pictures in quantum mechanics

42
QMPT 540 Pictures in Quantum Mechanics Quick review (see Appendix A) Schrödinger picture (usual) • Schrödinger equation (SE) for many-particle state • given at time-independent Hamiltonian • with time-evolution operator in Schrödinger picture |Ψ S (t) = |Ψ(t) i t |Ψ S (t) = ˆ H |Ψ S (t) |Ψ S (t 0 ) t 0 |Ψ S (t)= ˆ U S (t - t 0 ) |Ψ S (t 0 )ˆ U S (t - t 0 ) = exp - i ˆ H (t - t 0 )

Upload: others

Post on 15-Nov-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pictures in Quantum Mechanics

QMPT 540

Pictures in Quantum Mechanics• Quick review (see Appendix A)

Schrödinger picture (usual)

• Schrödinger equation (SE) for many-particle state

• given at

• time-independent Hamiltonian

• with

• time-evolution operator in Schrödinger picture

|�S(t)� = |�(t)�

i� �

�t|�S(t)� = H |�S(t)�

|�S(t0)� t0

|�S(t)⇥ = US(t� t0) |�S(t0)⇥

US(t� t0) = exp�� i

�H(t� t0)⇥

Page 2: Pictures in Quantum Mechanics

QMPT 540

Heisenberg picture• Transform time dependence to operators while making state kets

“timeless” • Define

• It follows that

• and therefore

• For operators employ

• to obtain

• with

|�H(t)� = exp�

i

�Ht

⇥|�S(t)�

i� �

�t|�H(t)⇥ = �H |�H(t)⇥+ H |�H(t)⇥ = 0

|�H(t)⇥ � |�H⇥

OS |�S(t)� = |��S(t)�

|��H⇥ = exp

�i

�Ht

⇥|��

S(t)⇥

= exp�

i

�Ht

⇥OS exp

�� i

�Ht

⇥exp

�i

�Ht

⇥|�S(t)⇥ = OH(t) |�H⇥

OH(t) = exp�

i

�Ht

⇥OS exp

�� i

�Ht

Page 3: Pictures in Quantum Mechanics

QMPT 540

Equation of motion for Heisenberg operators• Use definition

• showing that if the Schrödinger operator commutes with Hamiltonian, the corresponding Heisenberg operator is constant of motion

i� ⇥

⇥tOH(t) =

�i� ⇥

⇥texp

�i

�Ht

⇥⇥OS exp

�� i

�Ht

+ exp�

i

�Ht

⇥OS

�i� ⇥

⇥texp

�� i

�Ht

⇥⇥

= �HOH(t) + OH(t)H =⇤OH(t), H

= exp�

i

�Ht

⇥ ⇤OS , H

⌅exp

�� i

�Ht

Page 4: Pictures in Quantum Mechanics

QMPT 540

Properties• Note that

• and

• For energy eigenkets

• and

• So

|�nS (t)� = e�iEnt/� |�n�

= e�iHt/� |�n�

|�n� = |�nH �

H |�n� = En |�n�

OS = OH(t = 0)

|�H� = |�S(t = 0)�

Page 5: Pictures in Quantum Mechanics

QMPT 540

Use definitions• Write in detail

• introducing appropriate completeness relations with exact eigenstates

G(�,⇥; t � t⇥) = � i

�⇤(t � t⇥)e

i� EN

0 (t�t⇥) ⇥�N0 | a�e�

i� H(t�t⇥)a†⇥ |�N

0 ⇤

�⇤(t⇥ � t)ei� EN

0 (t⇥�t) ⇥�N0 | a†⇥e�

i� H(t⇥�t)a� |�N

0 ⇤⇥

= � i

�⇤(t � t⇥)

m

ei� (EN

0 �EN+1m )(t�t⇥) ⇥�N

0 | a� |�N+1m ⇤ ⇥�N+1

m | a†⇥ |�N0 ⇤

�⇤(t⇥ � t)⇤

n

ei� (EN

0 �EN�1n )(t⇥�t) ⇥�N

0 | a†⇥ |�N�1n ⇤ ⇥�N�1

n | a� |�N0 ⇤

H |�N+1m � = EN+1

m |�N+1m �

H |�N�1n � = EN�1

n |�N�1n �

Page 6: Pictures in Quantum Mechanics

�+F = EN+1

0 � EN0 QMPT 540

Spectral functions• Physics of knock-out experiments to be discussed shortly can be

interpreted nicely using spectral functions • For the removal of particles, we have the hole spectral function

• with

• A similar addition probability density is available for adding particles (particle spectral function)

Sh(�;E) =1⇤

Im G(�,�;E) E ⇥ ⌅�F

=⇥

n

���⇤�N�1n | a� |�N

0 ⌅���2⇥(E � (EN

0 � EN�1n ))

Sp(�;E) = � 1⇤

Im G(�,�;E) E ⇥ ⌅+F

=⇥

m

���⇤�N+1m | a†� |�N

0 ⌅���2⇥(E � (EN+1

m � EN0 ))

��F = EN0 � EN�1

0

1E ± i⇥

= P 1E⇥ i⇤�(E)

Page 7: Pictures in Quantum Mechanics

QMPT 540

Occupation and depletion• Occupation number

• Depletion

• Obvious sum rule

n(�) = ⇥�N0 | a†�a� |�N

0 ⇤ =⇥

n

���⇥�N�1n | a� |�N

0 ⇤���2

=⇤ ⇥�F

�⇥dE

n

���⇥�N�1n | a� |�N

0 ⇤���2⇥(E � (EN

0 � EN�1n ))

=⇤ ⇥�F

�⇥dE Sh(�;E)

d(�) = ⇥�N0 | a�a†� |�N

0 ⇤ =⇥

m

���⇥�N+1m | a†� |�N

0 ⇤���2

=⇤ �

⇥+F

dE⇥

m

���⇥�N+1m | a†� |�N

0 ⇤���2⇥(E � (EN+1

m � EN0 ))

=⇤ �

⇥+F

dE Sp(�;E)

n(�) + d(�) = ��N0 | a†�a� |�N

0 ⇥ + ��N0 | a�a†� |�N

0 ⇥ = ��N0 |�N

0 ⇥ = 1

Page 8: Pictures in Quantum Mechanics

QMPT 540

Expectation values of operators in ground state• Consider one-body operator

• One-body density matrix element • can be obtained from sp propagator

• or

��N0 | O |�N

0 ⇥ =�

�,⇥

��| O |⇥⇥ ��N0 | a†�a⇥ |�N

0 ⇥ =�

�,⇥

��| O |⇥⇥n�⇥

n�⇥ � ⇥�N0 | a†�a⇥ |�N

0 ⇤

n⇥� =⇥

dE

2⌅ieiE⇤ G(�,⇥;E)

=⇥

dE

2⌅ieiE⇤

m

⇥�A0 | a� |�A+1

m ⇤ ⇥�A+1m | a†⇥ |�A

0 ⇤E � (EA+1

m � EA0 ) + i⇤

+⇥

dE

2⌅ieiE⇤

n

⇥�N0 | a†⇥ |�N�1

n ⇤ ⇥�N�1n | a� |�N

0 ⇤E � (EN

0 � EN�1n ) � i⇤

=�

n

⇥�N0 | a†⇥ |�N�1

n ⇤ ⇥�N�1n | a� |�N

0 ⇤ = ⇥�N0 | a†⇥a� |�N

0 ⇤

n⇥� =1⇤

� ⇤�F

�⇥dE Im G(�,⇥;E) = ��N

0 | a†⇥a� |�N0 ⇥

Page 9: Pictures in Quantum Mechanics

QMPT 540

Magic?!: energy sum rule• Consider

• Earlier results yield

• Insert

• Sum over

I� =1⇥

⇥ ⇥�F

�⇥dE E Im G(�,�;E) =

⇥ ⇥�F

�⇥dE E Sh(�;E)

=�

m

(EN0 � EN�1

m ) ⇥�N0 | a†� |�N�1

m ⇤ ⇥�N�1m | a� |�N

0 ⇤

= ⇥�N0 | a†�a�H |�N

0 ⇤ ��

m

⇥�N0 | a†�EN�1

m |�N�1m ⇤ ⇥�N�1

m | a� |�N0 ⇤

= ⇥�N0 | a†�a�H |�N

0 ⇤ � ⇥�N0 | a†�Ha� |�N

0 ⇤ = ⇥�N0 | a†�[a�, H] |�N

0 ⇤

[a�, H] =�

��| T |⇥⇥ a⇥ +�

⇥⇤⌅

(�⇥|V |⇤⌅)a†⇥a⌅a⇤

I� =�

��| T |⇥⇥ ��N0 | a†�a⇥ |�N

0 ⇥ +�

⇥⇤⌅

(�⇥|V |⇤⌅) ��N0 | a†�a†⇥a⌅a⇤ |�N

0 ⇥

��

I� = ��N0 | T |�N

0 ⇥ + 2 ��N0 | V |�N

0 ⇥

Page 10: Pictures in Quantum Mechanics

QMPT 540

Galitski-Migdal energy sum rule (Koltun)• Combine with half the expectation value of the kinetic energy

• complete result only when there are no three- or higher-body interactions

• sp propagator (hole part) yields energy of the ground state

• later: particle part yields elastic scattering cross section

EN0 = ⇤�N

0 | H |�N0 ⌅

=12⌅

⌃ ⇤�F

�⇥dE

�,⇥

{⇤�|T |⇥⌅ + E ⇤�,⇥} Im G(⇥,�;E)

=12

⇤⇧

�,⇥

⇤�|T |⇥⌅n�⇥ +⇧

⌃ ⇤�F

�⇥dE E Sh(�;E)

Page 11: Pictures in Quantum Mechanics

QMPT 540

Noninteracting propagator• Propagator for involves interaction picture

• with corresponding ground state

• as for IPM so closed-shell atom or nucleus for example • Operators

• assuming is diagonal in this basis

H0

G(0)(�,⇥; t � t�) = � i

� ⇤�N0 | T [a�I (t)a

†⇥I

(t�)] |�N0 ⌅

H0 |�N0 � = E�N

0|�N

0 �

E�N0

=�

�<F

��

a�I (t) = ei� H0ta�e�

i� H0t = e�i⇥�t/�a�

a†�I(t) = e

i� H0ta†�e�

i� H0t = ei⇥�t/�a†�

H0

Page 12: Pictures in Quantum Mechanics

QMPT 540

Evaluate noninteracting sp propagator• Insert

• propagation of a particle or a hole on top of noninteracting ground state

• directly:

• FT

G(0)(�,⇥; t� t⇥) = G(0)+ (�,⇥; t� t⇥) + G(0)

� (�,⇥; t� t⇥)

= � i

�⇤�⇥

�⌅(t� t⇥)⌅(�� F )e�

i� ⇤�(t�t�) � ⌅(t⇥ � t)⌅(F � �)e

i� ⇤�(t��t)

H0 a†� |�N0 � = (E�N

0+ ⇥�) a†� |�N

0 � � > F

H0 a� |�N0 ⇥ = (E�N

0� ⇥�) a� |�N

0 ⇥ � < F

G(0)(�,⇥;E) = ⇤�,⇥

�⇧(�� F )

E � ⌃� + i⌅+

⇧(F � �)E � ⌃� � i⌅

Page 13: Pictures in Quantum Mechanics

QMPT 540

Noninteracting spectral functions• Imaginary parts yield all the strength at one location

• in this basis: either completely full or empty

• other basis

S(0)h (�;E) =

1⌅

Im G(0)(�,�;E) E < ⇧(0)�

F

= ⇥(E � ⇧�) ⇤(F � �)

S(0)p (�;E) = � 1

⌅Im G(0)(�,�;E) E > ⇧(0)+

F

= ⇥(E � ⇧�) ⇤(�� F )

n(0)(�) =� ⇥(0)�

F

�⇥dE ⇥(E � ⌅�) ⇤(F � �) = ⇤(F � �)

G(0)(rms, r�m�

s;E) = ⇥�N0 | arms

1E � (H0 � E�N

0) + i⇥

a†r�m�s

|�N0 ⇤

+ ⇥�N0 | a†r�m�

s

1E � (E�N

0� H0) � i⇥

arms |�N0 ⇤

=⇤

�⇥rms|�⇤⇥�|r�m�

s⇤⇤(� � F )E � ⌅� + i⇥

+⇥rms|�⇤⇥�|r�m�

s⇤⇤(F � �)E � ⌅� � i⇥

Page 14: Pictures in Quantum Mechanics

QMPT 540

Direct knockout reactions• Atoms: (e,2e) reaction • Nuclei: (e,e’p) reaction [and others like (p,2p), (d,3He), (p,d), etc.]

• Physics: transfer large amount of momentum and energy to a bound particle; detect ejected particle together with scattered projectile → construct spectral function

• Simple analysis • Initial state: ground state

• Final state:

• Probe: acts as one-body excitation operator transferring momentum to a particle

• 2nd quantization (no spin)

|�i� = |�N0 �

|�f � = a†p |�N�1n �

�(q) =N�

j=1

exp (iq · rj)�q

�(q) =�

p,p�

⇥p| exp (iq · r) |p⇥⇤ a†pap� =�

p

a†pap��q

Page 15: Pictures in Quantum Mechanics

QMPT 540

Transition matrix element• Impulse approximation: struck particle is ejected

• Other assumption: final state ~ plane wave on top of N-1 particle eigenstate (more serious in practical experiments) but good approximation if ejectile momentum large enough

• Write

• last term FSI: interaction between ejected particle and others

• If relative momentum large enough, interaction can be neglected:

• PWIA = plane wave impulse approximation

⇥�f | ⇥(q) |�i⇤ =�

p�

⇥�N�1n | apa†p�ap���q |�N

0 ⇤

=�

p�

⇥�N�1n | �p�,pap���q + a†p�ap���qap |�N

0 ⇤

� ⇥�N�1n | ap��q |�N

0 ⇤

HN =N�

i=1

p2i

2m+

N�

i<j=1

V (i, j) = HN�1 +p2

N

2m+

N�1�

i=1

V (i, N)

Page 16: Pictures in Quantum Mechanics

QMPT 540

Cross section• Fermi’s Golden Rule

• with energy transfer linking initial

and final state energy • Define

• Rewrite knockout cross section

• More comprehensive treatment requires inclusion of FSI

d⇤ ⇥�

n

�(�⌅ + Ei � Ef )| ⇤�f | ⇥(q) |�i⌅ |2

�� Ei = EN0

Ef = EN�1n + p2/2m

pmiss = p� �q

Emiss = p2/2m� �� = EN0 � EN�1

n

d⇥ ⇥�

n

�(Emiss � EN0 + EN�1

n )| ⇤�N�1n | apmiss |�N

0 ⌅ |2

= Sh(pmiss;Emiss)

Page 17: Pictures in Quantum Mechanics

QMPT 540

(e,2e) data for atoms• Start with Hydrogen • Ground state wave function

• (e,2e) removal amplitude

⇥1s(p) =23/2

1(1 + p2)2

�0| ap |n = 1, ⇤ = 0⇥ = �p |n = 1, ⇤ = 0⇥ = �1s(p)

Hydrogen 1s wave function “seen” experimentally Phys. Lett. 86A, 139 (1981)

Page 18: Pictures in Quantum Mechanics

QMPT 540

Helium• IPM description is very successful • Closed-shell configuration

• Reaction more complicated than for Hydrogen

• DWIA (distorted wave impulse approximation)

agreement with IPM! → 1

1s2

Phys. Rev. A8, 2494 (1973)

S =⇥

dp����N�1

n | ap |�N0 ⇥

��2

Page 19: Pictures in Quantum Mechanics

QMPT 540

Other closed-shell atoms• Spectroscopic factor become less than 1 • Neon removal: S = 0.92 with two fragments each 0.04

• IPM not the whole story: fragmentation of sp strength

• Summed strength: like IPM • IPM wave functions still excellent

• Example: Argon S = 0.95

• Rest in 3 small fragments

2p

0 1 2 3 p (a.u.)

0.0

0.4

0.8

1.2

1.6

2.0

Diff

eren

tial c

ross

sect

ion

(10−

3 a.u

Argon

3p

3p

Page 20: Pictures in Quantum Mechanics

QMPT 540

Fragmentation in atoms• ~All the strength remains below (above) the Fermi energy in

closed-shell atoms • Fragmentation can be interpreted in terms of mixing between

• and

• with the same “global” quantum numbers

• Example: Argon ground state

• Ar+ ground state • excited state

• also

• and

a� |�N0 �

a�a⇥a†⇤ |�N0 �

|�N0 � = |(3s)2(3p)6(2s)2(2p)6(1s)2�

|(3p)�1� = a3p |�N0 � = |(3s)2(3p)5(2s)2(2p)6(1s)2�

|(3s)�1� = a3s |�N0 � = |(3s)1(3p)6(2s)2(2p)6(1s)2�

|(3p)�24s� = a3pa3pa†4s |�N

0 � = |(4s)1(3s)2(3p)4(2s)2(2p)6(1s)2�|(3p)�2nd� = a3pa3pa

†nd |�N

0 � = |(nd)1(3s)2(3p)4(2s)2(2p)6(1s)2�

Page 21: Pictures in Quantum Mechanics

QMPT 540

Argon spectroscopic factors• s strength also in the continuum: Ar++ + e • note vertical scale

• red bars: 3s fragments exhibit substantial fragmentation

8%

Page 22: Pictures in Quantum Mechanics

QMPT 540

(e,e’p) data for nuclei• Requires DWIA • Distorted waves required to describe elastic proton scattering at

the energy of the ejected proton

• Consistent description requires that cross section at different energy for the outgoing proton is changed accordingly

• Requires substantial beam energy and momentum transfer • Initiated at Saclay and perfected at NIKHEF, Amsterdam

• Also done at Mainz and currently at Jefferson Lab, VA

• Momentum dependence of cross section dominated by the corresponding sp wave function of the nucleon before it is removed

Page 23: Pictures in Quantum Mechanics

QMPT 540

Momentum profiles for nucleon removal • Closed-shell nuclei • NIKHEF data, L. Lapikás, Nucl. Phys. A553, 297c (1993)

Page 24: Pictures in Quantum Mechanics

QMPT 540

But...• Spectroscopic factors substantially smaller than simple IPM

Page 25: Pictures in Quantum Mechanics

QMPT 540

Remember• 208Pb sp levels

0f

Page 26: Pictures in Quantum Mechanics

QMPT 540

Fragmentation patterns• 208Pb(e,e’p) NIKHEF data: Quint thesis

• S(2s1/2)=0.65

• other data:

• n(2s1/2)=0.75

• very different from atoms

Page 27: Pictures in Quantum Mechanics

QMPT 540

Fragmentation patterns• 208Pb(e,e’p) NIKHEF data: Quint thesis (1988)

• start of strong fragmentation

• also very different from atoms

Page 28: Pictures in Quantum Mechanics

QMPT 540

Fragmentation patterns• 208Pb(e,e’p) NIKHEF data: Quint thesis

• deeply bound states: strong fragmentation

• again different from atoms

Page 29: Pictures in Quantum Mechanics

QMPT 540

16O data from Saclay• Simple interpretation! • Mougey et al., Nucl. Phys. A335, 35 (1980)

Moment

um

Energy

Page 30: Pictures in Quantum Mechanics

QMPT 540

Recent Pb experiment• 100 MeV missing energy • 270 MeV/c missing momentum

• complete IPM domain

SRCalso LRC

Page 31: Pictures in Quantum Mechanics

QMPT 540

Reading• Read one of:

– Rev. Mod. Phys. 69, 981 (1997) --> nuclei (e,e’p)

– Rev. Mod. Phys. 67, 713 (1995) --> solids (e,2e)

Page 32: Pictures in Quantum Mechanics

QMPT 540

Sp propagator in many-body system• Similar definition as in sp problem • Also very useful both for discrete and continuum problems

• Fermion definition

• with normalized Heisenberg ground state

• Heisenberg picture operators

• and time-ordering operation is defined according to (fermions)

H |�N0 � = EN

0 |�N0 �

a�H (t) = ei� Hta�e�

i� Ht

a†�H(t) = e

i� Hta†�e�

i� Ht

T [a�H (t)a†⇥H(t�)] ⇥ �(t� t�)a�H (t)a†⇥H

(t�)� �(t� � t)a†⇥H(t�)a�H (t)

G(↵,�; t� t0) = � i

~ h N0 | T [a↵H

(t)a†�H(t0)] | N

0 i

Page 33: Pictures in Quantum Mechanics

QMPT 540

Lehmann representation• Introduce FT for practical applications

• Use again integral representation of step function

• Any sp basis can be used

• Still “wave functions” and eigenvalues as in sp problem!!

G(�,⇥;E) =� ⇤

�⇤d(t� t⇥) e

i� E(t�t�) G(�,⇥; t� t⇥)

G(�,⇥;E) =�

m

⇥�N0 | a� |�N+1

m ⇤ ⇥�N+1m | a†⇥ |�N

0 ⇤E � (EN+1

m � EN0 ) + i⇤

+�

n

⇥�N0 | a†⇥ |�N�1

n ⇤ ⇥�N�1n | a� |�N

0 ⇤E � (EN

0 � EN�1n ) � i⇤

= ⇥�N0 | a�

1E � (H � EN

0 ) + i⇤a†⇥ |�N

0 ⇤

+ ⇥�N0 | a†⇥

1E � (EN

0 � H) � i⇤a� |�N

0 ⇤

Page 34: Pictures in Quantum Mechanics

QMPT 540

Interaction picture• Split Hamiltonian • with problem solved (and corresponding time evolution)

• Define

• as the interaction picture state ket • Corresponding equation of motion

• where

• In general and do not commute!

H = H0 + H1

H0

|�I(t)� = exp�

i

�H0t

⇥|�S(t)�

i� �

�t|�I(t)⇥ = �H0 |�I(t)⇥+ exp

⇤i

�H0t

⌅i� �

�t|�S(t)⇥

= �H0 |�I(t)⇥+ exp⇤

i

�H0t

⌅ �H0 + H1

⇥|�S(t)⇥

= H1(t) |�I(t)⇥

H1(t) = exp�

i

�H0t

⇥H1 exp

�� i

�H0t

H0 H1

Page 35: Pictures in Quantum Mechanics

QMPT 540

Operators in the interaction picture• Consider in Schrödinger picture

• Go to interaction picture

• with

• is the corresponding operator in the interaction picture

OS |�S(t)� = |��S(t)�

|��I(t)⇥ = exp

�i

�H0t

⇥|��

S(t)⇥ = exp�

i

�H0t

⇥OS |�S(t)⇥

= exp�

i

�H0t

⇥OS exp

�� i

�H0t

⇥exp

�i

�H0t

⇥|�S(t)⇥

= OI(t) |�I(t)⇥

OI(t) = exp�

i

�H0t

⇥OS exp

�� i

�H0t

Page 36: Pictures in Quantum Mechanics

QMPT 540

Equation of motion in the interaction picture• Consider

• Example – in its own basis

– so

– and therefore and

i� ⇥

⇥tOI(t) =

�i� ⇥

⇥texp

�i

�H0t

⇥⇥OS exp

�� i

�H0t

+ exp�

i

�H0t

⇥OS

�i� ⇥

⇥texp

�� i

�H0t

⇥⇥

= �H0OI(t) + OI(t)H0

=⇤OI(t), H0

H0 =�

��a†�a�

i� ⇤

⇤ta�I (t) =

⇤a�I (t), H0

= exp�

i

�H0t

⇥ ⇤a�, H0

⌅exp

�� i

�H0t

= ��a�I (t)a†�I

(t) = ei⇥�t/�a†�a�I (t) = e�i⇥�t/�a�

Page 37: Pictures in Quantum Mechanics

QMPT 540

Components of Hamiltonian• Immediately

• and

• These operators have simple time dependence

• Critical operator: time-evolution in interaction picture

VI(t) =12

�⇥⇤⌅

(�⇥|V |⇤⌅) a†�I(t)a†⇥I

(t)a⌅I (t)a⇤I (t)

UI(t) =�

�⇥

(�|U |⇥) a†�I(t)a⇥I (t)

Page 38: Pictures in Quantum Mechanics

QMPT 540

Interaction picture time-evolution operator• Define • Note subscript “I” suppressed on evolution operator

• Obviously

• Explicit construction

• and therefore

|�I(t)⇥ = U(t, t0) |�I(t0)⇥

U(t0, t0) = 1

|�I(t)⇥ = exp�

i

�H0t

⇥|�S(t)⇥

= exp�

i

�H0t

⇥exp

�� i

�H(t� t0)⇥

|�S(t0)⇥

= exp�

i

�H0t

⇥exp

�� i

�H(t� t0)⇥

exp�� i

�H0t0

⇥|�I(t0)⇥

U(t, t0) = exp�

i

�H0t

⇥exp

�� i

�H(t� t0)⇥

exp�� i

�H0t0

Page 39: Pictures in Quantum Mechanics

QMPT 540

Some properties of evolution operator• Using previous result • Therefore unitary

• Note

• and • therefore

• For future applications combine SE in interaction picture with definition of evolution operator

so

• use boundary condition to integrate

U†(t, t0)U(t, t0) = U(t, t0)U†(t, t0) = 1

U†(t, t0) = U�1(t, t0)

U(t1, t2)U(t2, t3) = U(t1, t3)

U(t, t0)U(t0, t) = 1

U(t0, t) = U†(t, t0)

i� ⇥

⇥tU(t, t0) = H1(t)U(t, t0)

U(t, t0) = 1� i

� t

t0

dt� H1(t�)U(t�, t0)

i� �

�t|�I(t)� = H1(t) |�I(t)�

Page 40: Pictures in Quantum Mechanics

QMPT 540

Iterate• Use

• to generate expansion

U(t, t0) = 1� i

� t

t0

dt� H1(t�)U(t�, t0)

U(t, t0) = 1� i

⌃ t

t0

dt� H1(t�)

⇤1� i

⌃ t⇥

t0

dt�� H1(t��)U(t��, t0)

= 1 +��i

⇥ ⌃ t

t0

dt� H1(t�)

+��i

⇥2 ⌃ t

t0

dt�⌃ t⇥

t0

dt�� H1(t�)H1(t��) + ...

=⇥⇧

n=0

��i

⇥n ⌃ t

t0

dt1

⌃ t1

t0

dt2...

⌃ tn�1

t0

dtn H1(t1)H1(t2)...H1(tn)

Page 41: Pictures in Quantum Mechanics

QMPT 540

Example: second order

• introducing time-ordering

• Extend to all orders

• important for future applications

U(t, t0) =�⇤

n=0

��i

⇥n 1n!

⌅ t

t0

dt1

⌅ t

t0

dt2...

⌅ t

t0

dtn T⇧H1(t1)H1(t2)...H1(tn)

U2(t, t0) =�� i

⇥2 ⌥ t

t0

dt�⌥ t�

t0

dt�� H1(t�)H1(t��)

=12

�� i

⇥2⇧⌥ t

t0

dt�⌥ t�

t0

dt�� H1(t�)H1(t��) +⌥ t

t0

dt��⌥ t

t��dt� H1(t�)H1(t��)

=12

�� i

⇥2⇧⌥ t

t0

dt�⌥ t�

t0

dt�� H1(t�)H1(t��) +⌥ t

t0

dt�⌥ t

t�dt�� H1(t��)H1(t�)

=12

�� i

⇥2 ⇤⌥ t

t0

dt�⌥ t

t0

dt����(t� � t��)H1(t�)H1(t��) + �(t�� � t�)H1(t��)H1(t�)

=12

�� i

⇥2 ⌥ t

t0

dt�⌥ t

t0

dt�� T�H1(t�)H1(t��)

Page 42: Pictures in Quantum Mechanics

QMPT 540

Links with interaction picture• Use Schrödinger picture

• Note that

• and • For energy eigenkets

• so

• Also

OH(t) = exp�

i

�Ht

⇥OS exp

�� i

�Ht

= exp�

i

�Ht

⇥exp

�� i

�H0t

⇥OI(t) exp

�i

�H0t

⇥exp

�� i

�Ht

= U(0, t)OI(t)U(t, 0)

|�H� = |�S(t = 0)� = |�I(t = 0)�OS = OH(t = 0) = OI(t = 0)

|�nS (t)� = e�iEnt/� |�n�

= e�iHt/� |�n�|�n� = |�nH �

|�H⇥ = |�I(0)⇥ = U(0, t0) |�I(t0)⇥