pipe discharge flow calculations (a diers … 43-850-1.pdf · diers users group orlando mtg./march...

20
DIERS Users Group Orlando Mtg./March 23-25, 2009 -1- PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin Exercise) Presented by: Joseph C. Leung Leung Inc. (Consultant to Fauske & Associates, LLC) Presented at: DIERS Users Group Meeting Orlando, Florida March 23-25, 2009

Upload: trankhue

Post on 14-Aug-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-1-

PIPE DISCHARGE FLOW CALCULATIONS(A DIERS Users Group Round-Robin Exercise)

Presented by:Joseph C. Leung

Leung Inc.(Consultant to Fauske & Associates, LLC)

Presented at:DIERS Users Group Meeting

Orlando, Florida

March 23-25, 2009

Page 2: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-2-

Review and Update

• Completed nozzle discharge flow calculations for three compositions:(I) Cyclohexane (10 bar)(II) 20% mole Ethane in Heptane (10 bar)(III) 2.5% mole N2 in Cyclohexane (33 bar)

• Methods used:omega methodPR-EOS flashASPEN Plus & DynamicsSIMSCI PRO IISuperChemVENT (CISP)

Page 3: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-3-

Data SubmittalInclude a summary sheet listing methods.

• Recommend using either fTP = 0.005 or Re no. dependent fTP.

• Use homogeneous-equilibrium model (HEM).

• Provide, P, T, x (quality) along the pipe (if available), pipe exit pressure Pex, mass flux G, and discharge rate W (kg/s) corr. to flow area Ap of 3.355 in2 (2165 mm2).

• E-mail to Joseph Leung (DIERS UG Design/Testing Committee Chair) at [email protected] or [email protected].

Page 4: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-4-

Proposed Inlet Conditions

Page 5: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-5-

Horizontal Pipe Discharge ProblemSame identical inlet (two-phase) conditions as the nozzle case.

• Two different piping (frictional) resistance

Note - N = Ken + 4fTP L/D, with fTP = 0.005, and Ken =0.5

Pipe I Pipe IID 2.067 in 2.067 in

L/D 50 225L 8.61 ft 38.8 ftKen 0.5 0.5N 1.5 5.0

Page 6: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-6-

Horizontal Pipe Discharge Problem - (Cont'd)

TP

TPTP

en TP

TP

1

TPg f

g f

Alternate use of Reynolds no. dependent fGDf function

LN K 4 fD

where f average two phase friction factor

x (1 x) according to McAdam

, vapor and liquid viscosity

= µ

= +

−µ = +

µ µ µ µ =

Page 7: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-7-

Pipe Flow Formulation

2 21 1 1 2 2 2

2 2 2

Constant diameter pipe (continuity)G u constant

Energy balance (adiabatic flow) -1 1H G v H G v constant2 2

Momentum balance (turbulent flow) -4fvdP + G vdv G v dZ 02D

• −= ρ =

+ = + =

+ =

Page 8: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-8-

Expansion Law (Eq. of State)

• Need P-v (pressure - sp. volume) relation.

• Normal practice is to use constant H (enthalpy) flash calculation.

• From adiabatic flow starting from stagnation -

a constant H flash assumes K.E. to be small.

2o

1H H G v2

= +

Page 9: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-9-

Example Illustration

• Vapor cyclohexane discharge through pipe.

• Classical ideal-gas (IG) method:

Shapiro text (1953)

Bird Stewart Lightfoot text (1960)

Levenspiel AIChE J (1977) – Lappel correction

Churchill text (1980)

Coulson & Richardson text (1996)

• Omega method.

• Constant H analytical integration method.

Page 10: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-10-

Classical IG Method

p v

221 1

1 1 1

2

1 1 12

2 2 1

C / C k 1.05ideal gas specific heat values from DIPPR

P v relation (exact)

P v k 1 G v v1 1P v 2k P v

Momentum equation

L k 1 v v k 1 P4f ln 1D k v v 2K G v

• = =−

• − − = − −

• + −

= + − +

Page 11: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-11-

Page 12: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-12-

Results from Classical IG Model

IG 3go

3go o

IG Density 22.3 kg / m (10 bar, 455K)

DIPPR Density 27.6 kg / m (Z 0.81)

ρ =

ρ = =

Pipe I Pipe IIN 1.5 5.0IG Density 2130 kg/m2s 1560 kg/m2sDIPPR Density 2370 kg/m2s 1740 kg/m2s

Page 13: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-13-

Omega Method

( )

o2

fgo fgoo go p o o

fgo fgo

*o o

1 2 2*2 2

1

2 1

1 2

parameter at x 1.0 is given by

v v1 2 P C T P 1.31

h h

Momentum equation G G / P

L 2 (1 )4f lnD G 1 (1 ) (1 )

(1 )2 ln(1 )

E

• ω =

ω = − + ρ =

• = ρ

η − η ω − ω η + ω= + − ω − ω − ω η + ω

− ω η + ω η− − ω η + ω η

•* 2cc

xit choking criterion

G η=

ω

Page 14: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-14-

Omega Method

Note: Po = 10 bar, ρgo = 27.6 kg/m3 (DIPPR)

η2c is exit choking pressure ratio

Pipe I Pipe IIN 1.5 5.0G* 0.418 0.311G 2190 kg/m2s 1630 kg/m2s

η2c 0.478 0.357

Page 15: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-15-

Constant H Integration Method

1

2

2o o

o

P

P2

Obtain P v data from constant H FLASH calculation.

Fit P v with best polynomialP Pv 1 a 1 b 1

v P P

where a 1.38, b 0.012

Analytical or numerical integration of differential momentum equation.dP2v

GL4fD

• −

• −

− = − + −

= =

=∫

2

1

v2 lnv

+

Page 16: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-16-

Page 17: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-17-

Analytical Integration Method

Note: Po = 10 bar, ρgo = 27.6 kg/m3 (DIPPR)

Pipe I Pipe IIN 1.5 5.0G* 0.412 0.307G 2160 kg/m2s 1610 kg/m2s

η2c 0.488 0.366

Page 18: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-18-

Summary of c-C6 Vapor Discharge Rate

Pipe I(N = 1.5)

Pipe II(N = 5)

IG (k = 1.05) 4.61 kg/s 3.38 kg/s

IG w/ real ρ go 5.13 kg/s 3.77 kg/s

ω method 4.74 kg/s 3.53 kg/s

Const H analytical 4.68 kg/s 3.48 kg/s

Average 4.79 kg/s 3.54 kg/s

Std. Dev. 0.23 kg/s5%

0.17 kg/s1.5%

Page 19: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-19-

Pipe-Segment Numerical Integration

2

2 2

v P G v vL 2f G vD

where P is pressure incrementv is incremental specific volume over P

v is average specific volume in P

∆ + ∆∆ = −

∆∆ ∆

Page 20: PIPE DISCHARGE FLOW CALCULATIONS (A DIERS … 43-850-1.pdf · DIERS Users Group Orlando Mtg./March 23-25, 2009-1-PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin

DIERS Users Group Orlando Mtg./March 23-25, 2009

-20-

Numerical Integration Steps1. G is known or guessed.

2. Increments of pressure are taken from the initial to the final pressure.

3. and ∆v are obtained for each increment for a constant-enthalpy process.

4. ∆L for each ∆P taken is computed from Eq. in previous slide.

5. Total length of pipe L is ∑∆L.

6. If ∆L is negative, then ∆P is too large.

7. A critical flow condition corresponds to ∆L = 0, and the final pressure corresponds to choked pressure.

8. If ∑∆L > L, then G was guessed too small and Steps 1-7 are repeated with a larger G. If ∑∆L < L, then G was guessed too large; Steps 1-7 are repeated with a smaller G.

9. A converged solution is obtained when ∑∆L = L to within a given tolerance.

v

Ref.: Perry's ChE Hdb, “Fluid Dynamics” section,7th ed., also Leung, CEP article, 1996.