physiological constraints on long-term population cycles: a...

55
1 Physiological Constraints on Long-Term Population Cycles: A Broad-Scale View David M. Anderson 1,3 & James F. Gillooly 2 1 Department of Biology, University of Florida. Email: [email protected] 2 Department of Biology, University of Florida. Email: [email protected] 3 To whom correspondence should be addressed: David M. Anderson 220 Bartram Hall. PO Box 118525 Gainesville, FL 32611-8525 Tel: 303-990-0387, Email: [email protected] _____________________________________________________________________________________________ APPENDIX Appendix part I begins on the next page. Appendix part II begins on page 42. Evolutionary Ecology Research — Volume 18 (2017) Keywords: macroecology, metabolic theory, population dynamics, climate change, global warming, scaling Evolutionary-Ecology.com/data/3111Appendix.pdf

Upload: others

Post on 02-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

1

Physiological Constraints on Long-Term Population Cycles: A Broad-Scale View

David M. Anderson1,3 & James F. Gillooly2

1Department of Biology, University of Florida. Email: [email protected]

2Department of Biology, University of Florida. Email: [email protected]

3To whom correspondence should be addressed:

David M. Anderson

220 Bartram Hall. PO Box 118525

Gainesville, FL 32611-8525

Tel: 303-990-0387, Email: [email protected]

_____________________________________________________________________________________________

APPENDIX

Appendix part I begins on the next page.

Appendix part II begins on page 42.

Evolutionary Ecology Research — Volume 18 (2017)

Keywords: macroecology, metabolic theory, population dynamics, climate change, global warming, scaling

Evolutionary-Ecology.com/data/3111Appendix.pdf

Page 2: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

1

Appendix 1

Cycle period, body mass, temperature, generation time, and covariate data with sources.

____________________________________________________________________________________________________________

* Median period per species. For species with an even number of observations, we report the larger period adjacent to the median.

† Bird or mammal temperatures noted with superscript “c” are class-level estimates, whereas those without superscripts are species-

specific estimates (ref. 5). The column labeled (AT) includes average annual temperature data for insects, whereas the column labeled

(GST) includes average growing season temperature for insects. ‡ Statistical significance was attributed to the cycle period by the original author using the method indicated

3. Blank fields correspond

to cycle periods for which statistical support was not assessed. sig = statistically significant, n.s. = not statistically significant. § Methods are abbreviated as follows: Spect = Spectral analysis. Auto = Autocorrelation analysis. Subj = average time between peaks

or troughs in abundance. Wave = wavelet analysis. TPT = Kendall’s turning point test. Cos = cosine test.

Species Period

(years) Mass (g)

Temp.

℃†

(AT)

Temp.

℃†

(GST)

Gen.

Time

(days)

Series

Length

(years)

Lat. Signif.‡

Method§ Ref.

Period

Ref.

M.

Ref.

T.

Ref.

GT

Birds

Bonasa umbellus 8 532.0 41.5c

120.0 29 n.s. Spect 1-3 4 5 6

Bonasa umbellus 9.9 532.0 41.5c 120.0 25 n.s. Spect 7, 2, 3 4 5 6

Bonasa umbellus 11*

532.0 41.5c

120.0 35 sig Spect 8, 2, 3 4 5 6

Bonasa umbellus 14.7 532.0 41.5c

120.0 33 n.s. Spect 1-3 4 5 6

Bonasa umbellus 16 532.0 41.5c

120.0 42 n.s. Spect 1-3 4 5 6

Branta bernicla 15* 1464.0 40.5 730.0 47 n.s. Spect 9, 3 5 5 4

Callipepla squamata 5 191.0 41.5c

363.5 24 sig Spect 10 4 5 4

Callipepla squamata 6.3* 191.0 41.5

c 363.5 24 sig Spect 10 4 5 4

Callipepla squamata 12.5 191.0 41.5c

363.5 24 sig Spect 10 4 5 4

Colinus virginianus 5 173.3 41.5c

364.2 24 sig Spect 10 4 5 4

Colinus virginianus 5 173.3 41.5c

364.2 24 sig Spect 10 4 5 4

Page 3: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

2

Colinus virginianus 6.3* 173.3 41.5

c 364.2 24 sig Spect 10 4 5 4

Colinus virginianus 8.9 173.3 41.5c

364.2 31 n.s. Spect 11, 3 4 5 4

Colinus virginianus 12.5 173.3 41.5c

364.2 24 sig Spect 10 4 5 4

Cyanistes caeruleus 12.6* 11.2 41.5

c 365.0 31 n.s. Spect 12, 3 4 5 4

Falcipennis canadensis 6.67* 460.0 42 365.0 19 n.s. Spect 1-3 5 5 4

Lagopus lagopus 4 620.0 41.7 364.2 13 n.s. Spect 7, 3 5 5 4

Lagopus lagopus 10*

620.0 41.7 364.2 30 Subj 13 5 5 4

Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect 14, 3 5 5 4

Lagopus lagopus

scoticus 5.6 625.0 41.5

c 364.2 50 n.s. Spect 15, 2, 3 3 5 4

Lagopus lagopus

scoticus 5.67 625.0 41.5

c 364.2 52 sig Spect 16, 3 3 5 4

Lagopus lagopus

scoticus 6 625.0 41.5

c 364.2 112 sig Spect 15, 2, 3 3 5 4

Lagopus lagopus

scoticus 6 625.0 41.5

c 364.2 97 n.s. Spect 15, 2, 3 3 5 4

Lagopus lagopus

scoticus 6.08 625.0 41.5

c 364.2 57 sig Spect 16, 3 3 5 4

Lagopus lagopus

scoticus 6.26 625.0 41.5

c 364.2 56 sig Spect 16, 3 3 5 4

Lagopus lagopus

scoticus 8 625.0 41.5

c 364.2 75 n.s. Spect 15, 2, 3 3 5 4

Lagopus lagopus

scoticus 9.04

* 625.0 41.5

c 364.2 79 n.s. Spect 15, 2, 3 3 5 4

Lagopus lagopus

scoticus 11.11 625.0 41.5

c 364.2 77 sig Spect 15, 2, 3 3 5 4

Lagopus lagopus

scoticus 11.3 625.0 41.5

c 364.2 72 sig Spect 15, 2, 3 3 5 4

Lagopus lagopus

scoticus 18.9 625.0 41.5

c 364.2 99 n.s. Spect 15, 2, 3 3 5 4

Lagopus lagopus

scoticus 23 625.0 41.5

c 364.2 95 sig Spect 15, 2, 3 3 5 4

Lagopus lagopus

scoticus 23 625.0 41.5

c 364.2 87 sig Spect 15, 2, 3 3 5 4

Page 4: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

3

Lagopus lagopus

scoticus 25.3 625.0 41.5

c 364.2 59 sig Spect 15, 2, 3 3 5 4

Lagopus lagopus

scoticus 35 625.0 41.5

c 364.2 107 sig Spect 17, 3 3 5 4

Lagopus mutus 11.9 420.0 42.3 363.5 75 n.s. Spect 7, 2, 3 5 5 4

Lagopus mutus 12* 420.0 42.3 363.5 55 sig Spect 18, 3 5 5 4

Lagopus mutus 15.4 420.0 42.3 363.5 81 n.s. Spect 15, 2, 3 5 5 4

Perdix perdix 34* 405.5 41.5

c 364.2 141 sig Spect 16, 3 4 5 4

Tetrao tetrix 6.1 1085.0 41.5c

455.1 39 sig Spect 19, 3 4 5 4

Tetrao tetrix 6.4 1085.0 41.5c

455.1 14 n.s. Spect 20, 2, 3 4 5 4

Tetrao tetrix 8* 1085.0 41.5

c 455.1 32 n.s. Spect 19, 3 4 5 4

Tetrao tetrix 10.3 1085.0 41.5c

455.1 28 n.s. Spect 16, 2, 3 4 5 4

Tetrao urogallus 15.43* 2943.0 41.5

c 911.0 81 sig Spect 15, 2, 3 4 5 4

Mammals

Alces alces 19 325000.0 38.6 711.6 28 Subj 21, 22 5 5 4

Alces alces 20* 325000.0 38.6 711.6 Subj 23, 24 5 5 4

Alces alces 21 325000.0 38.6 711.6 41 sig Spect 25 5 5 4

Apodemus sylvaticus 2.17* 18.5 36.7 71.0 20.5 sig Spect 26, 2, 3 5 5 4

Arvicola amphibius 3.56 92.0 37.5 51.0 37 n.s. Spect 27 5 5 4

Arvicola amphibius 5 92.0 37.5 51.0 20 n.s. Spect 27 5 5 4

Arvicola amphibius 5 92.0 37.5 51.0 25 sig Spect 27 5 5 4

Arvicola amphibius 5 92.0 37.5 51.0 25 n.s. Spect 27 5 5 4

Arvicola amphibius 5.4* 92.0 37.5 51.0 27 sig Spect 27 5 5 4

Page 5: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

4

Arvicola amphibius 6.2 92.0 37.5 51.0 31 sig Spect 27 5 5 4

Arvicola amphibius 6.75 92.0 37.5 51.0 54 sig Spect 27 5 5 4

Arvicola amphibius 7 92.0 37.5 51.0 42 sig Spect 27 5 5 4

Arvicola amphibius 7 92.0 37.5 51.0 51 sig Spect 27 5 5 4

Capra hircus 6* 18000.0 39.5 446.5 19 Subj 28 5 5 4

Castor canadensis 7.56* 19930.0 36.4

c 648.2 sig Spect 29, 30 4 5 4

Cervus canadensis 10.2* 265000.0 36.4

c 912.5 41 n.s. Spect 31, 3 32 5 33

Dicrostonyx

groenlandicus 3.67

* 59.6 38.4

40.0 12 Subj 34 5 5 4

Erethizon dorsatus 22 10500.0 37.5 933.8 133 sig Wave 35 5 5 4

Erethizon dorsatus 45.7* 10500.0 37.5 933.8 120 sig Spect 36, 2, 3 5 5 4

Eutamias minimus 7* 45.8 37 365.0 22 Cos 37 5 5 4

Ictidomys

tridecemlineatus 8

* 205.4 35.7 354.0 22 Cos 37 5 5 4

Lemmus lemmus 3 80.0 37.8 24.0 9 n.s. Spect 38, 2, 3 5 5 4

Lemmus lemmus 3.5* 80.0 37.8 24.0 Subj 39, 22 5 5 4

Lemmus lemmus 3.6 80.0 37.8 24.0 41 sig Spect 40, 3 5 5 4

Lepus americanus 8.4 1581.0 39.8 259.4 Subj 41, 24 5 5 4

Lepus americanus 8.8 1581.0 39.8 259.4 33 n.s. Spect 1-3 5 5 4

Lepus americanus 10.3 1581.0 39.8 259.4 28 n.s. Spect 1-3 5 5 4

Lepus americanus 10.3* 1581.0 39.8 259.4 56 sig Spect 42, 2, 3 5 5 4

Lepus americanus 10.7 1581.0 39.8 259.4 61 sig Spect 43, 3 5 5 4

Lepus americanus 11.2 1581.0 39.8 259.4 21 n.s. Spect 1-3 5 5 4

Lepus californicus 6.33*

2300.0 39.2 243.4 19 Subj 44, 45 5 5 4

Page 6: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

5

Lepus europaeus 10.45 3673.0 38.3 227.7 45 sig Spect 46, 30 5 6 4

Lepus europaeus 11.4*

3673.0 38.3 227.7 31 n.s. Spect 16, 3 5 6 4

Lepus timidus 5.3 3000.0 39.7 265.9 19 n.s. Spect 45, 2, 3 5 5 4

Lepus timidus 8 3000.0 39.7 265.9 21 n.s. Spect 47, 2, 3 5 5 4

Lepus timidus 10.45* 3000.0 39.7 265.9 sig Spect 19, 30 5 5 4

Lepus timidus 12 3000.0 39.7 265.9 47 n.s. Spect 16, 3 5 5 4

Lepus timidus 13.3 3000.0 39.7 265.9 31 sig Spect 45, 2, 3 5 5 4

Macropus fuliginosus 9.5* 30700.0 37.2 689.4 39 n.s. Spect 48, 3 5 5 4

Macropus rufus 17.3* 35730.0 35.9 517.0 40 n.s. Spect 48, 3 4 6 4

Microtus agrestis 2.5 28.0 37.6 36.0 9 Subj 49, 50 5 5 4

Microtus agrestis 2.5 28.0 37.6 36.0 6 Subj 50 5 5 4

Microtus agrestis 3 28.0 37.6 36.0 13 Subj 50 5 5 4

Microtus agrestis 3 28.0 37.6 36.0 7 Subj 50 5 5 4

Microtus agrestis 3 28.0 37.6 36.0 10 Subj 50 5 5 4

Microtus agrestis 3.3 28.0 37.6 36.0 17 Subj 50 5 5 4

Microtus agrestis 3.5 28.0 37.6 36.0 13 Subj 50 5 5 4

Microtus agrestis 3.6 28.0 37.6 36.0 17 Subj 50 5 5 4

Microtus agrestis 3.6 28.0 37.6 36.0 6 Subj 50 5 5 4

Microtus agrestis 4* 28.0 37.6 36.0 28 Subj 51, 52 5 5 4

Microtus agrestis 4 28.0 37.6 36.0 18 Subj 53 5 5 4

Microtus agrestis 4 28.0 37.6 36.0 27 Subj 53 5 5 4

Microtus agrestis 4 28.0 37.6 36.0 7 Subj 38, 50 5 5 4

Page 7: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

6

Microtus agrestis 4 28.0 37.6 36.0 7 Subj 38, 50 5 5 4

Microtus agrestis 4 28.0 37.6 36.0 7 Subj 38, 50 5 5 4

Microtus agrestis 4 28.0 37.6 36.0 7 Subj 38, 50 5 5 4

Microtus agrestis 4.5 28.0 37.6 36.0 19 Subj 50 5 5 4

Microtus agrestis 5 28.0 37.6 36.0 28 Subj 54 5 5 4

Microtus arvalis 3.56 20.0 37 38.0 12 n.s. Spect 55, 2, 3 5 5 4

Microtus arvalis 4* 20.0 37 38.0 28 Subj 54 5 5 4

Microtus arvalis 8.7 20.0 37 38.0 38 n.s. Spect 55, 2, 3 5 5 4

Microtus californicus 3.2* 44.0 38.8 23.8 17 Subj 56 5 5 4

Microtus ochrogaster 1.25* 46.7 37.9 47.0 5.25 Subj 57 5 5 4

Microtus oeconomus 4.5* 33.7 38.4 36.7 19 Subj 50 5 5 4

Microtus

pennsylvanicus 4 38.9 38.5 30.2 16 Subj 58 5 5 4

Microtus

pennsylvanicus 4

* 38.9 38.5 30.2 Subj 59 5 5 4

Myocastor coypus 2.67* 7290.0 38 159.8 10 sig Spect 60, 3 5 5 4

Myodes glareolus 2 20.8 36.4c

47.0 6 Subj 61, 50 4 5 4

Myodes glareolus 2.3 20.8 36.4c

47.0 12 Subj 50 4 5 4

Myodes glareolus 2.5 20.8 36.4c

47.0 9 Subj 62, 50 4 5 4

Myodes glareolus 2.6 20.8 36.4c

47.0 28 n.s. Spect 26, 2, 3 4 5 4

Myodes glareolus 2.8 20.8 36.4c

47.0 17 Subj 50 4 5 4

Myodes glareolus 3 20.8 36.4c

47.0 7 Subj 38, 50 4 5 4

Myodes glareolus 3 20.8 36.4c

47.0 9 Subj 49, 50 4 5 4

Myodes glareolus 3 20.8 36.4c

47.0 9 Subj 50 4 5 4

Page 8: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

7

Myodes glareolus 3* 20.8 36.4

c 47.0 15 Subj 50 4 5 4

Myodes glareolus 3 20.8 36.4c

47.0 11 Subj 50 4 5 4

Myodes glareolus 3.3 20.8 36.4c

47.0 12 Subj 63, 50 4 5 4

Myodes glareolus 3.5 20.8 36.4c

47.0 17 Subj 50 4 5 4

Myodes glareolus 4 20.8 36.4c

47.0 7 Subj 38, 50 4 5 4

Myodes glareolus 4 20.8 36.4c

47.0 7 Subj 38, 50 4 5 4

Myodes glareolus 4 20.8 36.4c

47.0 8 Subj 64, 50 4 5 4

Myodes glareolus 4 20.8 36.4c

47.0 6 Subj 50 4 5 4

Myodes glareolus 4.2 20.8 36.4c

47.0 28 n.s. Spect 65, 3 4 5 4

Myodes rufocanus 4.5 27.5 36.4c

85.9 34 sig Spect 3 4 5 4

Myodes rufocanus 4 40.0 36.4c

85.9 8 Subj 66, 50 4 5 4

Myodes rufocanus 4* 40.0 36.4

c 85.9 6 Subj 67, 50 4 5 4

Myodes rufocanus 4.5 40.0 36.4c

85.9 19 Subj 50 4 5 4

Myodes rufocanus 4.6 40.0 36.4c

85.9 40 Subj 50 4 5 4

Myodes rutilus 3 25.0 36.4c

121.7 6 Subj 67, 50 4 5 4

Myodes rutilus 3.43* 25.0 36.4

c 121.7 8 n.s. Spect 38, 2, 3 4 5 4

Myopus schisticolor 3*

26.4 39 29.0 15 Subj 68 5 5 4

Odocoileus virginianus 24 58590.0 39 309.0 34 Subj 69, 22 5 5 4

Odocoileus virginianus 46.7* 58590.0 39 309.0 107 sig Spect 70, 3 5 5 4

Ondatra zibethicus 6.42 1005.0 37.4 174.5 44 sig Spect 71, 30 5 5 4

Ondatra zibethicus 7 1005.0 37.4 174.5 43 n.s. Spect 1-3 5 5 4

Ondatra zibethicus 7.3 1005.0 37.4 174.5 34 n.s. Spect 1-3 5 5 4

Page 9: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

8

Ondatra zibethicus 8* 1005.0 37.4 174.5 39 n.s. Spect 1-3 5 5 4

Ondatra zibethicus 10.2 1005.0 37.4 174.5 79 n.s. Spect 72, 2, 3 5 5 4

Ondatra zibethicus 10.9 1005.0 37.4 174.5 93 sig Spect 72, 2, 3 5 5 4

Oryctolagus cuniculus 11.2 2000.0 39 185.6 65 n.s. Spect 16, 3 5 5 4

Oryctolagus cuniculus 11.4* 2000.0 39 185.6 31 n.s. Spect 16, 3 5 5 4

Peromyscus

maniculatus 3.5

* 22.8 36.6 60.0 8 Subj 73 5 5 4

Poliocitellus franklinii 5 607.0 36.6 327.0 31 Subj 74 5 5 4

Poliocitellus franklinii 10* 607.0 36.6 327.0 22 Cos 37 5 5 4

Rangifer tarandus 25.6 101300.0 39.2 695.2 39 sig Spect 75 4 5 4

Rangifer tarandus 34.7 101300.0 39.2 695.2 30 n.s. Spect 75 4 5 4

Rangifer tarandus 36 101300.0 39.2 695.2 32 sig Spect 75 4 5 4

Rangifer tarandus 38.3 101300.0 39.2 695.2 31 sig Spect 75 4 5 4

Rangifer tarandus 48.8 101300.0 39.2 695.2 46 sig Spect 75 4 5 4

Rangifer tarandus 50 101300.0 39.2 695.2 45 sig Spect 75 4 5 4

Rangifer tarandus 50 101300.0 39.2 695.2 47 sig Spect 75 4 5 4

Rangifer tarandus 52.6* 101300.0 39.2 695.2 47 sig Spect 75 4 5 4

Rangifer tarandus 54.1 101300.0 39.2 695.2 48 sig Spect 75 4 5 4

Rangifer tarandus 55.6 101300.0 39.2 695.2 48 sig Spect 75 4 5 4

Rangifer tarandus 56.8 101300.0 39.2 695.2 44 sig Spect 75 4 5 4

Rangifer tarandus 58.5 101300.0 39.2 695.2 48 sig Spect 75 4 5 4

Rangifer tarandus 20 147700.0 39.2 695.2 20 Subj 76, 24 24 5 4

Rangifer tarandus 38.5 147700.0 39.2 695.2 40 Subj 77 24 5 4

Page 10: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

9

Sus scrofa 7.94 135000.0 39 334.0 100 sig Spect 78, 30 4 6 4

Sus scrofa 8.13* 135000.0 39 334.0 100 sig Spect 78, 30 4 6 4

Tamias striatus 8* 87.4 38.2 169.6 22 Cos 37 5 5 4

Tamiasciurus

hudsonicus 11

* 228.3 38.7 342.1 22 Cos 37 5 5 4

Ursus americanus 43* 70000.0 38.3 1278.0 129 sig Spect 70, 3 5 5 4

Insects

Acleris gloverana 14.25* 0.0322 6.3 9.6 365.0 58 49.4 Subj 79 80 81 82

Acleris variana 8* 0.0277 4.6 12.1 365.0 12 46.3 Auto 83, 84 85 81 83

Aphis fabae 2* 0.0011 10.1 13.6 18.0 5 51.3 Subj 86 87 81 88

Aphis glycines 2* 0.0001 10.1 17.4 8.0 8 40.4 Subj 89 90 81 91

Aphis nasturtii 6.1* 0.0005 4.1 11.9 16.1 54 46.3 Spect 92 87 81 93

Bupalus piniarius 6.9 0.0648 8 11.3 365.0 37 56.3 Spect 94, 30 95 81 96

Bupalus piniarius 8* 0.0648 8 11.3 365.0 60 56.3 Auto 97, 84 95 81 96

Cerapteryx graminis 7* 0.2124 0.73 7.8 365.0 11 64.6 Subj 98, 22 99 81 100

Choristoneura biennis 32* 0.0843 1.7 8.5 730.0 127 54.6 Spect 101 102 81 101

Choristoneura

fumiferana 26 0.0956 -1.5 8.8 365.0 175 58.8 Subj 103 104 81 105

Choristoneura

fumiferana 35 0.0956 2.8 10.8 365.0 210 47.1 Subj 105, 84 104 81 105

Choristoneura

fumiferana 36

* 0.0956 -0.54 9.4 365.0 55 50.4 n.s. Auto 106 104 81 105

Choristoneura

fumiferana 39.5 0.0956 2.9 10.1 365.0 450 47.9 Subj 107 104 81 105

Choristoneura

occidentalis 25 0.1140 10.9 16.6 365.0 389 34.6 sig Spect 108 109 81 110

Choristoneura

occidentalis 26 0.1140 4.3 9.9 365.0 258 50.4 Subj 111 109 81 111

Page 11: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

10

Choristoneura

occidentalis 27 0.1140 4.5 10.5 365.0 400 50.4 Subj 111 109 81 111

Choristoneura

occidentalis 29

* 0.1140 2.3 7.0 365.0 252 50.4 Subj 111 109 81 111

Choristoneura

occidentalis 30 0.1140 4.3 9.9 365.0 206 50.4 Subj 111 109 81 111

Choristoneura

occidentalis 37 0.1140 3.2 9.1 365.0 397 37.1 sig Spect 112 109 81 110

Choristoneura

occidentalis 37 0.1140 4.4 10.3 365.0 205 49.6 Subj 111 109 81 111

Choristoneura pinus 5 0.0200 5.7 14.5 365.0 25 45.4 n.s. Spect 113 114 81 115

Choristoneura pinus 5 0.0200 5.7 14.5 365.0 22 45.4 n.s. Spect 113 114 81 115

Choristoneura pinus 5 0.0200 5.43 14.0 365.0 28 45.4 sig Spect 113 114 81 115

Choristoneura pinus 5 0.0200 4.1 13.1 365.0 31 46.3 sig Spect 113 114 81 115

Choristoneura pinus 5 0.0200 4.1 13.1 365.0 31 46.3 n.s. Spect 113 114 81 115

Choristoneura pinus 6 0.0200 5.7 14.5 365.0 28 45.4 n.s. Spect 113 114 81 115

Choristoneura pinus 6 0.0200 5.43 14.0 365.0 28 45.4 sig Spect 113 114 81 115

Choristoneura pinus 6 0.0200 5.43 14.0 365.0 28 45.4 sig Spect 113 114 81 115

Choristoneura pinus 6 0.0200 5.43 14.0 365.0 28 45.4 sig Spect 113 114 81 115

Choristoneura pinus 6 0.0200 4.1 13.1 365.0 31 46.3 sig Spect 113 114 81 115

Choristoneura pinus 6* 0.0200 4.1 13.1 365.0 31 46.3 sig Spect 113 114 81 115

Choristoneura pinus 6 0.0200 4.1 13.1 365.0 31 46.3 sig Spect 113 114 81 115

Choristoneura pinus 6 0.0200 4.1 13.1 365.0 31 46.3 n.s. Spect 113 114 81 115

Choristoneura pinus 6 0.0200 4.1 13.1 365.0 31 46.3 n.s. Spect 113 114 81 115

Choristoneura pinus 10 0.0200 -0.5 10.0 365.0 50 54.6 sig Spect 116 114 81 115

Choristoneura pinus 10 0.0200 5.7 14.5 365.0 28 45.4 sig Spect 113 114 81 115

Page 12: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

11

Choristoneura pinus 10 0.0200 4.1 13.1 365.0 31 46.3 n.s. Spect 113 114 81 115

Choristoneura pinus 10 0.0200 4.1 13.1 365.0 17 46.3 sig Spect 113 114 81 115

Choristoneura pinus 10 0.0200 4.1 13.1 365.0 18 46.3 sig Spect 113 114 81 115

Choristoneura pinus 10 0.0200 4.1 13.1 365.0 18 46.3 sig Spect 113 114 81 115

Choristoneura pinus 10 0.0200 4.1 13.1 365.0 18 46.3 sig Spect 113 114 81 115

Coloradia pandora 27* 0.8565 6.1 10.7 730.0 622 43.8 Subj 117 118 81 117

Dendroctonus frontalis 8* 0.0018 18.9 24.2 60.8 41 31.3 Subj 119-121 122 81 121

Dendroctonus

ponderosae 17.5

* 0.0108 0.16 6.4 365.0 70 52.9 Subj 123 124 81 125

Dendrolimus pini 9.66* 0.6291 9.4 13.0 365.0 41 52.1 sig Spect 126, 30 127 81 30

Diprion pini 17 0.0750 10.7 14.8 365.0 48.8 Subj 128, 22 129 81 96

Diprion pini 17 0.0750 10.7 14.8 365.0 27.4 48.8 Subj 128, 22 129 81 96

Diprion pini 18* 0.0750 10.7 14.8 365.0 22 48.8 Subj 128, 22 129 81 96

Diprion pini 23.5 0.0750 10.7 14.8 365.0 50 48.8 Subj 128, 22 129 81 96

Drepanosiphum

platanoides 2

* 0.0016 10.1 13.6 91.3 18 51.3 Auto 130, 120 131 81 131

Epinotia tedella 6.5* 0.0137 8.2 12.6 365.0 33 55.4 Auto 84, 132 133 81 134

Epirrita autumnata 9.4 0.0780 0.2 6.2 365.0 68 65.4 Subj 135 136 81 136

Epirrita autumnata 9.85* 0.0780 4 8.3 365.0 28 46.3 Subj 137, 30 136 81 136

Epirrita autumnata 10 0.0780 0.2 6.2 365.0 13 65.4 Auto 138, 84 136 81 136

Exapate duratella 9* 0.0236 4 8.3 365.0 27 46.3 Subj 139, 137 140 81 140

Grapholita molesta 1.04* 0.0111 16.1 18.8 52.3 5 -27.1 Spect 141 142 81 141

Heterocampa guttivitta 11.2* 0.2278 6.5 14.9 365.0 67.2 42.1 Subj 143, 144 145 81 145

Hyphantria cunea 8* 0.1810 1.9 10.8 365.0 22 48.8 Auto 146, 84 147 81 146

Page 13: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

12

Lambdina fiscellaria

lugubrosa 8.8

* 0.2278 5.83 10.5 365.0 44 49.6 Subj 148, 144 149 81 150

Leucoptera caffeina 2* 0.0006 18.3 18.3 40.6 7 -2.9 Subj 151, 152 153 81 152

Leucoptera myricki 2* 0.0006 18.3 18.3 45.6 7 -2.9 Subj 151, 152 153 81 152

Loxostege sticticalis 10.75 0.0843 4.9 15.5 182.5 50 43.8 Subj 154 155 81 156

Loxostege sticticalis 11.9* 0.0843 -0.4 9.6 182.5 162 58.8 Subj 157 155 81 156

Lymantria dispar 4.91 0.7650 12 18.1 365.0 31 39.6 Wave 158 159 81 160

Lymantria dispar 5.84 0.7650 13.8 19.4 365.0 46 36.3 Wave 158 159 81 160

Lymantria dispar 8 0.7650 10.3 16.6 365.0 57 44.6 sig Spect 161 159 81 160

Lymantria dispar 8 0.7650 11 16.6 365.0 66 44.6 sig Spect 161 159 81 160

Lymantria dispar 8.26 0.7650 10.1 16.5 365.0 48 41.3 Wave 158 159 81 160

Lymantria dispar 9 0.7650 8.5 13.6 365.0 29 43.8 Auto 162, 84 159 81 160

Lymantria dispar 9.8 0.7650 10.1 15.9 365.0 36 47.9 sig Spect 161 159 81 160

Lymantria dispar 9.8* 0.7650 10.2 15.9 365.0 51 47.9 sig Spect 161 159 81 160

Lymantria dispar 9.83 0.7650 8 15.0 365.0 79 42.1 Wave 158 159 81 160

Lymantria dispar 9.83 0.7650 5.9 13.2 365.0 68 43.8 Wave 158 159 81 160

Lymantria dispar 9.83 0.7650 10.3 15.5 365.0 33 45.4 Wave 158 159 81 160

Lymantria dispar 11.69 0.7650 5.9 13.0 365.0 79 43.8 Wave 158 159 81 160

Lymantria dispar 12.5 0.7650 8.6 14.5 365.0 57 52.9 sig Spect 161 159 81 160

Lymantria dispar 13 0.7650 9 14.6 365.0 49 48.8 sig Spect 161 159 81 160

Lymantria fumida 7* 0.4675 13.8 15.7 365.0 35 36.3 Subj 163, 144 164 81 163

Macrosiphum

euphorbiae 3.9

* 0.0003 4.1 11.9 16.1 54 46.3 sig Spect 92 165 81 166

Malacosoma

californicum 8.3

* 0.1440 5.83 10.5 365.0 50 49.6 Subj 167 168 81 169

Page 14: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

13

Malacosoma disstria 9 0.2894 7.6 11.5 365.0 16 48.8 Auto 167 170 81 170

Malacosoma disstria 9 0.2894 -3.2 5.9 365.0 65 53.8 Subj 171 170 81 170

Malacosoma disstria 10 0.2894 1.6 9.5 365.0 132 53.8 Subj 172 170 81 170

Malacosoma disstria 10 0.2894 -0.5 9.0 365.0 95 50.4 Subj 173, 171 170 81 170

Malacosoma disstria 13* 0.2894 1.9 10.5 365.0 65 47.9 Subj 171 170 81 170

Malacosoma disstria 15.5 0.2894 1.2 11.1 365.0 129 51.3 Subj 174 170 81 170

Malacosoma disstria 20 0.2894 1 10.4 365.0 43 53.8 Subj 175, 174 170 81 170

Malacosoma disstria 20 0.2894 1.6 9.5 365.0 129 53.8 Subj 172, 174 170 81 170

Malacosoma disstria 20 0.2894 1.3 8.2 365.0 47 54.6 Subj 176 170 81 170

Myzocallis boerneri 2 0.0008 10.1 13.7 83.4 17 52.9 n.s. Auto 177 178 81 177

Myzocallis boerneri 2* 0.0008 10.1 13.7 83.4 17 52.9 n.s. Auto 177 178 81 177

Nepytia freemani 11.3* 0.0544 5.83 10.5 365.0 45.2 49.6 Subj 179, 144 180 81 181

Operophtera brumata 7* 0.0293 9.4 13.0 365.0 19 52.9 Auto 182, 84 183 81 180

Orygia pseudotsugata 7 0.1452 6.7 11.6 365.0 18 44.6 Auto 184, 84 118 81 185

Orygia pseudotsugata 7 0.1452 5.4 9.5 365.0 11 37.9 Auto 184, 84 118 81 185

Orygia pseudotsugata 8* 0.1452 13.2 18.5 365.0 11 33.8 Auto 184, 84 118 81 185

Orygia pseudotsugata 9 0.1452 5.7 10.9 365.0 21 45.4 Auto 184, 84 118 81 185

Orygia pseudotsugata 9 0.1452 7.6 13.6 365.0 47.9 Subj 144 118 81 185

Panolis flammea 6.19* 0.1452 7.4 12.6 365.0 20 49.6 sig Spect 186, 30 187 81 30

Pristiphora erichsonii 26.6* 0.0323 -3.6 5.9 365.0 308 53.8 Subj 188, 22 189 81 190

Quadricalcarifera

punctatella 9

* 0.3000 13.8 19.2 365.0 84 36.3 Auto 191 192 81 191

Sphinx pinastri 13.33* 1.4490 8.7 13.5 365.0 60 52.9 Subj 126, 22 193 81 194

Page 15: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

14

Tanytarsus gracilentus 6.67* 0.0017 4.4 7.1 182.5 20 65.6 Subj 195 196 197 196

Thaumetopoea

pityocampa 7 0.6900 10.9 14.1 365.0 32 48.8 sig Spect 198 199 81 200

Thaumetopoea

pityocampa 7 0.6900 12.5 16.4 365.0 32 44.6 sig Spect 198 199 81 200

Thaumetopoea

pityocampa 7 0.6900 7.5 11.4 365.0 32 42.9 sig Spect 198 199 81 200

Thaumetopoea

pityocampa 8 0.6900 8.7 13.4 365.0 32 47.9 sig Spect 198 199 81 200

Thaumetopoea

pityocampa 8

* 0.6900 5.3 9.7 365.0 32 44.6 sig Spect 198 199 81 200

Thaumetopoea

pityocampa 8 0.6900 10.9 15.0 365.0 32 43.8 sig Spect 198 199 81 200

Thaumetopoea

pityocampa 9 0.6900 8.2 12.2 365.0 32 45.4 sig Spect 198 199 81 200

Thaumetopoea

pityocampa 9 0.6900 8.2 12.2 365.0 32 45.5 sig Spect 198 199 81 200

Thaumetopoea

pityocampa 10 0.6900 10.6 14.8 365.0 32 48.8 sig Spect 198 199 81 200

Thrips imaginis 1* 0.0001 15.4 19.1 15.1 6 -34.5 n.s. Auto 201, 202 203 81 204

Zeiraphera diniana 8 0.0215 5.3 9.7 365.0 20 44.6 Auto 139, 84 205 81 205

Zeiraphera diniana 8.7 0.0215 1 5.1 365.0 1173 46.3 sig Spect 206 205 81 205

Zeiraphera diniana 9 0.0215 2.4 7.0 365.0 20 47.1 Auto 207, 84 205 81 205

Zeiraphera diniana 9* 0.0215 4 8.3 365.0 29 46.3 Auto 139, 84 205 81 205

Zeiraphera diniana 9 0.0215 3.1 8.0 365.0 19 47.1 Auto 139, 84 205 81 205

Zeiraphera diniana 9 0.0215 5.1 9.5 365.0 21 46.3 Auto 139, 84 205 81 205

Zooplankton

Brachionus calyciflorus 0.011 1.540E-06 25 0.83 0.090 Spect 208 209 210 211

Brachionus calyciflorus 0.0164 1.540E-06 25 0.83 0.055 Spect 208 209 210 211

Brachionus calyciflorus 0.0164 1.540E-06 25 0.83 0.041 Spect 208 209 210 211

Page 16: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

15

Brachionus calyciflorus 0.0452 1.540E-06 25 0.83 0.093 Spect 210, 212 209 210 211

Brachionus calyciflorus 0.0548* 1.540E-06 25 0.83 0.132 Spect 208 209 210 211

Brachionus calyciflorus 0.0685 1.540E-06 25 0.83 0.219 Spect 208 209 210 211

Brachionus calyciflorus 0.0685 1.540E-06 25 0.83 0.126 Spect 208 209 210 211

Brachionus calyciflorus 0.0822 1.540E-06 25 0.83 0.164 Spect 208 209 210 211

Brachionus calyciflorus 0.1096 1.540E-06 25 0.83 0.315 Spect 208 209 210 211

Brachionus plicatilis 0.1096* 2.800E-07 20 2.17 3.288 sig Wave 213 214 213 215

Brachionus rubens 0.0275* 3.000E-07 20 2.00 0.123 Subj 216 214 216 217

Daphnia magna 0.1389* 1.812E-03 25 9.37 0.641 Subj 218 219 218 220

Daphnia obtusa 0.126* 1.880E-05 14 10.00 0.611 sig TPT 221, 222 223 221 223

Daphnia pulicaria 0.0822 5.000E-05 19 7.07 0.071 sig TPT 224, 222 225 224 225

Daphnia pulicaria 0.1732 5.000E-05 15 7.07 1.326 sig Spect 226 225 226 225

Daphnia pulicaria 0.1885 5.000E-05 15 7.07 1.326 sig Spect 226 225 226 225

Daphnia pulicaria 0.2608* 5.000E-05 15 7.07 1.688 sig Spect 226 225 226 225

Daphnia pulicaria 0.3753 5.000E-05 15 7.07 1.885 sig Spect 226 225 226 225

Daphnia pulicaria 0.4986 5.000E-05 15 7.07 1.885 sig Spect 226 225 226 225

Eurytemora affinis 0.1096* 5.500E-06 20 9.20 3.288 sig Wave 213 227 213 228

Protists

Dictyostelium discoideu 0.0055 8.400E-10 25 0.33 0.022 Subj 229 209 229 230

Dictyostelium discoideu 0.0123* 8.400E-10 25 0.33 0.074 Subj 229 209 229 230

Dictyostelium discoideu 0.0123 8.400E-10 25 0.33 0.074 Subj 229 209 229 230

Didinium nasutum 0.0178 2.000E-07 22 0.30 0.110 TPT 231 231 231 231

Page 17: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

16

Didinium nasutum 0.0288 2.000E-07 22 0.30 0.110 TPT 231 231 231 231

Didinium nasutum 0.0166 7.350E-07 27 0.50 0.099 Subj 232 209 232 232

Didinium nasutum 0.0178* 7.350E-07 27 0.50 0.321 Subj 232 209 232 232

Didinium nasutum 0.0129 7.350E-07 25 0.28 0.090 Subj 233 209 233 234

Didinium nasutum 0.016 7.350E-07 27 0.25 0.032 Subj 232 209 232 232

Didinium nasutum 0.018 7.350E-07 27 0.25 0.072 Subj 232 209 232 232

Didinium nasutum 0.0185 7.350E-07 27 0.25 0.370 Subj 232 209 232 232

Tetrahymena pyriformis 0.0082 2.000E-08 25 0.10 0.041 Subj 235 235 229 236

Tetrahymena pyriformis 0.011 2.000E-08 20 0.10 0.121 Subj 237 235 237 236

Tetrahymena pyriformis 0.0132* 2.000E-08 20 0.10 0.085 Subj 237 235 237 236

Tetrahymena pyriformis 0.0233 2.000E-08 25 0.10 0.077 Subj 235 235 229 236

Woodruffia metabolica 0.0179* 1.180E-07 25 0.42 0.233 Subj 238 209 238 238

References

1. Keith, L.B. (1963). Wildlife's ten-year cycle. University of Wisconsin Press, Madison, WI.

2. Peterson, R., Page, R. & Dodge, K. (1984). Wolves, moose, and the allometry of population cycles. Science, 224, 1350-1353.

3. Krukonis, G. & Schaffer, W.M. (1991). Population cycles in mammals and birds: does periodicity scale with body size? J. Theor.

Biol., 148, 469-493.

Page 18: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

17

4. Myhrvold, N.P., Baldridge, E., Chan, B., Sivam, D., Freeman, D.L. & Ernest, S. (2015). An amniote life‐history database to

perform comparative analyses with birds, mammals, and reptiles. Ecology, 96, 3109-3109.

5. Clarke, A. & Rothery, P. (2008). Scaling of body temperature in mammals and birds. Funct. Ecol., 22, 58-67.

6. De Magalhaes, J. & Costa, J. (2009). A database of vertebrate longevity records and their relation to other life‐history traits. J. Evol.

Biol., 22, 1770-1774.

7. Williams, G. (1954). Population fluctuations in some northern hemisphere game birds (Tetraonidae). J. Anim. Ecol., 23, 1-34.

8. Criddle, N. (1930). Some natural factors governing the fluctuations of grouse in Manitoba. Can. Field-Nat., 44, 77-80.

9. Phillips, J.C. (1932). Fluctuation in numbers of the eastern brant goose. Auk, 49, 445-453.

10. Lusk, J.J., Guthery, F.S., Peterson, M.J. & Demaso, S.J. (2007). Evidence for regionally synchronized cycles in Texas quail

population dynamics. J. Wildl. Manage., 71, 837-843.

11. Sinn, J. (1978). Surveys and management of bobwhite quail. Pittman-Robertson Proj. W-15-R34.

12. Lack, D. & Lack, D. (1966). Population studies of birds. Clarendon Press, Oxford.

13. Andreev, A. (1988). The ten year cycle of the willow grouse of Lower Kolyma. Oecologia, 76, 261-267.

14. Siivonen, L. (1952). On the Reflection of the Short-term Fluctuations in Numbers in the Reproduction of Tetraonids. Pap. Game

Res., 9, 1-166.

Page 19: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

18

15. Mackenzie, J. (1952). Fluctuations in the numbers of British tetraonids. J. Anim. Ecol., 21, 128-153.

16. Middleton, A. (1934). Periodic fluctuations in British game populations. J. Anim. Ecol., 3, 231-249.

17. Potts, G., Tapper, S. & Hudson, P. (1984). Population fluctuations in red grouse: analysis of bag records and a simulation model.

J. Anim. Ecol., 53, 21-36.

18. Braestrup, F.W. (1941). A study of the Arctic fox in Greenland. Medd. Grønl., 131, 1-101.

19. Siivonen, L. (1948). Structure of short-cyclic fluctuations in numbers of mammals and birds in the northern parts of the northern

hemisphere. Pap. Game Res., 1, 1-116.

20. Lindén, H. & Rajala, P. (1981). Fluctuations and long-term trends in the relative densities of tetraonid populations in Finland,

1964-77. Finn. Game Res., 39, 13-34.

21. Messier, F. (1991). The significance of limiting and regulating factors on the demography of moose and white-tailed deer. J. Anim.

Ecol., 60, 377-393.

22. Högstedt, G., Seldal, T. & Breistøl, A. (2005). Period length in cyclic animal populations. Ecology, 86, 373-378.

23. Mech, L.D. (1966). The wolves of Isle Royale. US Govt. Print. Off., Washington, U.S.

24. Calder, W.A. (1983). An allometric approach to population cycles of mammals. J. Theor. Biol., 100, 275-282.

25. Post, E., Stenseth, N.C., Peterson, R.O., Vucetich, J.A. & Ellis, A.M. (2002). Phase dependence and population cycles in a large-

mammal predator-prey system. Ecology, 83, 2997-3002.

Page 20: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

19

26. Southern, H.N. (1970). The natural control of a population of tawny owls (Strix aluco). J. Zool., 162, 197-285.

27. Saucy, F. (1994). Density dependence in time series of the fossorial form of the water vole, Arvicola terrestris. Oikos, 71, 381-392.

28. Boyd, I.L. (1981). Population changes and the distribution of a herd of feral goats (Capra sp.) on Rhum, Inner Hebride, 1960–78.

J. Zool., 193, 287-304.

29. Novak, M., Obbard, M.E., James, J.G., Newman, R.A., Booth, A., Satterhwaite, A.J. et al. (1987). Furbearer harvests in North

America, 1600-1984. Ministry of Natural Resources, Toronto, Ontario.

30. Murdoch, W., Kendall, B., Nisbet, R., Briggs, C., McCauley, E. & Bolser, R. (2002). Single-species models for many-species food

webs. Nature, 417, 541-543.

31. Boyce, M.S. & Hayden-Wing, L.D. (1979). North American elk: ecology, behavior, and management. University of Wyoming

Press, Laramie, WY.

32. O’Gara, B.W. & Dundas, R.G. (2002). Taxonomy. In: North American elk: ecology and management. (eds. Toweill, DE &

Thomas, JW). Smithsonian Institution Press Washington DC, USA, pp. 67-119.

33. Wisdom, M.J. & Cook, J.G. (2000). North American elk. In: Ecology and management of large animals in North America. (eds.

Demarais, S & Krausman, PR). Prentice Hall Upper Saddle River, NJ, pp. 694-735.

34. Shelford, V. (1943). The abundance of the collared lemming (Dicrostonyx Groenlandicus (TR). VAR. Richardsoni Mer.) in the

Churchill Area, 1929 to 1940. Ecology, 24, 472-484.

Page 21: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

20

35. Klvana, I., Berteaux, D. & Cazelles, B. (2004). Porcupine feeding scars and climatic data show ecosystem effects of the solar

cycle. Am. Nat., 164, 283-297.

36. Spencer, D.A. (1964). Porcupine population fluctuations in past centuries revealed by dendrochronology. J. Appl. Ecol., 1, 127-

149.

37. Erlien, D. & Tester, J. (1984). Population ecology of sciurids in northwestern Minnesota. Can. Field-Nat., 98, 1-6.

38. Christiansen, E. (1983). Fluctuations in some small rodent populations in Norway 1971–1979. Ecography, 6, 24-31.

39. Framstad, E., Stenseth, N. & Ostbye, E. (1993). Time series analysis of population fluctuations of Lemmus lemmus. In: The

biology of lemmings. (eds. Stenseth, NC & Ims, RA). Academic Press London, UK, pp. 97-116.

40. Siivonen, L. & Koskimies, J. (1955). Population fluctuations and the lunar cycle. Pap. Game Res., 14, 1-22.

41. Itō, Y. (1980). Comparative ecology. Cambridge University Press, New York, NY.

42. MacLulich, D. (1937). Fluctuations in the numbers of the varying hare (Lepus americanus). Univ. Tor. Stud. Biol. Ser., 43, 136.

43. Seton, E. (1911). The Arctic Prairies. Scribners, New York, NY.

44. Gross, J.E., Stoddart, L.C. & Wagner, F.H. (1974). Demographic analysis of a northern Utah jackrabbit population. Wildl.

Monogr., 40, 3-68.

45. Keith, L.B. (1983). Role of food in hare population cycles. Oikos, 40, 385-395.

Page 22: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

21

46. Andersen, J. (1952). Fluctuations in the field hare population in Denmark compared with certain climatic factors. Pap. Game Res.,

8, 41-43.

47. Naumov, N.P., Levine, N.D. & Plous, F.K. (1972). The ecology of animals. University of Illinois Press Urbana, IL, USA.

48. Prince, R.I.T. (1984). Exploitation of kangaroos and wallabies in Western Australia. Wildl. Res. Bull. West. Aust., 13, 1-78.

49. Curry-Lindahl, K. (1956). Biotoper, revir, vandringar och periodicitet hos n'agra sm'adaggdjur. Fauna och Flora, 51, 193-218.

50. Hanski, I., Hansson, L. & Henttonen, H. (1991). Specialist predators, generalist predators, and the microtine rodent cycle. J. Anim.

Ecol., 60, 353-367.

51. Chitty, D. & Chitty, H. (1962). Population trends among the voles at Lake Vyrnwy, 1932-60. In: Symposium Theriologicum, Brno,

pp. 67-76.

52. Krebs, C.J. & Myers, J.H. (1974). Population cycles in small mammals. Adv. Ecol. Res., 8, 267-399.

53. Myllymäki, A. (1977). Outbreaks and Damage by the Field Vole, Microtus agrestis (L.), since World War II in Europe1. EPPO

Bull., 7, 177-207.

54. Wendland, V. (1981). Cyclic population changes in three mouse species in the same woodland. Oecologia, 48, 7-12.

55. Elton, C.S. (1942). Voles, mice and lemmings. Clarendon Press, Oxford, UK.

56. Pearson, O. (1966). The prey of carnivores during one cycle of mouse abundance. J. Anim. Ecol., 35, 217-233.

Page 23: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

22

57. Getz, L.L., Simms, L.E. & McGuire, B. (2000). Nestling survival and population cycles in the prairie vole, Microtus ochrogaster.

Can. J. Zool., 78, 1723-1731.

58. Hamerstrom, F. (1979). Effect of prey on predator: voles and harriers. Auk, 96, 370-374.

59. Andrewartha, H.G. & Birch, L.C. (1954). The Distribution and Abundance of Animals. University of Chicago Press, Chicago, IL.

60. Gosling, L., Watt, A. & Baker, S. (1981). Continuous retrospective census of the East Anglian coypu population between 1970

and 1979. J. Anim. Ecol., 50, 885-901.

61. Pankakoski, E. (1985). Relationship between some meteorological factors and population dynamics of Sorex ananeus in southern

Finland. Acta Zool. Fenn., 173, 287-289.

62. Jensen, T.S. (1982). Seed production and outbreaks of non-cyclic rodent populations in deciduous forests. Oecologia, 54, 184-192.

63. Korpimäki, E. (1985). Rapid tracking of microtine populations by their avian predators: possible evidence for stabilizing

predation. Oikos, 45, 281-284.

64. Gustafsson, T.O. (1983). Reproduction and Social Regulation of Sexual Maturation in Relation to Population Cyclicity in Bank

Voles: Clethrionomys Glareolus. PhD thesis, University of Lund, Sweden,

65. Kowkuha, T.B. & Koschkina, T.V. (1966). On the periodical changes in the numbers of voles (as examplified by the Kola

Peninsula). Bull. Mosc. Soc. Natur. Biological Series., 71, 14-26.

66. Andersson, M. (1976). Population ecology of the long-tailed skua (Stercorarius longicaudus Vieill). J. Anim. Ecol., 45, 537-559.

Page 24: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

23

67. Hansson, L., Lofqvist, J. & Nilsson, A. (1978). Population fluctuations in insectivores and small rodents in northernmost

Fennoscandia. Z. Saugetierkd., 43, 75-92.

68. Eskelinen, O. (1997). On the population fluctuations and structure of the Wood lemming Myopus schisticolor. Z. Saugetierkd., 62,

293-302.

69. Fryxell, J.M., Hussell, D.J.T., Lambert, A.B. & Smith, P.C. (1991). Time lags and population fluctuations in white-tailed deer. J.

Wildl. Manage., 55, 377-385.

70. Poland, H. (1842). Fur-Bearing Mammals. Gurney and Jackson, London, UK.

71. Butler, L. (1962). Periodicities in the annual muskrat population figures for the province of Saskatchewan. Can. J. Zool., 40, 1277-

1286.

72. Elton, C. & Nicholson, M. (1942). Fluctuations in numbers of the muskrat (Ondatra zibethica) in Canada. J. Anim. Ecol., 11, 96-

126.

73. Drost, C.A. & Fellers, G.M. (1991). Density cycles in an island population of deer mice, Peromyscus maniculatus. Oikos, 60, 351-

364.

74. Sowls, L.K. (1948). The Franklin ground squirrel, Citellus franklinii (Sabine), and its relationship to nesting ducks. J. Mammal.,

29, 113-137.

75. Bastille-Rousseau, G., Schaefer, J.A., Mahoney, S.P. & Murray, D.L. (2013). Population decline in semi-migratory caribou

(Rangifer tarandus): intrinsic or extrinsic drivers? Can. J. Zool., 91, 820-828.

Page 25: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

24

76. Klein, D.R. (1968). The introduction, increase, and crash of reindeer on St. Matthew Island. J. Wildl. Manage., 32, 350-367.

77. Scheffer, V.B. (1951). The rise and fall of a reindeer herd. Sci. Monthly, 73, 356-362.

78. Jedrzejewska, B., Jedrzejewski, W., Bunevich, A.N., Milkowski, L. & Krasinski, Z.A. (1997). Factors shaping population

densities and increase rates of ungulates in Bialowieza Primeval Forest (Poland and Belarus) in the 19th and 20th centuries.

Acta Theriol., 42, 399-451.

79. Shepherd, R.F. & Gray, T.G. (2001). Comparative rates of density change in declining populations of the blackheaded budworm

Acleris gloverana (Lepidoptera: Tortricidae) among different sites on Vancouver Island. Environ. Entomol., 30, 883-891.

80. Gilligan, T.M., & Epstein, M. E. (2014). Tortricids of Agricultural Importance. Available at:

http://idtools.org/id/leps/tortai/Acleris_gloverana.htm Last accessed 08/2016.

81. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for

global land areas. Int. J. Climatol., 25, 1965-1978.

82. Otvos, I., Conder, N. & Heppner, D. (2001). Acleris gloverana (Walshingham), Western Blackheaded Budworm (Lepidoptera:

Tortricidae). In: Biological Control Programmes in Canada, 1981-2000 (eds. Mason, PG & Huber, JT). CABI Wallingford,

Oxon, pp. 28-31.

83. Morris, R. (1959). Single‐Factor Analysis in Population Dynamics. Ecology, 40, 580-588.

84. Berryman, A.A. (1995). Population cycles: a critique of the maternal and allometric hypotheses. J. Anim. Ecol., 64, 290-293.

Page 26: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

25

85. CABI & EPPO (1997). Data sheets on quarantine pests: Acleris variana and Acleris gloverana. European and Mediterranean Plant

Protection Organization.

86. Way, M. & Banks, C. (1968). Population studies on the active stages of the black bean aphid, Aphis fabae Scop., on its winter host

Euonymus europaeus L. Ann. Appl. Biol., 62, 177-197.

87. Blackman, R.L. & Eastop, V.F. (2008). Aphids on the World's Herbaceous Plants and Shrubs. John Wiley & Sons, UK.

88. Kindlmann, P. & Dixon, A.F. (1992). Optimum body size: effects of food quality and temperature, when reproductive growth rate

is restricted, with examples from aphids. J. Evol. Biol., 5, 677-690.

89. Rhainds, M., Yoo, H.J.S., Kindlmann, P., Voegtlin, D., Castillo, D., Rutledge, C. et al. (2010). Two‐year oscillation cycle in

abundance of soybean aphid in Indiana. Agric. For. Entomol., 12, 251-257.

90. Brown, G., Sharkey, M. & Johnson, D. (2003). Bionomics of Scymnus (Pullus) louisianae J. Chapin (Coleoptera: Coccinellidae)

as a predator of the soybean aphid, Aphis glycines Matsumura (Homoptera: Aphididae). J. Econ. Entomol., 96, 21-24.

91. Hirano, K., Honda, K.-i. & Miyai, S.i. (1996). Effects of temperature on development, longevity and reproduction of the soybean

aphid, Aphis glycines (Homoptera: Aphididae). Appl. Entomol. Zool., 31, 178-180.

92. Alyokhin, A., Drummond, F.A. & Sewell, G. (2005). Density-dependent regulation in populations of potato-colonizing aphids.

Popul. Ecol., 47, 257-266.

93. Wang, K., Tsai, J.H. & Harrison, N.A. (1997). Influence of temperature on development, survivorship, and reproduction of

buckthorn aphid (Homoptera: Aphididae). Ann. Entomol. Soc. Am., 90, 62-68.

Page 27: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

26

94. Broekhuizen, N., Evans, H.F. & Hassell, M.P. (1993). Site characteristics and the population dynamics of the pine looper moth. J.

Anim. Ecol., 62, 511-518.

95. Heliövaara, K., Väisänen, R. & Kemppi, E. (1989). Change of pupal size of Panolis flammea (Lepidoptera; Noctuidae) and

Bupalus piniarius (Geometridae) in response to concentration of industrial pollutants in their food plant. Oecologia, 79, 179-

183.

96. Haynes, K.J., Allstadt, A.J. & Klimetzek, D. (2014). Forest defoliator outbreaks under climate change: effects on the frequency

and severity of outbreaks of five pine insect pests. Global Change Biol., 20, 2004-2018.

97. Schwerdtfeger, F. (1941). Über die Ursachen des Massenwechsels der Insekten. Z. Angew. Entomol., 28, 254-303.

98. Danell, K. & Ericson, L. (1990). Dynamic relations between the antler moth and meadow vegetation in northern Sweden. Ecology,

71, 1068-1077.

99. Chinery, M. (1986). Collins guide to the insects of Britain and western Europe. Collins, London, UK.

100. Spitzer, K., Rejmánek, M. & Soldán, T. (1984). The fecundity and long-term variability in abundance of noctuid moths

(Lepidoptera, Noctuidae). Oecologia, 62, 91-93.

101. Zhang, Q.-B. & Alfaro, R.I. (2002). Periodicity of two-year cycle spruce budworm outbreaks in central British Columbia: A

dendro-ecological analysis. For. Sci., 48, 722-731.

102. North American Moth Photographers Group at the Mississippi Entomological Museum. Available at:

http://mothphotographersgroup.msstate.edu/species.php?hodges=3641 Last accessed 08/2016.

Page 28: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

27

103. Burleigh, J.S., Alfaro, R.I., Borden, J.H. & Taylor, S. (2002). Historical and spatial characteristics of spruce budworm

Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) outbreaks in northeastern British Columbia. For. Ecol. Manage.,

168, 301-309.

104. Lorimer, N. & Bauer, L.S. (1983). Spruce budworm weight and fecundity: Means, frequency distributions, and correlations for

two populations (Lepidoptera: Tortricidae). Great Lakes Entomol., 16, 153-156.

105. Royama, T.O. (1984). Population dynamics of the spruce budworm Choristoneura fumiferana. Ecol. Monogr., 54, 429-462.

106. Candau, J.-N., Fleming, R.A. & Hopkin, A. (1998). Spatiotemporal patterns of large-scale defoliation caused by the spruce

budworm in Ontario since 1941. Can. J. For. Res., 28, 1733-1741.

107. Boulanger, Y. & Arseneault, D. (2004). Spruce budworm outbreaks in eastern Quebec over the last 450 years. Can. J. For. Res.,

34, 1035-1043.

108. Swetnam, T.W. & Lynch, A.M. (1993). Multicentury, Regional‐Scale Patterns of Western Spruce Budworm Outbreaks. Ecol.

Monogr., 63, 399-424.

109. Zou, J. & Cates, R.G. (1997). Effects of terpenes and phenolic and flavonoid glycosides from Douglas fir on western spruce

budworm larval growth, pupal weight, and adult weight. J. Chem. Ecol., 23, 2313-2326.

110. Fellin, D.G. & Dewey, J.E. (1982). Western spruce budworm. In: Forest Insect and Disease Leaflet. U.S. Dept. of Agriculture,

Forest Service, Intermountain Forest and Range Experiment Station.

111. Alfaro, R.I., Berg, J. & Axelson, J. (2014). Periodicity of western spruce budworm in Southern British Columbia, Canada. For.

Ecol. Manage., 315, 72-79.

Page 29: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

28

112. Ryerson, D.E., Swetnam, T.W. & Lynch, A.M. (2003). A tree-ring reconstruction of western spruce budworm outbreaks in the

San Juan Mountains, Colorado, USA. Can. J. For. Res., 33, 1010-1028.

113. Volney, W.J.A. & McCullough, D.G. (1994). Jack pine budworm population behaviour in northwestern Wisconsin. Can. J. For.

Res., 24, 502-510.

114. Thomas, A.W., Borland, S.A. & Greenbank, D.O. (1980). Field fecundity of the spruce budworm (Lepidoptera: Tortricidae) as

determined from regression relationships between egg complement, forewing length, and body weight. Can. J. Zool., 58, 1608-

1611.

115. McCullough, D.G. (2000). A review of factors affecting the population dynamics of jack pine budworm (Choristoneura pinus

pinus Freeman). Popul. Ecol., 42, 243-256.

116. Volney, W.J.A. (1988). Analysis of historic jack pine budworm outbreaks in the Prairie provinces of Canada. Can. J. For. Res.,

18, 1152-1158.

117. Speer, J.H., Swetnam, T.W., Wickman, B.E. & Youngblood, A. (2001). Changes in pandora moth outbreak dynamics during the

past 622 years. Ecology, 82, 679-697.

118. Powell, J.A. & Opler, P.A. (2009). Moths of Western North America. University of California Press, CA.

119. Turchin, P., Lorio, P.L., Taylor, A.D. & Billings, R.F. (1991). Why do populations of southern pine beetles (Coleoptera:

Scolytidae) fluctuate? Environ. Entomol., 20, 401-409.

120. Turchin, P. & Taylor, A.D. (1992). Complex dynamics in ecological time series. Ecology, 73, 289-305.

Page 30: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

29

121. Reeve, J.D. & Turchin, P. (2002). Evidence for predator-prey cycles in a bark beetle. In: Population Cycles: The Case for

Trophic Interactions (ed. Berryman, AA). Oxford University Press New York, NY, pp. 92-108.

122. Thatcher, R.C. (1980). The southern pine beetle. US Dept. of Agriculture, Expanded Southern Pine Beetle Research and

Applications Program, Forest Service, Science and Education Administration.

123. Taylor, S.W. & Carroll, A.L. (2004). Disturbance, Forest Age, and Mountain Pine Beetle Outbreak Dynamics in BC: A historical

perspective. In: Mountain pine beetle sumposium: challenges and solutions (eds. Shore, TL, Brooks, JE & Stone, JE) Natural

Resources Canada, Canadian Forest Service, Victoria.

124. Elkin, C. & Reid, M.L. (2005). Low energy reserves and energy allocation decisions affect reproduction by mountain pine

beetles, Dendroctonus ponderosae. Funct. Ecol., 19, 102-109.

125. Logan, J.A. & Powell, J.A. (2004). Modelling Mountain Pine Beetle Phenological Response to Temperature. In: Mountain pine

beetle sumposium: challenges and solutions (eds. Shore, TL, Brooks, JE & Stone, JE) Natural Resources Canada, Canadian

Forest Service, Victoria.

126. Varley, G. (1949). Population changes in German forest pests. J. Anim. Ecol., 18, 117-122.

127. Kimber, I. Pine-tree Lappet, Dendrolimus pini. Available at: http://www.ukmoths.org.uk/species/dendrolimus-pini/ Last accessed

08/2016.

128. Geri, C. (1988). The pine sawfly in central France. In: Dynamics of Forest Insect Populations (ed. Berryman, AA). Springer New

York, NY, pp. 377-405.

129. Beyaert, I., Köpke, D., Stiller, J., Hammerbacher, A., Yoneya, K., Schmidt, A. et al. (2012). Can insect egg deposition ‘warn’ a

plant of future feeding damage by herbivorous larvae? Proc. R. Soc. Lond., Ser. B: Biol. Sci., 279, 101-108.

Page 31: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

30

130. Dixon, A.F.G. (1990). Population dynamics and abundance of deciduous tree-dwelling aphids. In: Population dynamics of forest

insects (eds. Watt, SR, Leather, SR, Hunter, MD & Kidd, NAC). Intercept Andover, UK, pp. 11-23.

131. Wellings, P.W., Leather, S. & Dixon, A. (1980). Seasonal variation in reproductive potential: a programmed feature of aphid life

cycles. J. Anim. Ecol., 49, 975-985.

132. Münster-Swendsen, M. (2002). Population Cycles of the Spruce needle-miner in Denmark driven by interactions with insect

parasitoids. In: Population Cycles: The Case for Trophic Interactions (ed. Berryman, AA). Oxford University Press New

York, New York, USA, pp. 29-43.

133. Symonds, M.R., Johnson, T.L. & Elgar, M.A. (2012). Pheromone production, male abundance, body size, and the evolution of

elaborate antennae in moths. Ecol. Evol., 2, 227-246.

134. Berryman, A.A. (2005). Detecting the causes of population cycles by analysis of R‐functions: the spruce needle‐miner, Epinotia

tedella, and its parasitoids in Danish spruce plantations. Oikos, 108, 495-502.

135. Tenow, O. (1972). Outbreaks of Oporinia autumnata Bkh. and Operophthera spp.(Lep., Geometridae) in the Scandinavian

mountain chain and northern Finland 1862-1968. Zool. Bidr. fran Upps., 2, 1-107.

136. Rantala, M. & Roff, D. (2007). Inbreeding and extreme outbreeding cause sex differences in immune defence and life history

traits in Epirrita autumnata. Heredity, 98, 329-336.

137. Berryman, A.A. (1996). What causes population cycles of forest Lepidoptera? Trends Ecol. Evol., 11, 28-32.

138. Andersson, G. & Jonasson, J. (1980). The relative abundance of insects on mountain birch at Ammarnas, Swedish Lapland.

Entomol. Tidskr., 101, 61-69.

Page 32: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

31

139. Baltensweiler, W. (1989). The folivore guild on larch (Larix decidua) in the Alps. In: Forest Insect Guilds: Patterns of

Interaction with Host Trees (ed. Baranchikov, YN, Mattson, William J., Hain, Fred P., Payne, Thomas L.). US Forest Service

Technical Report, pp. 145-164.

140. Deutsch, H. (2012). Beitrag zur Lepidopteren fauna Osttirols, Österreich: VI. Weitere Erstnachweise (Insecta, Lepidoptera).

Wissenschaftliches Jahrbuch der Tiroler Landesmuseen, 5, 185-211.

141. Hickel, E.R., Hickel, G.R., de Souza, O.F.F., Vilela, E.F. & Miramontes, O. (2003). Dinâmica populacional da mariposa oriental

em pomares de pessegueiro e ameixeira. Pesquisa Agropecuária Brasileira, 38, 325-337.

142. Eiseman, C., Moisset, B. & Zimlich, R.L. Species Grapholita molesta - Oriental Fruit Moth. Available at:

http://bugguide.net/node/view/338365 Last accessed 08/2016.

143. Martinat, P.J. & Allen, D.C. (1987). Relationship between outbreaks of saddled prominent, Heterocampa guttivitta (Lepidoptera:

Notodontidae), and drought. Environ. Entomol., 16, 246-249.

144. Myers, J.H. (1988). Can a general hypothesis explain population cycles of forest Lepidoptera? Adv. Ecol. Res., 18, 179-242.

145. Rush, P.A. & Allen, D.C. (1987). Saddled prominent. US Department of Agriculture, Forest Service.

146. Morris, R. (1964). The value of historical data in population research, with particular reference to Hyphantria cunea Drury. Can.

Entomol., 96, 356-368.

147. Gomi, T. (2000). Effects of timing of diapause induction on winter survival and reproductive success in Hyphantria cunea in a

transition area of voltinism. Entomol. Sci., 3, 433-438.

Page 33: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

32

148. Harris, J.W.E., Dawson, A.F. & Brown, R.G. (1982). The western hemlock looper in British Columbia 1911-1980. Information

report, Pacific Forest Research Centre, Victoria, B.C., Canada.

149. Randall, C.B. (2010). Management guide for western hemlock looper. Lambdina fiscellaria lugubrosa (Hulst). US Forest Service.

150. Hébert, C., Jobin, L., Auger, M. & Dupont, A. (2003). Oviposition traps to survey eggs of Lambdina fiscellaria (Lepidoptera:

Geometridae). J. Econ. Entomol., 96, 768-776.

151. Bigger, M. & Tapley, R. (1969). Prediction of outbreaks of coffee leaf-miners on Kilimanjaro. Bull. Entomol. Res., 58, 601-618.

152. Bigger, M. (1973). An investigation by Fourier analysis into the interaction between coffee leaf-miners and their larval parasites.

J. Anim. Ecol., 42, 417-434.

153. Hill, D.S. (2008). Pests of crops in warmer climates and their control. Springer Science & Business Media, Berlin.

154. Huang, S., Jiang, X., Lei, C. & Luo, L. (2008). Correlation analysis between periodic outbreaks of Loxostege sticticalis

(Lepidoptera: Pyralidae) and solar activity. Acta Ecol. Sin., 28, 4824-4829.

155. Kimber, I. Loxostege sticticalis. Available at: http://www.ukmoths.org.uk/species/loxostege-sticticalis/adult/ Last accessed

08/2016.

156. Afonin, A.N., Akhanaev, Y.B. & Frolov, A.N. (2014). The range of the beet webworm Loxostege sticticalis L. (Lepidoptera,

Pyraloidea: Crambidae) in the former USSR territory and its subdivision by the number of generations per season. Entomol.

Rev., 94, 200-204.

Page 34: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

33

157. Frolov, A. (2015). The beet webworm Loxostege sticticalis L. (Lepidoptera, Crambidae) in the focus of agricultural entomology

objectives: I. The periodicity of pest outbreaks. Entomol. Rev., 95, 147-156.

158. Johnson, D.M., Liebhold, A.M., Bjørnstad, O.N. & Mcmanus, M.L. (2005). Circumpolar variation in periodicity and synchrony

among gypsy moth populations. J. Anim. Ecol., 74, 882-892.

159. Stoyenoff, J., Witter, J.A., Montgomery, M. & Chilcote, C. (1994). Effects of host switching on gypsy moth (Lymantria dispar

(L.)) under field conditions. Oecologia, 97, 143-157.

160. Traw, M., Lindroth, R. & Bazzaz, F. (1996). Decline in gypsy moth (Lymantria dispar) performance in an elevated CO2

atmosphere depends upon host plant species. Oecologia, 108, 113-120.

161. Hlásny, T., Trombik, J., Holuša, J., Lukášová, K., Grendár, M., Turčáni, M. et al. (2016). Multi-decade patterns of gypsy moth

fluctuations in the Carpathian Mountains and options for outbreak forecasting. J. Pest Sci., 89, 413-425.

162. Sisojevic, P. (1975). Population dynamics of tachinid parasites of the gypsy moth (Lymantria dispar L.) during a gradation period

(in Serbo-Croatian). Zast. Bilja., 26, 97-170.

163. Katagiri, K. (1969). Review on microbial control of insect pests in forests in Japan. Entomophaga, 14, 203-214.

164. Seitz, A. (1909). The Palaearctic Butterflies. Fitz Lehmann Verlag, Stuttgart, Germany.

165. Lykouressis, D.P., Perdikis, D.C. & Gaspari, M.D. (2007). Prey preference and biomass consumption of Macrolophus pygmaeus

(Hemiptera: Miridae) fed Myzus persicae and Macrosiphum euphorbiae (Hemiptera: Aphididae). Eur. J. Entomol., 104, 199-

204.

Page 35: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

34

166. Barlow, C. (1962). The influence of temperature on the growth of experimental populations of Myzus persicae (Sulzer) and

Macrosiphum euphorbiae (Thomas) (Aphididae). Can. J. Zool., 40, 145-156.

167. Myers, J.H. (1993). Population outbreaks in forest Lepidoptera. Am. Sci., 81, 240-251.

168. Moore, L.V., Myers, J.H. & Eng, R. (1988). Western tent caterpillars prefer the sunny side of the tree, but why? Oikos, 51, 321-

326.

169. Mitchell, R.G. (1990). Seasonal history of the western tent caterpillar (Lepidoptera: Lasiocampidae) on bitterbrush and currant in

central Oregon. J. Econ. Entomol., 83, 1492-1494.

170. Parry, D., Goyer, R.A. & Lenhard, G.J. (2001). Macrogeographic clines in fecundity, reproductive allocation, and offspring size

of the forest tent caterpillar Malacosoma disstria. Ecol. Entomol., 26, 281-291.

171. Cooke, B.J. & Lorenzetti, F. (2006). The dynamics of forest tent caterpillar outbreaks in Quebec, Canada. For. Ecol. Manage.,

226, 110-121.

172. Cooke, B.J. (2001). Interactions between climate, trembling aspen, and outbreaks of forest tent caterpillar in Alberta. PhD thesis,

University of Alberta, Edmonton, Alberta.

173. Sippell, W. (1962). Outbreaks of the forest tent caterpillar, Malacosoma disstria Hbn., a periodic defoliator of broad-leaved trees

in Ontario. Can. Entomol., 94, 408-416.

174. Sutton, A. & Tardif, J.C. (2007). Dendrochronological reconstruction of forest tent caterpillar outbreaks in time and space,

western Manitoba, Canada. Can. J. For. Res., 37, 1643-1657.

Page 36: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

35

175. Hogg, E.H. & Schwarz, A.G. (1999). Tree-ring analysis of declining aspen stands in west-central Saskatchewan. Can. For. Serv.

North. For. Cent. Inf. Rep., NOR-X-359.

176. Hogg, E., Brandt, J.P. & Kochtubajda, B. (2002). Growth and dieback of aspen forests in northwestern Alberta, Canada, in

relation to climate and insects. Can. J. For. Res., 32, 823-832.

177. Sequeira, R. & Dixon, A.F. (1997). Population Dynamics or tree-dwelling aphids: the importance of seasonality and time scale.

Ecology, 78, 2603-2610.

178. Sequeira, R. & Dixon, A. (1996). Life history responses to host quality changes and competition in the Turkey-oak aphid,

Myzocallis boerneri (Hemiptera: Sternorrhyncha: Callaphididae). Eur. J. Entomol., 93, 53-58.

179. Harris, J.W.E., Dawson, A.F. & Brown, R. (1985). The western false hemlock looper in British Columbia 1942-1984. Internal

report, BC-X-269, Canadian Forestry Service, Pacific Forest Research Centre, Victoria, B.C., Canada.

180. National Biological Information Infrastructure Program & USGS Northern Prairie Wildlife Research Center. Nepytia freemani.

Available at: http://www.butterfliesandmoths.org/species/Nepytia-freemani Last accessed 08/2016.

181. Klein, W.H. & Minnoch, M.W. (1971). On the occurrence and biology of Nepytia freemani (Lepidoptera: Geometridae) in Utah.

Can. Entomol., 103, 119-124.

182. Varley, G.C., Gradwell, G.R. & Hassell, M.P. (1974). Insect population ecology: an analytical approach. Univ of California

Press, Berkeley and Los Angeles, CA.

183. Tikkanen, O.-P., Niemelä, P. & Keränen, J. (2000). Growth and development of a generalist insect herbivore, Operophtera

brumata, on original and alternative host plants. Oecologia, 122, 529-536.

Page 37: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

36

184. Mason, R.R. & Wickman, B.E. (1988). The Douglas-fir tussock moth in the interior Pacific Northwest. In: Dynamics of forest

insect populations (ed. Berryman, AA). Springer New York, NY, pp. 179-209.

185. Vezina, A. & Peterman, R.M. (1985). Tests of the role of a nuclear polyhedrosis virus in the population dynamics of its host,

douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae). Oecologia, 67, 260-266.

186. Klimetzek, D. (1990). Population dynamics of pine-feeding insects: a historical study. In: Population dynamics of forest insects

(eds. Watt, SR, Leather, SR, Hunter, MD & Kidd, NAC). Intercept Andover UK., pp. 3-10.

187. Kimber, I. Pine Beauty, Panolis flammea. Available at: http://www.ukmoths.org.uk/species/panolis-flammea/ Last accessed

08/2016.

188. Jardon, Y., Filion, L. & Cloutier, C. (1994). Long-term impact of insect defoliation on growth and mortality of eastern larch in

boreal Québec. Ecoscience, 1, 231-238.

189. Heron, R. (1955). Studies on the starvation of last-instar larvae of the larch sawfly, Pristiphora erichsonii (Htg.) (Hymenoptera:

Tenthredinidae). Can. Entomol., 87, 417-427.

190. Reeks, W. (1954). An outbreak of the larch sawfly (Pristiphora erichsonii (Htg.)) in the Maritime provinces (Hymenoptera:

Tenthredinidae) and the role of parasites in its control. Can. Entomol., 86, 471-480.

191. Liebhold, A., Kamata, N. & Jacob, T. (1996). Cyclicity and synchrony of historical outbreaks of the beech caterpillar,

Quadricalcarifera punctatella (Motschulsky) in Japan. Res. Popul. Ecol., 38, 87-94.

192. Kamata, N. & Tanabe, H. (1999). Performance of beech caterpillar (Syntypistis punctatella (Motschulsky)) on water-stressed

beech. In: Physiology and genetics of tree-phytopage interactions (eds. Lieutier, F, Mattson, WJ & Wagner, MR). INRA Paris,

France, pp. 313-322.

Page 38: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

37

193. Kolk, A. & Starzyk, J.R. (1996). The Atlas of Forest Insect Pests. Multico Warszawa, The Polish Forest Research Institute.

194. Kimber, I. Pine Hawk-moth Sphinx pinastri. Available at: http://www.ukmoths.org.uk/species/sphinx-pinastri/ Last accessed

08/2016.

195. Gardarsson, A., Einarsson, A., Gíslason, G.M., Hrafnsdóttir, T., Ingvason, H.R., Jónsson, E. et al. (2004). Population fluctuations

of chironomid and simuliid Diptera at Myvatn in 1977–1996. Aquat. Ecol., 38, 209-217.

196. Einarsson, Á., Gardarsson, A., Gíslason, G.M. & Ives, A.R. (2002). Consumer–resource interactions and cyclic population

dynamics of Tanytarsus gracilentus (Diptera: Chironomidae). J. Anim. Ecol., 71, 832-845.

197. Ólafsson, J. (1999). Connections between oceanic conditions off N-Iceland, Lake Myvatn temperature, regional wind direction

variability and the North Atlantic Oscillation. Rit Fiskideild, 16, 41-58.

198. Li, S., Daudin, J.-J., Piou, D., Robinet, C. & Jactel, H. (2015). Periodicity and synchrony of pine processionary moth outbreaks in

France. For. Ecol. Manage., 354, 309-317.

199. Integrated Management of forest pests addressing climate trends (IMPACT). Pest profile - Pine processionary moth. Forest

Research in Wales, Swansea University, and the National University of Ireland.

200. Hódar, J.A., Castro, J. & Zamora, R. (2003). Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict

Mediterranean Scots pine forests under climatic warming. Biol. Conserv., 110, 123-129.

201. Davidson, J. & Andrewartha, H. (1948). Annual trends in a natural population of Thrips imaginis (Thysanoptera). J. Anim. Ecol.,

17, 193-199.

Page 39: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

38

202. Witteman, G.J., Redfearn, A. & Pimm, S.L. (1990). The extent of complex population changes in nature. Evol. Ecol., 4, 173-183.

203. CABI (2016). Thrips imaginis (plague thrips) In: Invasive Species Compendium. Wallingford, UK: CAB International. Available

at: http://www.cabi.org/isc.

204. Andrewartha, H.V. (1936). Thrips Investigation. 8. The Influence of Temperature on the Rate of Development of the immature

Stages of Thrips imaginis Bagnall and Haplothrips victoriensis Bagnall. J. Coun. Sci. Industr. Res. Aust., 9, 57-64.

205. Baltensweiler, W., Benz, G., Bovey, P. & Delucchi, V. (1977). Dynamics of larch bud moth populations. Annu. Rev. Entomol.,

22, 79-100.

206. Esper, J., Büntgen, U., Frank, D.C., Nievergelt, D. & Liebhold, A. (2007). 1200 years of regular outbreaks in alpine insects.

Proc. R. Soc. Lond., Ser. B: Biol. Sci., 274, 671-679.

207. Baltensweiler, W. & Fischlin, A. (1988). The larch budmoth in the Alps. In: Dynamics of forest insect populations (ed.

Berryman, AA). Springer New York, NY, pp. 331-351.

208. Yoshida, T., Jones, L.E., Ellner, S.P., Fussmann, G.F. & Hairston, N.G. (2003). Rapid evolution drives ecological dynamics in a

predator–prey system. Nature, 424, 303-306.

209. DeLong, J.P., Okie, J.G., Moses, M.E., Sibly, R.M. & Brown, J.H. (2010). Shifts in metabolic scaling, production, and efficiency

across major evolutionary transitions of life. Proc. Natl. Acad. Sci. USA, 107, 12941-12945.

210. Fussmann, G.F., Ellner, S.P., Shertzer, K.W. & Hairston Jr, N.G. (2000). Crossing the Hopf bifurcation in a live predator-prey

system. Science, 290, 1358-1360.

Page 40: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

39

211. Weithoff, G. & Walz, N. (1995). Influence of the filamentous cyanobacterium Planktothrix agardhii on population growth and

reproductive pattern of the rotifer Brachionus calyciflorus. Hydrobiologia, 313, 381-386.

212. Jones, L.E. & Ellner, S.P. (2007). Effects of rapid prey evolution on predator–prey cycles. J. Math. Biol., 55, 541-573.

213. Benincà, E., Jöhnk, K.D., Heerkloss, R. & Huisman, J. (2009). Coupled predator–prey oscillations in a chaotic food web. Ecol.

Lett., 12, 1367-1378.

214. Hansen, B.W., Bjørnsen, P. & Hansen, B. (1997). Zooplankton grazing and growth: Scaling within the 2-2,000-μm body size

range. Limnol. Oceanogr, 42, 687-704.

215. Yoshinaga, T., Hagiwara, A. & Tsukamoto, K. (1999). Effect of conditioned media on the asexual reproduction of the

monogonont rotifer Brachionus plicatilis OF Müller. Hydrobiologia, 412, 103-110.

216. Halbach, U., Siebert, M., Westermayer, M. & Wissel, C. (1983). Population ecology of rotifers as a bioassay tool for

ecotoxicological tests in aquatic environments. Ecotoxicol. Environ. Saf., 7, 484-513.

217. Pilarska, J. (1972). The dynamics of growth of experimental populations of the rotifer Brachionus rubens Ehrbg. Pol. Arch.

Hydrobiol., 19, 265-277.

218. Pratt, D.M. (1943). Analysis of population development in Daphnia at different temperatures. Biol. Bull., 85, 116-140.

219. Dumont, H.J., Van de Velde, I. & Dumont, S. (1975). The dry weight estimate of biomass in a selection of Cladocera, Copepoda

and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia, 19, 75-97.

Page 41: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

40

220. Ebert, D. (1991). The effect of size at birth, maturation threshold and genetic differences on the life-history of Daphnia magna.

Oecologia, 86, 243-250.

221. Slobodkin, L. (1954). Population dynamics in Daphnia obtusa Kurz. Ecol. Monogr., 24, 69-88.

222. McCauley, E. & Murdoch, W.W. (1987). Cyclic and stable populations: plankton as paradigm. Am. Nat., 129, 97-121.

223. Urabe, J. & Sterner, R. (2001). Contrasting effects of different types of resource depletion on life‐history traits in Daphnia. Funct.

Ecol., 15, 165-174.

224. Slobodkin, L. & Richman, S. (1956). The effect of removal of fixed percentages of the newborn on size and variability in

populations of Daphnia pulicaria (Forbes). Limnol. Oceanogr., 1, 209-237.

225. Tessier, A.J. & Consolatti, N.L. (1989). Variation in offspring size in Daphnia and consequences for individual fitness. Oikos, 56,

269-276.

226. Grover, J., McKee, D., Young, S., Godfray, H. & Turchin, P. (2000). Periodic dynamics in Daphnia populations: biological

interactions and external forcing. Ecology, 81, 2781-2798.

227. Burkill, P. & Kendall, T. (1982). Production Of The Copepod Eurytemora-Affinis In The Bristol Channel. Mar. Ecol. Prog. Ser.,

7, 21-31.

228. Ban, S. (1994). Effect of temperature and food concentration on post-embryonic development, egg production and adult body

size of calanoid copepod Eurytemora affinis. J. Plankton Res., 16, 721-735.

Page 42: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

41

229. Tsuchiya, H., Drake, J., Jost, J. & Fredrickson, A. (1972). Predator-prey interactions of Dictyostelium discoideum and

Escherichia coli in continuous culture. J. Bacteriol., 110, 1147-1153.

230. Zada-Hames, I.M. & Ashworth, J. (1978). The cell cycle during the vegetative stage of Dictyostelium discoideum and its

response to temperature change. J. Cell Sci., 32, 1-20.

231. Holyoak, M. & Lawler, S.P. (1996). Persistence of an extinction‐prone predator‐prey interaction through metapopulation

dynamics. Ecology, 77, 1867-1879.

232. Veilleux, B.G. (1979). An analysis of the predatory interaction between Paramecium and Didinium. J. Anim. Ecol., 48, 787-803.

233. Luckinbill, L.S. (1973). Coexistence in laboratory populations of Paramecium aurelia and its predator Didinium nasutum.

Ecology, 54, 1320-1327.

234. Hewett, S.W. (1988). Predation by Didinium nasutum: effects of predator and prey size. Ecology, 69, 135-145.

235. Jost, J., Drake, J., Fredrickson, A. & Tsuchiya, H. (1973). Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter

vinelandii, and glucose in a minimal medium. J. Bacteriol., 113, 834-840.

236. Thrasher, J.D. & Adams, J.F. (1972). The effects of four mercury compounds on the generation time and cell division in

Tetrahymena pyriformis, WH14. Environ. Res., 5, 443-450.

237. Becks, L., Hilker, F.M., Malchow, H., Jürgens, K. & Arndt, H. (2005). Experimental demonstration of chaos in a microbial food

web. Nature, 435, 1226-1229.

238. Salt, G.W. (1967). Predation in an Experimental Protozoan Population (Woodruffia‐Paramecium). Ecol. Monogr., 37, 113-144.

Page 43: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

1

Electronic Supplement 2 ______________________________________________________________________________

Supplementary Figures

Figure S1: Effect of the insect body temperature estimate (i.e., mean annual temperature vs. mean

growing season temperature) on the mass and temperature dependence of period within insects.

Figure S2: Effect of the insect body temperature estimate (i.e., mean annual temperature vs. mean

growing season temperature) on the mass and temperature dependence of period across all taxa.

Supplementary Tables

Table S1: Summary of multiple linear regression results assessing the effects of body mass,

temperature, and latitude on insect cycle periods.

Table S2: Results of ordinary nonparametric bootstrapping procedure.

Table S3: The distribution of methodological covariates within and across taxonomic groups.

Table S4: Results of ANCOVA analyses evaluating the effect of covariate 1 (i.e., statistical

methodology used to determine cycle period) on the OLS-fitted parameter estimates presented in

Table 1 of the main text.

Table S5: OLS parameter estimates within levels of covariate 1 (i.e., statistical methodology).

Table S6: Results of ANCOVA analyses evaluating the effect of covariate 2 (i.e., statistical

significance attributed to cycle period) on the OLS-fitted parameter estimates presented in Table 1

of the main text.

Table S7: OLS parameter estimates within levels of covariate 2 (i.e., statistical significance).

Table S8: Results of ANCOVA analyses evaluating the effect of covariate 3 (i.e., the number of

cycles observed in the time series) on the OLS-fitted parameter estimates presented in Table 1 of

the main text.

Table S9: OLS parameter estimates within levels of covariate 3 (i.e., the number of cycles

observed).

Table S10: Summary of OLS and PGLS analyses for Model 1 and Model 2 within taxonomic

groups without grouping (i.e., we do not group zooplankton and protists or mammals and birds).

Page 44: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

2

Figure S1: Effect of the estimate for insect body temperature (i.e., mean annual temperature vs. mean growing

season temperature) on the body mass and temperature dependence of cycle period within insects. Panels (a, b)

show the body mass (a) and temperature (b) dependence of cycle period with mean growing season

temperature. Panels (c, d) show the body mass (c) and temperature (d) dependence of cycle period with mean

annual temperature. Cycle periods were corrected for body mass and temperature using the values of E and b

estimated for the respective group and temperature estimate (see methods). All lines were determined by OLS

regression, and all slopes are significantly different from zero.

Page 45: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

3

Figure S2: Effect of the estimate for insect body temperature (i.e., mean annual temperature vs. mean growing

season temperature) on the body mass and temperature dependence of cycle period across all taxa. Panels (a,

b) show the body mass (a) and temperature (b) dependence of cycle period with mean growing season

temperatures as insect body temperatures. Panels (c, d) show the body mass (c) and temperature (d)

dependence of cycle period with mean annual temperatures as insect body temperatures. Cycle periods were

corrected for body mass and temperature using the values of E and b estimated for the respective group and

temperature estimate (see methods). All lines were determined by OLS regression, and all slopes are

significantly different from zero.

Page 46: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

4

Table S1 Summary of multiple linear regression results assessing the effects of body mass, temperature, and latitude on insect cycle periods. We assess the temperature dependence with both mean annual temperature (MAT) and mean growing season temperature (MGST). We limit our analysis to northern hemisphere populations to give an approximately even sample across latitude (4 populations from the southern hemisphere were excluded). Lower and upper bounds of the 95% CI are noted within parentheses. ** denotes P < 0.01

Model: 𝐥𝐧 𝛒 = 𝐥𝐧(𝐈𝐨) + 𝐛𝐥𝐧 𝐌 + 𝐄 𝟏𝐤

𝟏𝐓− 𝟏

𝐓𝟐𝟎℃+ 𝒄 ∗ 𝑳𝒂𝒕𝒊𝒕𝒖𝒅𝒆

n ln(IA) P b P E P c P R2 Insect MAT

114 8.1 (7.3, 8.9)

** 0.16 (0.11, 0.21)

** 0.47 (0.28, 0.66)

** -0.01 (-0.03, 0.01)

0.33 0.36

Insect MGST

114 8.5 (7.6, 9.4)

** 0.15 (0.10, 0.20)

** 0.60 (0.34, 0.86)

** -0.01 (-0.03, 0.01)

0.24 0.34

Page 47: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

5

Table S2. Results of ordinary nonparametric bootstrapping procedure. This procedure is performed for OLS parameter estimates. ‘Bias’ is the difference between the OLS estimate and the average estimate of 10,000 random samples of cycle periods. Given are the original OLS parameter estimates presented in Table 1 of the main text, followed by the bias and standard error in these estimates as calculated by the bootstrapping procedure.

Model 1: 𝐥𝐧 𝛒 = 𝐥𝐧 𝐈 + 𝛉 𝐥𝐧 𝛕

ln(I) Bias Std. error θ Bias Std. error All groups 3.3 3 ∗ 10JK 0.11 0.88 −5 ∗ 10JN 0.02

Insects 4.9 −6 ∗ 10JS 0.55 0.56 1 ∗ 10JS 0.09 Zooplankton & Protists 2.7 −1 ∗ 10JK 0.10 0.66 2 ∗ 10JK 0.06

Mammals & Birds 5.0 −2 ∗ 10JK 0.16 0.58 2 ∗ 10JN 0.04

Model 2: 𝐥𝐧 𝛒 = 𝐥𝐧(𝐈𝐨) + 𝐛𝐥𝐧 𝐌 + 𝐄 𝟏𝐤

𝟏𝐓− 𝟏

𝐓𝟐𝟎℃

ln(IA) Bias Std. error

b Bias Std. error

E Bias Std. error

All groups 7.6 5 ∗ 10JU 0.04 0.31 −2 ∗ 10JN 0.01 0.65 −3 ∗ 10JN 0.02 Insects 7.6 2 ∗ 10JK 0.17 0.17 9 ∗ 10JU 0.02 0.48 −2 ∗ 10JN 0.09

Zoop. & Protists 5.6 2 ∗ 10JS 0.45 0.20 1 ∗ 10JK 0.03 0.77 3 ∗ 10JK 0.17 Mam. & Birds 6.5 −1 ∗ 10JK 0.09 0.24 3 ∗ 10JN 0.02 N/A N/A N/A

Page 48: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

6

Table S3. The distribution of methodological covariates within and across groups.

Group Statistical Methodology*

n Statistical significance†

n # Cycles observed‡

n

Insects Spectral 53 Sig. 35 > 3 88 Subjective 43 n.s. 11 < 3 29 Auto 23 Unknown 73 Unknown 2 Other 0

Zooplankton & Protists

Spectral 16 Sig. 10 > 3 28 Subjective 16 n.s. 0 < 3 8 Auto 0 Unknown 26 Other 4

Mammals & Birds

Spectral 104 Sig. 58 > 3 98 Subjective 58 n.s. 46 < 3 63 Auto 0 Unknown 63 Unknown 6 Other 5

All groups Spectral 173 Sig. 103 > 3 214 Subjective 117 n.s. 57 < 3 100 Auto 23 Unknown 162 Unknown 8 Other 9

* Spectral = spectral or global wavelet analysis. Subjective = average time between peaks or troughs in abundance, Auto = autocorrelation analysis, Other = other methods (e.g., Kendall’s turning point test, Cosine analysis). † Sig. = p – value < 0.05, n.s. = p - value > 0.05, unknown = no test of statistical significance was used. ‡ “> 3” = Length of time series / cycle period is greater than 3. “< 3” = Length of time series / period is less than 3. Unknown = Length of times series is unknown.

Page 49: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

7

Table S4. Results of ANCOVA analyses evaluating the effect of covariate 1 (i.e., statistical methodology used to determine cycle period) on the OLS-fitted parameter estimates presented in Table 1 of the main text. Across all groups, autocorrelation was included in the “other” category.

Group

Model 1:

𝐥𝐧 𝛒 = 𝐥𝐧 𝐈 + 𝛉 𝐥𝐧 𝛕

Model 2:

𝐥𝐧 𝛒 = 𝐥𝐧(𝐈𝐨) + 𝐛𝐥𝐧 𝐌 + 𝐄𝟏𝐤𝟏𝐓−

𝟏𝐓𝟐𝟎℃

ln(I) θ ln(IA) b E

All groups FS,KYZ = 15.9 p < 0.001

FS,KYZ = 2.1 p = 0.12

FS,KYK = 0.03 p = 0.97

FS,KYK = 1.9 p = 0.14

FS,KYK = 6.5 p = 0.002

Insects FS,YYK = 22.4 p < 0.001

FS,YYK = 5.2 p = 0.01

FS,YY] = 10.8 p < 0.001

FS,YY] = 1.1 p = 0.34

FS,YY] = 3.8 p = 0.03

Zooplankton & Protists

FS,K] = 3.0 p = 0.06

FS,K] = 1.9 p = 0.17

FS,S^ = 4.3 p = 0.02

FS,S^ = 0.000 p = 0.99

FS,S^ = 1.5 p = 0.24

Mammals & Birds

FS,YZY = 1.7 p = 0.19

FS,YZY = 0.2 p = 0.80

FS,YZY = 9.0 p < 0.001

FS,YZY = 0.11 p = 0.89

N/A

Page 50: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

8

Table S5. OLS-fitted parameter estimates within levels of covariate 1 (i.e., statistical methodology). Lower and upper bounds of the 95% CI for each parameter estimate are noted in parentheses. (***) indicates p < 0.001, (**) indicates p < 0.01, (*) indicates p < 0.05, and (.) indicates p < 0.1.

Model 1: 𝐥𝐧 𝛒 = 𝐥𝐧 𝐈 + 𝛉 𝐥𝐧 𝛕

Group/Cov. lvl. n ln(I) P θ P All groups

Spectral 173 3.3 3.0, 3.7 *** 0.85 0.79, 0.91 *** Subj 117 3.3 3.1, 3.5 *** 0.93 0.88, 0.98 *** Other 32 2.8 2.3, 3.2 *** 0.90 0.81, 0.99 ***

Insects Spectral 53 6.0 4.8, 7.1 *** 0.35 0.15, 0.55 *** Auto 23 3.3 2.2, 4.4 *** 0.81 0.61, 1.0 *** Subj 43 4.7 3.7, 5.7 *** 0.67 0.49, 0.84 *** Other 0 N/A N/A

Zoop. & Protists Spectral 16 2.9 2.4, 3.3 *** 0.79 0.42, 1.2 *** Auto 0 N/A N/A Subj 16 2.3(1.9, 2.6) *** 0.45(0.23, 0.66) *** Other 4 2.7 2.0, 3.3 *** 0.46(0.10, 0.81) ***

Mam. & Birds Spectral 104 5.1 4.4, 5.9 *** 0.56 0.43, 0.69 *** Auto 0 N/A N/A Subj 58 5.1 4.7, 5.6 *** 0.53 0.43, 0.63 *** Other 5 7.6 1.7, 13.5 * 0.08 −0.96, 1.1

Model 2: 𝐥𝐧 𝛒 = 𝐥𝐧(𝐈𝐨) + 𝐛𝐥𝐧 𝐌 + 𝐄 𝟏𝐤

𝟏𝐓− 𝟏

𝐓𝟐𝟎℃

n ln(IA) P b P E P

All groups Spectral 173 7.5 7.4, 7.6 *** 0.30 0.28, 0.32 *** 0.57 0.50, 0.64 *** Subj 117 7.6 7.5, 7.7 *** 0.31 0.29, 0.32 *** 0.72 0.66, 0.78 *** Other 32 7.7 7.5, 7.9 *** 0.34 0.31, 0.38 *** 0.65 0.53, 0.76 ***

Insects Spectral 53 7.1 6.6, 7.5 *** 0.20 0.13, 0.27 *** 0.73 0.45, 1.01 *** Auto 23 7.6 7.0, 8.2 *** 0.22 0.15, 0.29 *** 0.51 0.25, 0.76 *** Subj 43 8.5 7.8, 9.3 *** 0.20 0.10, 0.30 *** 0.22 −0.04, 0.48 . Other 0 N/A N/A N/A

Zoop. & Protists Spectral 16 3.5 −2, 8.9 −0.02 −0.5, 0.4 1.45 0.17, 2.7 * Auto 0 N/A N/A N/A Subj 16 4.6 3.4, 5.8 *** 0.16 0.10, 0.23 *** 0.32 −0.4, 1.02 Other 4 5.0 −13, 22 0.17 −1.1, 1.5 0.86 −6.5, 8.2

Mam. & Birds Spectral 104 6.7 6.4, 7.04 *** 0.22 0.17, 0.26 *** N/A Auto 0 N/A N/A N/A Subj 58 6.4 6.3, 6.6 *** 0.21 0.18, 0.23 *** N/A Other 5 7.3 6.2, 8.4 *** 0.15 −0.07, 0.36 N/A

Page 51: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

9

Table S6. Results of ANCOVA analyses evaluating the effect of covariate 2 (i.e., statistical significance attributed to cycle period) on the OLS-fitted parameter estimates presented in Table 1 of the main text.

Group

Model 1:

𝐥𝐧 𝛒 = 𝐥𝐧 𝐈 + 𝛉 𝐥𝐧 𝛕

Model 2:

𝐥𝐧 𝛒 = 𝐥𝐧(𝐈𝐨) + 𝐛𝐥𝐧 𝐌 + 𝐄𝟏𝐤𝟏𝐓−

𝟏𝐓𝟐𝟎℃

ln(I) θ ln(IA) b E All groups FS,KYZ = 1.9

p = 0.15 FS,KYZ = 11.5 p < 0.001

FS,KYK = 0.64 p = 0.53

FS,KYK = 9.6 p < 0.001

FS,KYK = 4.9 p = 0.008

Insects FS,YYK = 7.8 p = 0.001

FS,YYK = 2.1 p = 0.13

FS,YY] = 3.6 p = 0.03

FS,YY] = 1.3 p = 0.27

FS,YY] = 1.1 p = 0.32

Zooplankton & Protists

FY,KS = 2.8 p = 0.10

FY,KS = 0.0003 p = 0.99

FY,K] = 3.3 p = 0.08

FY,K] = 0.35 p = 0.56

FY,K] = 1.3 p = 0.27

Mammals & Birds

FS,YZY = 4.8 p = 0.01

FS,YZY = 3.9 p = 0.02

FS,YZY = 8.0 p < 0.001

FS,YZY = 2.6 p = 0.08

N/A

Page 52: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

10

Table S7. OLS-fitted parameter estimates within levels of covariate 2 (i.e., statistical significance). Lower and upper bounds of the 95% CI for each parameter estimate are noted in parentheses. (***) indicates p < 0.001, (**) indicates p < 0.01, (*) indicates p < 0.05, and (.) indicates p < 0.1.

Model 1: 𝐥𝐧 𝛒 = 𝐥𝐧 𝐈 + 𝛉 𝐥𝐧 𝛕

Group/Cov. lvl. n ln(I) P θ P All groups

n.s. 57 5.6 4.8, 6.4 *** 0.44 0.29, 0.59 *** Sig. 103 3.0 2.5, 3.6 *** 0.91 0.81, 1.0 *** unknown 162 3.3 3.1, 3.5 *** 0.90 0.86, 0.94 ***

Insects n.s. 11 3.8 1.5, 6.0 ** 0.70 0.28, 1.1 ** Sig. 35 6.5 5.0, 8.1 *** 0.26 −0.01, 0.5 . unknown 73 4.9 4.02, 5.8 *** 0.59 0.43, 0.74 ***

Zoop. & Protists n.s. 0 N/A N/A Sig. 10 3.2(2.0, 4.3) *** 0.54(−0.08, 1.2) unknown 26 2.5(2.2, 2.9) *** 0.53(0.27, 0.79) ***

Mam. & Birds n.s. 46 6.1 5.3, 6.9 *** 0.36 0.21, 0.50 *** Sig. 58 4.6 3.5, 5.8 *** 0.67 0.47, 0.87 *** unknown 63 5.2 4.8, 5.6 *** 0.51 0.43, 0.60 ***

Model 2: 𝐥𝐧 𝛒 = 𝐥𝐧(𝐈𝐨) + 𝐛𝐥𝐧 𝐌 + 𝐄 𝟏𝐤

𝟏𝐓− 𝟏

𝐓𝟐𝟎℃

n ln(IA) P b P E P

All groups n.s. 57 7.6 7.4, 7.8 *** 0.22 0.16, 0.27 *** 0.31 0.16, 0.45 *** Sig. 103 7.5 7.4, 7.6 *** 0.31 0.28, 0.34 *** 0.56 0.47, 0.65 *** unknown 162 7.6 7.5, 7.7 *** 0.31 0.30, 0.33 *** 0.70 0.65, 0.75 ***

Insects n.s. 11 3.0 −1.9, 8.0 −0.15 −0.6, 0.29 1.9 0.49, 3.4 * Sig. 35 7.7 7.0, 8.4 *** 0.13 0.02, 0.24 * 0.31 −0.14, 0.77 *** unknown 73 7.7 7.3, 8.2 *** 0.14 0.08, 0.22 *** 0.45 0.26, 0.63 ***

Zoop. & Protists n.s. 0 N/A N/A N/A Sig. 10 3.8 −0.06, 7.6 . 0.01 −0.3, 0.32 1.1 −0.04, 2.3 . unknown 26 5.2 3.6, 6.7 *** 0.19 0.11, 0.28 *** 0.31 −0.64, 1.3

Mam. & Birds n.s. 46 7.1 6.7, 7.5 *** 0.14 0.08, 0.21 *** N/A Sig. 58 6.6 6.2, 7.1 *** 0.24 0.18, 0.30 *** N/A unknown 63 6.5 6.3, 6.6 *** 0.21 0.18, 0.24 *** N/A

Page 53: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

11

Table S8. Results of ANCOVA analyses evaluating the effect of covariate 3 (i.e., the number of cycles observed in the time series) on the OLS-fitted parameter estimates presented in table 1 of the main text.

Group

Model 1:

𝐥𝐧 𝛒 = 𝐥𝐧 𝐈 + 𝛉 𝐥𝐧 𝛕

Model 2:

𝐥𝐧 𝛒 = 𝐥𝐧(𝐈𝐨) + 𝐛𝐥𝐧 𝐌 + 𝐄𝟏𝐤𝟏𝐓−

𝟏𝐓𝟐𝟎℃

ln(I) θ ln(IA) b E All groups FY,KY] = 8.1

p = 0.005 FY,KY] = 0.47 p = 0.50

FY,K]_ = 3.0 p = 0.09

FY,K]_ = 0.02 p = 0.90

FY,K]_ = 0.03 p = 0.89

Insects FY,YYK = 0.1 p = 0.74

FY,YYK = 0.000 p = 0.99

FY,YYY = 0.90 p = 0.35

FY,YYY = 0.001 p = 0.97

FY,YYY = 4.1 p = 0.047

Zooplankton & Protists

FY,KS = 1.1 p = 0.30

FY,KS = 1.1 p = 0.30

FY,K] = 2.8 p = 0.11

FY,K] = 1.7 p = 0.20

FY,K] = 2.5 p = 0.12

Mammals & Birds

FY,YU^ = 21.7 p < 0.001

FY,YU^ = 33.1 p < 0.001

FY,YU^ = 9.9 p = 0.002

FY,YU^ = 11.7 p < 0.001

N/A

Page 54: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

12

Table S9. OLS-fitted parameter estimates within levels of covariate 3 (i.e., the number of cycles observed in the time series). Lower and upper bounds of the 95% CI for each parameter estimate are noted in parentheses. (***) indicates p < 0.001, (**) indicates p < 0.01, (*) indicates p < 0.05, and (.) indicates p < 0.1.

Model 1: 𝐥𝐧 𝛒 = 𝐥𝐧 𝐈 + 𝛉 𝐥𝐧 𝛕

Group/Cov. lvl. n ln(I) P θ P All groups

< 3 100 3.4 2.9, 3.6 *** 0.89 0.83, 0.95 *** > 3 214 3.3 3.1, 3.5 *** 0.86 0.82, 0.91 ***

Insects < 3 29 5.0 3.3, 6.6 *** 0.56 0.28, 0.84 *** > 3 88 4.9 4.1, 5.8 *** 0.56 0.40, 0.71 ***

Zoop. & Protists < 3 8 2.9(2.3, 3.5) *** 0.41(−0.27, 1.1) > 3 28 2.7(2.4, 2.9) *** 0.70(0.55, 0.86) ***

Mam. & Birds < 3 63 4.1 3.5, 4.7 *** 0.79 0.68, 0.89 *** > 3 98 5.7 5.3, 6.2 *** 0.40 0.32, 0.49 ***

Model 2: 𝐥𝐧 𝛒 = 𝐥𝐧(𝐈𝐨) + 𝐛𝐥𝐧 𝐌 + 𝐄 𝟏𝐤

𝟏𝐓− 𝟏

𝐓𝟐𝟎℃

n ln(IA) P b P E P

All groups < 3 100 7.7 7.5, 7.8 *** 0.31 0.29, 0.33 *** 0.64 0.57, 0.72 *** > 3 214 7.5 7.5, 7.6 *** 0.31 0.30, 0.32 *** 0.65 0.60, 0.70 ***

Insects < 3 29 8.5 7.6, 9.3 *** 0.19 0.06, 0.32 ** 0.14 −0.20, 0.48 > 3 88 7.5 7.1, 7.8 *** 0.17 0.12, 0.22 *** 0.54 0.38, 0.70 ***

Zoop. & Protists < 3 8 −29 −80,29 −2.8 −8, 2.4 12.6 −9, 34 > 3 28 5.6 4.7, 6.6 *** 0.20 0.13, 0.27 *** 1.1 0.63, 1.5 ***

Mam. & Birds < 3 63 6.4 6.2, 6.7 *** 0.27 0.23, 0.30 *** N/A > 3 98 6.8 6.5, 7.1 *** 0.17 0.12, 0.22 *** N/A

Page 55: Physiological Constraints on Long-Term Population Cycles: A …evolutionary-ecology.com/data/3111Appendix.pdf · 2020-05-25 · Lagopus lagopus 12.6 620.0 41.7 364.2 41 n.s. Spect

Constraints on Long-term Population Cycles Anderson & Gillooly

13

Table S10: Summary of OLS and PGLS analyses for Model 1 and Model 2 within taxonomic groups without grouping (i.e., we do not group zooplankton and protists or mammals and birds). Lower and upper bounds of the 95% CI are noted within parentheses. ** denotes P < 0.01

Model 1: 𝐥𝐧 𝛒 = 𝐥𝐧 𝐈 + 𝛉 𝐥𝐧 𝛕

n df ln(I) P 𝛉 P R2 Insects

PGLS 44 42 4.2 (2.6, 5.7) ** 0.74 (0.48, 1.00) ** 0.66 OLS 119 117 4.9 (4.2, 5.6) ** 0.56 (0.43, 0.70) ** 0.39

Zooplankton PGLS 7 5 3.2 (1.7, 4.6) 0.01 0.25 (-0.6, 1.1) 0.6 0.15 OLS 20 18 2.8 (2.3, 3.3) ** 0.66 (0.34, 0.99) ** 0.50

Protists PGLS 4 2 1.9 (1.6, 2.2) ** 0.20 (0.03, 0.37) 0.15 0.44 OLS 16 14 1.8 (1.2, 2.4) ** 0.12 (-0.28, 0.51) 0.54 0.03

Mammals PGLS 38 36 5.0 (3.2, 6.8) ** 0.58 (0.31, 0.85) ** 0.61 OLS 124 122 6.4 (6.2, 6.5) ** 0.24 (0.22, 0.26) ** 0.76

Birds

PGLS 11 9 5.7 (2.1, 9.3) 0.01 0.44 (-0.14, 1.01) 0.17 0.16 OLS 43 41 8.5 (6.2, 10.8) ** 0.05 (-0.45, 0.35) 0.81 0.001

Model 2: 𝐥𝐧 𝛒 = 𝐥𝐧(𝐈𝐨) + 𝐛𝐥𝐧 𝐌 + 𝐄 𝟏

𝐤𝟏𝐓− 𝟏

𝐓𝟐𝟎℃

n df ln(IA) P b P E P R2

Insects PGLS 44 41 8.2 (6.8, 9.5) ** 0.23 (0.08, 0.37) ** 0.41 (0.20, 0.61) ** 0.65 OLS 119 116 7.6 (7.3, 8.0) ** 0.17 (0.12, 0.21) ** 0.48 (0.34, 0.62) ** 0.48

Zooplankton PGLS 7 4 5.3 (2.0, 8.7) 0.04 0.15 (-0.1, 0.4) 0.3 0.55 (-0.4, 1.5) 0.3 0.39 OLS 20 17 5.5 (3.5, 7.6) ** 0.17 (-0.003, 0.3) 0.05 0.86 (0.23, 1.5) ** 0.59

Protists PGLS 4 1 2.4 (1.1, 3.8) 0.2 0.05 (-0.02, 0.12) 0.4 -0.22 (-0.6, 0.1) 0.45 0.88 OLS 16 13 3.4 (1.9, 4.8) ** 0.10 (0.02, 0.17) 0.02 0.16 (-0.5, 0.8) 0.6 0.37

Mammals PGLS 38 36 6.9 (5.3, 8.5) ** 0.16 (0.03, 0.30) 0.02 N/A* 0.43 OLS 124 122 6.4 (6.2, 6.5) ** 0.24 (0.22, 0.26) ** N/A* 0.76

Birds

PGLS 11 9 7.4 (5.5, 9.3) ** 0.19 (-0.14, 0.51) 0.3 N/A* 0.18 OLS 43 41 7.8 (6.6, 9.0) ** 0.07 (-0.13, 0.26) 0.5 N/A* 0.01

* We did not assess the body temperature dependence of cycle period in mammals and birds because species in these groups do not span a sufficient range of temperatures.