallenges:• DevelopkeytechnologytoenableaCritical-AngleX-ray

TransmissionGratingSpectrometer(CATGS),advancingtoTRL6inpreparationforproposedmid- andlarge-sizemissionsoverthenextdecade

• Developimprovedgratingfabricationprocesses• Developframemounting,alignment,andassembly

techniquesforCATgratingarrays

SignificanceofWork:• ImproveddiffractionefficiencyandresolvingpowerforCATGS• Abilitytomanufacturelarge-area,light-weightgratingarrays

Approach:• Integratedwaferfront/back-sidefabricationprocessusing

silicon-on-insulator(SOI)wafers• Waferfrontside:CATgratingandLevel1supportstructure• Waferbackside:Level2supportmeshstructure• CATgratingfabricatedbydeepreactive-ionetching(DRIE)

followedbyKOHpolishing• Bondedtoexpansion-matchedmetalsupportframe(Level3)• X-raytestsofprototypesatsynchrotronandMSFCfacility• EnvironmentalteststoadvanceTRL

KeyCollaborators:• WilliamZhang(GSFC)• SteveO’Dell(MSFC)

CurrentFundedPeriodofPerformance:• FY15-FY16

Application:• Flagshipx-raymissions• Explorerx-raymissions• Laboratoryx-rayanalysis(materialsscience,energyresearch)

RecentAccomplishments:• Demonstratedextensionofbandpasstowardshigherenergies

and/orincreaseincriticalanglethroughatomiclayerdepositionofplatinumonsiliconCATgratings

• DemonstratedresolvingpowerR>10,000attheMSFCStrayLightFacility,usingGSFCmirrorand30mmwideCATgratings

• Bondgratingstoframes

NextMilestones:• Demonstratex-rayperformanceofalignedgratingswith

prototypeframeassemblyafterenvironmentalteststoachieveTRL5(Fall2018)

MeasuredspectrumofAlKa1,2 lines(black).Green:naturalwidths.Darkgray:assumesR=10,000.

Page 13: Physics of the Cosmos (PCOS) Strategic Technology ... · Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016. 2 Current PCOS SAT Portfolio Funding

13

ObjectivesandKeyChallenges:• DeveloplightweightX-raymirrortechnologyachievingbetterthan

10-arcsecHPDangularresolutionwhileminimizingcostandschedule;advancetoTRL5toenablemissionsplannedfor2010sand2020s

• Preparewaystoachievesignificantlybetterthan10-arcsecresolutionwhilekeepingthemassandcostatsimilarlevels

• Fabricationandmetrologyofmirrorsegments• Coatingmirrorsegmentswith20nmofiridiumw/odistortion• AlignmentandbondingofmirrorsegmentsSignificanceofWork:• EnablesmajorX-rayobservatoriessuchasESA’sATHENAandNASA’s

AstrophysicsRoadmap’sX-raySurveyor

Approach:• Precisionglassslumpingtomakemirrorsubstrates• UsemagnetronsputteroratomiclayerdepositiontomaximizeX-ray

reflectance• Useinterferometer,nulllens,andinterferometricmicroscopeto

conductmeasurements• UseHartmannteststoalignmirrorsegments• Developprecisionepoxy-bondingtechniques

KeyCollaborators:• MichaelBiskach,Kai-WingChan,RyanMcClelland,andTimoSaha

(GSFC)• StephenO’Dell(MSFC)

CurrentFundedPeriodofPerformance:Oct2014– Sep2016

RecentAccomplishments:ü Slumpedmirrorsubstratesachievingbetterthan10-arcsecHPDü Coatedmirrorsubstrateswith15nmofiridiumwithoutdistortionü Repeatedlyco-alignedandbondedmultiplemirrorpairs,achieving

8-arcsecHPDX-rayimages

Applications:• FlagshipandprobeclassX-raymissions• ExplorertypeX-raymissions• Medicalresearchanddiagnosis

NextMilestones:• Refinemirrorbondingprocesstofullyrealizemirrorsegment

potentialof6.5-arcsecHPD• ReducegravitydistortionbybuildingaverticalX-raybeamtotest

mirrormodules

TRLIn =3 TRLPI-Asserted= 5TRLTarget= 6

Next-Generation X-ray Optics: High Angular Resolution, High Throughput, and Low Cost

PI: William W. Zhang/GSFC

TechnologyDevelopmentModule(TDM)containingthreepairsofparabolic-hyperbolicmirrorsegments

X-rayimagewith8-arcsecHPD

Page 14: Physics of the Cosmos (PCOS) Strategic Technology ... · Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016. 2 Current PCOS SAT Portfolio Funding

14

ObjectivesandKeyChallenges:• Advanceourphase-measurementsystemfromTRL4to5through

significantsystem-levelhardware-fidelityincreaseandgreaterfidelityofsignal-testenvironmentbyaddinglowlightlevels

• MaturetheTRLofphasereadoutwithhighstrainsensitivitythroughmicro-cycle/√Hzprecisionona4-16MHzbeat-noteinthepresenceoflaserfrequencynoiseandlocalclocknoise,alreadydemonstratedinalabtestbed

SignificanceofWork:• High-performancephasereadoutisanenablingtechnologyfor

multi-spacecraftlaser-interferometer-basedmissionssuchasLISA-likegravitational-wavemissions

Approach:• Advancecomponenttechnologies

o InfusecompatibleEMhardwarefromGRACEFollow-OnLaser-RangingInterferometer(LRI)

o Demonstratewavefrontsensingwithquadrantphotoreceivers• System-leveltesting

o Modifyinterferometertest-bedtoincludelow-lightsignalso ReplaceCOTScomponentsininterferometertest-bedwithLRI

EMhardwareanddemonstrateperformanceKeyCollaborators:• JeffDickson,BrentWare,BobSpero,KirkMcKenzie,Andrew

Sutton,andChrisWoodruff(JPL)CurrentFundedPeriodofPerformance:

Apr2014– Dec2016

RecentAccomplishment:ü Demonstratedphasereadoutwithmicro-cycle/√Hzprecisioninthe

presenceoflaserfrequencynoiseandlocalclocknoiseinaninterferometertest-bed

Applications:• Inter-spacecraftlaserinterferometryandpm-precision

interferometerreadoutelectronicsforfuturemissions,e.g.,LISA• Otherinterferometryconcepts(e.g.,planetsearches)

TRLIn = 4 TRLCurrent= 4TRLTarget= 5

Gravitational-Wave-Mission Phasemeter Technology Development

46

Technology Development Roadmap for a Future Gravitational-Wave Mission

Milestone Descrip-tion

Refer-ence Description Status

Phasemeter (TRL 4) [ISM-3] Demonstrate a phasemeter meeting LISA interferometry functional Milestone met

Photoreceiver (TRL 4) [ISM-4]Demonstrate a quadrant photoreceiver meeting the following requirements shown in Table 2:

Milestone met

Select Candidate Hardware and Software for Phase Measurement Subsystem (TRL5)

[ISM-16]Baseline processor and operating system for phase measurement system (TRL5).

Milestone met

Photoreceiver (TRL5) [ISM-17] Build and test a TRL5 photoreceiver.

TRL 4/5 photoreciever developed. Plans to reach TRL 5.

Analog-to-Digital Converter for Phase Measurement Subsystem (TRL5)

[ISM-18] Build and test a TRL5 analog-to-digital converter for phasemeter.

TRL 4 ADC built and tested.

Phase Measurement Subsystem (TRL5) [ISM-19]

Implement primary functions of the phase measurement system at TRL5 using a candidate flight processor and operating system.

PMS built and tested in interferometry testbed at TRL-4. Some PMS components at TRL4+.

Table 5—2005 LISA Technology Plan Milestones for the PMS and Current Status

Figure 3: The LISA interferometry testbed delivers representative interferometry signals for Time-Delay Interferometry and is ideal for testing PMS hardware.

EMHardware(quadrantphotoreceivers, preamp,andphasemeter)infusedintotheLISAtest-bed

PI: Bill Klipstein/JPL

NextMilestones:• Incorporatequadrantphotoreceiversintotest-bed(Sep2016)• Demonstratewavefrontsensing(Sep2016)• MigrateadditionalphotoreceiveralgorithmsfromLabView

phasemetertoEM(Oct2016)• IncorporateEMphotoreceiversandsignalchain(Nov2016)• Demonstratetrackingoflow-visibilitysignalswithEMPhasemeter

(Dec2016)• Demonstratetest-bedperformanceatTRL5orhigher(Dec2016)

Page 15: Physics of the Cosmos (PCOS) Strategic Technology ... · Physics of the Cosmos (PCOS) Strategic Technology Development Portfolio December 2016. 2 Current PCOS SAT Portfolio Funding

15

PhotoofPI

Hybrid Lightweight X-ray Optics for Half-arcsecond Imaging

PI: Paul Reid/SAOObjectivesandKeyChallenges:• Developlightweight,thin,sub-arcsecgrazingincidenceX-rayoptics

suitablefortheX-raySurveyormissionconcept• Keychallenges:

• Combinationofadjustableopticsanddifferentialdeposition• Needcorrectionbandwidthsofbothtechnologiestooverlap

SignificanceofWork:• Adjustableopticscannotcorrectallerrors– thosehigherfrequency

than1/(2xadjustersize)cannotbecorrected.• Differentialdepositionismostefficientformidfrequencyerrors.• Marryingthetwotechnologiesimprovestheprobabilityof

successfullymeetingX-raySurveyormirrorfigurerequirementsonthinlightweightsegments

Approach:• CombinelowspatialfrequencyerrorcorrectionofadjustableX-ray

opticswithmidfrequencycorrectionofdifferentialdeposition.• Applycontinuousthinfilmpiezoelectricmaterialtobacksideof

Woltersegmenttocorrectlowfrequencyfabricationandmountingerrorsaswellasenableon-orbitthermalerrorcorrection

• Applydifferentialdepositiononfrontsideofsegmentstocorrectmid-spatialfrequencyerrors.

KeyCollaborators:• R.Allured,C.Deroo,V.Cotroneo,D.Schwartz,A.Vikhlinin(SAO)• S.Trolier-McKinstry,J.Walker,T.Jackson,andTianningLiu(PSU)• B.Ramsey,S.O’DellK.Kilaru,D.Broadway(MSFC)CurrentFundedPeriodofPerformance:

ProposedFY17– FY18NotyetfundedasofNov.30,2016

RecentAccomplishments:• None– programnotyetstarted

Application:• X-raySurveyormissionconcept

NextMilestones:• Differentialdepositionfacilitizedforsegments:start+6months• Cylindricalmetrologyroundrobin:start+9months• Differentialdepositioncorrectiononsegments:start+10months

TRLIn =2 TRLCurrent=2TRLTarget= 3

(individualtechnologiesatTRL3currently)

X-rayringimageofcorrection(left)withdifferentiadeposition(3quadrants)and0.45arcsecresidualrmsslopeerror(right)betweenpredictionsandmeasurementsusingadjustableoptics.