physiological breeding: strategies & genetic gains matthew reynolds (cimmyt) contributions from:...

47
Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano Cossani Siva Sukumaran, Alistair Pask, Ravi Valluru Marc Ellis, Yann Manes Richard Trethowan

Upload: brett-wood

Post on 17-Jan-2016

221 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Physiological Breeding: strategies & genetic gains

Matthew Reynolds (CIMMYT)

Contributions from:Gemma Molero, Maria Tattaris

Carolina Saint Pierre, Mariano Cossani

Siva Sukumaran, Alistair Pask, Ravi Valluru

Marc Ellis, Yann Manes

Richard Trethowan

Page 2: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

International Wheat Improvement Network (IWIN) Coordinated by CIMMYT since 1960s

Latin America

Africa Middle East

South & East Asia

CIMMYT distributes 1,000 new wheat genotypes annually targeted to a range of environments

Page 3: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Average genetic gains at 556 international sites: ~1% per year from 1996-2010

Manes et al. 2012 .Genetic yield gains of CIMMYT international semi-arid wheat yield trials from 1994 to 2010.

Crop Science 52:1543-1552.

Page 4: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Complementary strategies to increase genetic gains

1) Identify crop characteristics conferring adaptation

2) Precision and high throughput phenotyping

3) Exploration of genetic resources for adaptive traits

4) Inter-specific hybridization to broaden the crop genepool

5) Genomics to increase breeding efficiency

6) Strategic crossing to achieve cumulative gene action

Page 5: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Complementary strategies to increase genetic gains

1) Identify crop characteristics conferring adaptation

2) Precision and high throughput phenotyping

3) Exploration of genetic resources for adaptive traits

4) Inter-specific hybridization to broaden the crop genepool

5) Genomics to increase breeding efficiency

6) Strategic crossing to achieve cumulative gene action

Page 6: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Water Use (RUE)

•Roots match evaporative demand•Regulation of transpiration (VPD; ABA)

Partitioning (HI)

•Spike fertility (meiosis, pollen, etc)•Stress signaling (e.g. ethylene) regulating

• senescence rate• floret abortion

•Grain filling (starch synthase)•Stem carbohydrate storage & remobilization

Photo-Protection (RUE)

•Leaf morphology (display, wax)•Down regulation•Pigment composition

• Chl a:b• Carotenoids

•Antioxidants

Conceptual Model of Heat-Adaptive TraitsYIELD = LI x RUE x HI

Efficient metabolism (RUE)

•CO2 fixation•CO2 conductance•Rubsico (>>)

•Canopy photosynthesis•spike photosynthesis

•Respiration

Light interception (LI)

•Rapid ground cover•Functional stay-green

G x E?G x G?

Cossanni & Reynolds, 2012. Plant Physiology 160 1710-18

Page 7: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Complementary Strategies

1) Identify crop characteristics conferring adaptation

2) Precision and high throughput phenotyping

3) Exploration of genetic resources for adaptive traits

4) Inter-specific hybridization to broaden the crop genepool

5) Genomics to increase breeding efficiency

6) Strategic crossing to achieve cumulative gene action

Page 8: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Phenotyping is not just about tools!

►Design experimental populations to avoid confounding agronomic traits

Seri/Babax population

Page 9: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Representative phenotyping platforms (e.g. IWYP-PLAT)

Located at heart of high yield wheat agro-ecosystem (Yaqui Valley NW Mexico)

• Production >1 m tons

• Farm yields avg 6.5 t/ha• Maximum yields ~10 t/ha

• Research and breeding conducted side by side, encouraging maximum accountability of both.

Page 10: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Plant selection tools

Visual selection ++

(Molecular markers)Spectral reflectance

Canopy temperature

Page 11: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Canopy temperature shows consistent association with yield under drought and heat

Page 12: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Deeper roots under drought confer stress adaptation

140

190

240

290

340

390

440

490

0 10 20 30 40 50 60 70

Root DW 60-120 cm (gm-2)

Yie

ld (

gm

-2)

0

5

10

15

20

25

30

35

40

CT

gf (

o C)

CT=-0.20x+34.3, R2=0.88

Yield=2.07x+254.9, R2=0.35

Lopes MS and Reynolds MP, 2010. Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology 37:147-156

Pinto & Reynolds, 2015. Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution. TAG: 128

Page 13: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

GIDDINGS SOIL CORER

TO SAMPLE ROOTS & MEASURE SOIL MOISTURE

Page 14: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Aerial remote sensing

Recently featured on BBC Horizons

Page 15: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Thermal Imagery: data processing

Removal of outlying pixels

Page 16: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Ground v Airborne: UAV & Blimp:

125 150 175 20025

26

27

28

29

30

f(x) = 0.0340484014144242 x + 21.764091264697R² = 0.591929180109435

Thermal Index UAV VS CT GroundHeat_1

Thermal Index UAV

CT

GR

OU

ND

2.5 2.9 3.3 3.70.38

0.43

0.48

f(x) = 0.0593427427166828 x + 0.248722335188861R² = 0.568074593278231

Thermal Index UAV VS CT GroundHeat_2

Thermal Index UAV*

CT

Gro

un

d*

0.50 0.60 0.70 0.800.50

0.60

0.70

0.80

f(x) = 0.771202441869446 x + 0.131097474414508R² = 0.712717074376989

MSAVI BLIMP VS NDVI Ground Drought_1

MSAVI BLIMP

ND

VI G

RO

UN

D

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.450.50

0.60

0.70

0.80

f(x) = − 0.741831729424865 x + 0.863742285002526R² = 0.73620187199727

NCPI BLIMP VS NDVI GroundDrought_1

NCPI BLIMP

ND

VI G

RO

UN

D

in most cases data from airborne platforms explains genetic variation in yield etc. better than with ground based readings

Page 17: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Complementary Strategies

1) Identify crop characteristics conferring adaptation

2) Precision and high throughput phenotyping

3) Exploration of genetic resources for adaptive traits

4) Inter-specific hybridization to broaden the crop genepool

5) Genomics to increase breeding efficiency

6) Strategic crossing to achieve cumulative gene action

Page 18: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Genetic resources:

~ 0.5 million accessions of wheat genetic resources in collections worldwide

The World Wheat Collection at CIMMYT has ~170,000

Wheat ‘landraces’ in Oaxaca

Page 19: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

70,000 wheat genetic resources screened under drought and heat, Sonora,

Mexico, 2011-2013

Page 20: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

FIGS drought set, Sonora, 2013Focused Identification of Germplasm Strategy (http://www.figs.icarda.net/)

A

Page 21: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

FIGS drought set, Sonora, 2013Focused Identification of Germplasm Strategy (http://www.figs.icarda.net/)

A B

Page 22: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Complementary Strategies

1) Identify crop characteristics conferring adaptation

2) Precision and high throughput phenotyping

3) Exploration of genetic resources for adaptive traits

4) Inter-specific hybridization to broaden the genepool

5) Genomics to increase breeding efficiency

6) Strategic crossing to achieve cumulative gene action

Page 23: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

T. durumAABB

T. tauschiiDD

Hexaploid syntheticAABBDD

Wide crossing with close relatives

e.g. “Synthetics”

► Sources of disease resistance

► Redistribution of roots to deeper soil profiles under water stress

X =

Page 24: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

80 120

160

200

240

280

320

360

400

440

480

520

560

600

640

680

720

760

800

840

880

920

960

1000

1040

1080

1120

1160

1200

0

5

10

15

20

25

30

35

Check

1,000 new primary synthetics screened for biomass –heat environment-

# lines

Dry weight (g)

Page 25: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Complementary Genetic Strategies

1) Identify crop characteristics conferring adaptation

2) Precision and high throughput phenotyping

3) Exploration of genetic resources for adaptive traits

4) Inter-specific hybridization to broaden the crop genepool

5) Genomics to increase breeding efficiency

6) Strategic crossing to achieve cumulative gene action

Page 26: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Canopy temp as a surrogate for root function

Page 27: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

.

CTAMVEGCTPMVEGCTAMGFCTPMGF

0

50

100

150

200

250

300

350

400

450

500

18 20 22 24 26 28 30

y = -0.003x + 21.54, r2 = 0.61y = -0.004x + 25.904, r2 = 0.68y = -0.005x + 24.545, r2 = 0.64y = -0.006x + 27.98, r2 = 0.62

YIE

LD

(g/m

2 )

CANOPY TEMPERATURE (oC)

Figure1. Association of yield performance (g/m2) and canopy temperature (oC)of Seri-Babax population under drought (cycle Y01/02).

CT is robustly associated with performance under heat and drought stress

CANOPY TEMPERATURE (0C)

R2 = 0.47

200

250

300

350

400

450

27.0 28.0 29.0 30.0 31.0 32.0

CT-boot

Yield

Drought stress

Heat stress

Page 28: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Consistent QTL identified in the Seri/Babax Population

1B-a.aac/caa-41B-a.wPt-14031B-a.wPt-52811B-a.aca/cac-51B-a.gwm2731B-a.wPt-01701B-a.aac/ctg-41B-a.wPt-75291B-a.agg/cat-41B-a.acc/cat-41B-a.act/ctc-71B-a.agg/cat-111B-a.barc0651B-a.gwm4131B-a.agg/ctg-51B-a.wPt-34651B-a.aac/cta-51B-a.agg/cat-181B-a.gwm1311B-a.agg/cac-31B-a.agc/cta-91B-a.agc/cta-21B-a.agc/cta-61B-a.agc/cag-51B-a.aag/ctg-141B-a.wPt-89301B-a.act/ctc-91B-a.aca/cta-91B-a.gwm5821B-a.gwm301b1B-a.wPt-17811B-a.aag/ctc-61B-a.wPt-20521B-a.aca/cac-21B-a.wPt-78331B-a.acc/ctc-41B-a.acg/cta-21B-a.act/ctc-51B-a.wPt-86161B-a.aca/cag-51B-a.aca/caa-31B-a.agg/ctg-31B-a.aac/ctc-6

Yie

ld

GM

2

ND

VIv

CT

v

CT

g

CH

Lg

1B-a

2B-a.wPt-96682B-a.aac/cta-12B-a.wPt-73202B-a.wPt-06152B-a.aag/ctc-32B-a.wPt-64772B-a.acc/ctc-22B-a.acc/ctg-42B-a.acc/ctc-102B-a.wPt-77502B-a.aag/ctg-52B-a.agg/cat-72B-a.agg/cac-102B-a.agc/cag-42B-a.aag/ctg-152B-a.agg/cac-52B-a.gwm3882B-a.acg/cta-12B-a.gwm191a2B-a.aca/ctg-12B-a.aag/ctg-122B-a.act/ctc-112B-a.wPt-56802B-a.wPt-97362B-a.aca/caa-42B-a.agg/cta-32B-a.agg/cac-132B-a.agg/ctg-22B-a.act/ctc-1

ND

VIg

CT

v

CT

g

2B-a

3B-b.wPt-82383B-b.aag/ctc-93B-b.gwm644

3B-b.aca/ctg-53B-b.gdm0083B-b.wPt-60473B-b.aac/cac-53B-b.wPt-19403B-b.aag/ctc-1

3B-b.agg/cta-63B-b.wPt-53583B-b.wPt-71863B-b.acc/ctg-53B-b.wPt-03843B-b.wPt-44283B-b.aca/cag-93B-b.wPt-1804

3B-b.wPt-00213B-b.gwm301e3B-b.aca/caa-93B-b.acc/ctg-113B-b.wPt-80213B-b.acc/ctc-8

3B-b.wPt-44123B-b.wPt-4370

Yie

ld

GM

2

CT

v

CT

g

3B-b

4A-a.gwm3974A-a.act/cag-54A-a.act/cag-34A-a.wmc048d4A-a.agg/cta-124A-a.aac/ctg-3

4A-a.wmc048c

Yie

ld

GM

2

ND

VIg

CT

v

4A-a

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

Common QTL identified for heat and drought adaptation

Empty bars: Drought specific QTLLined bars: Stress QTL specific for DRT & HOT environmentsSolid bars: Robust QTL identified under stress and irrigated environments

Pinto et al , 2010 . Heat and drought adaptive QTL in a wheat

population designed to minimize confounding agronomic effects.

TAG 121:1001–21

Page 29: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Root distribution in Seri/Babax ‘iso-QTL’ lines

0

40

80

120

160

200

COOL-Drt HOT-Drt COOL-Heat HOT-Heat

0-30 cm 30-60 cm 60-90 cm 90-120 cm

Ro

ots

(g

/m2 )

46%

35%

16%

56%

33%

8%

79%

16%

5%

82%

13%

4%

T-tests for COOL v HOT genotypes: DROUGHT 30-120 cm (p=0.002) ; HEAT 30-90 cm (p=0.0025)Pinto & Reynolds, 2015. TAG

Page 30: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Adaptation to plant density

Page 31: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Differences between inner and outer rows:

Page 32: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Sukumaran et al. Crop Sci. (2015)

Candidate gene: SET domain protein PI94960 for pollen abortion

GWAS candidate genes: A) ADi Yield, C) ADi KNO

Page 33: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

QTL for spike photosynthesis

Page 34: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Complementary Genetic Strategies

1) Identify crop characteristics conferring adaptation

2) Precision and high throughput phenotyping

3) Exploration of genetic resources for adaptive traits

4) Inter-specific hybridization to broaden the crop genepool

5) Genomics to increase breeding efficiency

6) Strategic crossing to achieve cumulative gene action

Page 35: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Strategic crossing for cumulative gene action

Page 36: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

WUE: Transpiration

Efficiency•Efficient leaf photosynthesis

(CID)

Strategic Crossing to Combine Adaptive TraitsDROUGHT YIELD = WU x WUE x HI

Partitioning (HI)• Stem carbohydrate

storage

WUE: Photo-Protection• Leaf wax• Pigments

Water Uptake •Ground cover•Access to water by roots

Page 37: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

First new generation of lines based on physiological crosses & selection, (2007)

Yield distribution of 3 years mean drought trials (Cd Obregon, Mexico)

0

5

10

15

20

25

30

35

40

45

% of check

%

Conventionalcrosses

Physiologicaltrait crosses

Page 38: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

83-89 90-94 95-99 100-104 105-109 110-114 115-119 120-129 130-1330

5

10

15

20

25

30

35

40

45

12

16

24

30

22

41

20 20

5

Yield as % of drought adapted check Vorobey

Nu

mb

er o

f lin

es

70% of new lines out-yielded the check, 2012

Check 3.5 t/ha (Vorobey)

New lines based on physiological trait (PT) criteria

Page 39: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Yield traits considered in strategic crosses:YIELD = LI x RUE x HI

SINKS pre-grainfill:• Spike fertility

• grain number• kernel weight potential• avoid floret abortion

• Development pattern• long juvenile spike phase

SINK (grain-filling)•Harvest Index

•tiller survival•grain growth rate

SOURCE (pre-grainfill):

• Light interception (LI)• Growth rate

• Canopy temperature

SOURCE (grain-filling):

•Canopy photosynthesis (RUE/LI)•Leaf conductance•Carbohydrate storage in stem•stay green

Page 40: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

26 international sites of the 2nd WYCYT

35 new (PT) lines7 elite checks

Abbreviation Site Country

BGLD J BARI Joydebpur Bangladesh

BGLD D BARI Dinjpur Bangladesh

BGLD R BARI Rajshahi Bangladesh

China L LAOMANCHENG China

Egypt A Assiut Egypt

India D Delhi India

India L Ludhiana India

India V Varanasi India

India K Karnal India

India H Dharwad India

India I Indore India

India U Ugar India

Iran D DARAB-HASSAN-ABAD Iran

Iran Z ZARGAN Iran

Iran SP SPII - KARAJ Iran

Iran S SAFIABAD AGRIC. RES. CENTER Iran

MEX Bajio INIFAP-Bajio Mexico

MEX CM CIMMYT CENEB Mexico

MEX BC INIFAP-Mexicali Baja California Mexico

MEX JAL INIFAP-Tepatitlan Jalisco Mexico

MEX SIN INIFAP-Valle del Fuerte, Sinaloa Mexico

MEX SON INIFAP_Valle del Yaqui Mexico

Nepal B Bhairahawa Nepal

PAK I Islamabad Pakistan

PAK F Faisalabad Pakistan

PAK P Pirsabak Pakistan

Page 41: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Mean yield of 7 elite checks: 2nd WYCYT, 2014

Yie

ld g

/m2

Page 42: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Mean yields of 35 new PT lines v 7 elite checks:(average 7% advantage of new lines)

Yie

ld g

/m2

Page 43: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

CROPDESIGN

GENETICRESOURCES

PHENO-TYPING

GENETICANALYSIS

BREEDING DELIVERY through

IWIN

Physiological Breeding Pipeline

INFORMATICS

Determine traits/genes needed to adapt crops to target environments

•Landraces•Wild relatives •Advanced lines•Transgenics

•High thru-put remote sensing

•Precision phenotyping

Strategic crossing

Select best progeny using state-of-the-art

phenotyping /molecular tools

QTL identified and MAS systems developed

Page 44: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Standard Phenotyping Protocols

http://libcatalog.cimmyt.org/download/cim/96140.pdf

http://libcatalog.cimmyt.org/download/cim/96144.pdf

Page 45: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

Conclusions● Investment in understanding the ‘phenome’ and trade-offs between traits facilitate

breeding decisions

● Genetic resources represent a vast and largely untapped opportunity for crop improvement, if evaluated using appropriate screens:

Aerial high throughput approaches on large numbers Precision phenotyping approaches on selected material Molecular markers (especially for hard to phenotype traits)

● Strategic trait-based crossing increases genetic gains compared with crossing the best x best yielding lines

● Phenomic and genomic technologies can deliver genetic gains in farmers’ fields; sooner when integrated with proven techniques

Page 46: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano
Page 47: Physiological Breeding: strategies & genetic gains Matthew Reynolds (CIMMYT) Contributions from: Gemma Molero, Maria Tattaris Carolina Saint Pierre, Mariano

PT Heat + Parents (late sown Mexico)

PT CAL +PADs Y13-14 (march)Y13-14 YLD Gain BIOM NDVI Vg NDVI LLg

Cross Name g/m2 % BP g/m2

PASTOR//HXL7573/2*BAU/3/WBLL1 190 45% 395 0.675 0.472

PASTOR//HXL7573/2*BAU/3/WBLL1 179 37% 381 0.671 0.439SOKOLL/WBLL1 157 18% 457 0.690 0.550SOKOLL/WBLL1 142 7% 348 0.657 0.498SOKOLL/WBLL1 141 7% 330 0.658 0.488SOKOLL 132 315 0.659 0.469WEEBIL (CHECK) 131 294 0.671 0.448PASTOR//HXL7573/2*BAU 93 312 0.638 0.455MEAN 127.7 313 0.648 0.452r- yld 0.67 0.73 0.12LSD (5%) 33.5 96.2 0.07 0.05

PT CAL +PADs Y14-15 (march)Y14-15 YLD Gain BIOM NDVI Vg NDVI LLg

Cross Name g/m2 % BP g/m2

PASTOR//HXL7573/2*BAU/3/WBLL1 93 56% 196 0.262 0.335

PASTOR//HXL7573/2*BAU/3/WBLL1 78 30% 171 0.275 0.284SOKOLL/WBLL1 103 40% 253 0.323 0.418SOKOLL/WBLL1 118 61% 282 0.307 0.348SOKOLL/WBLL1 113 54% 265 0.363 0.356SOKOLL 73 176 0.255 0.317WEEBIL (CHECK) 60 140 0.307 0.279PASTOR//HXL7573/2*BAU 48 137 0.252 0.272MEAN 91.1 212 0.299 0.334r- yld 0.97 0.65 0.80LSD (5%) 37.1 84.2 0.12 0.09