planar gauge 2

3

Click here to load reader

Upload: grisha

Post on 28-May-2017

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Planar Gauge 2

Renormalization Ch.1

Renormalization Ch.1

Quark self-energy s.1.1I would like to calculate a one loop correction to a quark self-energy which is de ined as 1PR

part of the fermion propagator:

𝑆 (𝑝,π‘š) = 𝑖/𝑝 βˆ’ π‘š + 𝑖

/𝑝 βˆ’ π‘š [𝑖Σ (𝑝,π‘š )] 𝑖/𝑝 βˆ’ π‘š

+ 𝑖/𝑝 βˆ’ π‘š [𝑖Σ (𝑝,π‘š )] 𝑖

/𝑝 βˆ’ π‘š [𝑖Σ (𝑝,π‘š )] 𝑖/𝑝 βˆ’ π‘š +…

= 𝑖/𝑝 βˆ’ π‘š 1 βˆ’ [𝑖Σ (𝑝,π‘š )] 𝑖

/𝑝 βˆ’ π‘š = 𝑖/𝑝 βˆ’ π‘š + Ξ£ (𝑝,π‘š ) . (1)

Thus the correction has the form:

Ξ£( ) (𝑝) = βˆ’π‘– [𝑑𝑙] (𝑖𝑔𝛾 𝑑 ) 𝑖/𝑝 βˆ’ /𝑙 βˆ’ π‘š 𝑖𝑔𝛾 𝑑 𝐷 (𝑙) , (2)

where 𝐷 (𝑙) is a gluon propagator. Here I would like to consider a particular form of the planargauge:

𝐷 (𝑙) = βˆ’π‘–π›Ώπ‘™ + 𝑖0 𝑔 βˆ’

𝑙 𝑣 + 𝑙 𝑣𝑙 β‹… 𝑣 , (3)

so that𝑣 = 1 and I put the externalmomentum𝑝 = (𝑝 β‹… 𝑣) 𝑣 . The convenienceof this de initionis that no other 𝛾-structures are generated except /𝑝:

Ξ£ = 𝑖𝑔 𝐢 [𝑑𝑙] 𝛾 /𝑝 βˆ’ /𝑙 + π‘š(𝑝 βˆ’ 𝑙) βˆ’ π‘š + 𝑖0

𝛾 1𝑙 + 𝑖0 𝑔 βˆ’

𝑙 𝑝 + 𝑙 𝑝𝑙 β‹… 𝑝 . (4)

For the sake of completeness I would like to consider a β€œcovariant” and β€œnon covariant” parts sep-arately. The former one reads as follows:

Ξ£ = 𝑖𝑔 𝐢 [𝑑𝑙] /𝑝 βˆ’ /𝑙 (2 βˆ’ π’Ÿ) +π‘š π’Ÿ(𝑝 βˆ’ 𝑙) βˆ’ π‘š + 𝑖0 (𝑙 + 𝑖0)

, (5)

the latter isΞ£ = βˆ’π‘–π‘” 𝐢 [𝑑𝑙]

/𝑙 /𝑝 βˆ’ /𝑙 + π‘š /𝑝 + /𝑝 /𝑝 βˆ’ /𝑙 + π‘š /𝑙(𝑝 βˆ’ 𝑙) βˆ’ π‘š + 𝑖0 [𝑙 + 𝑖0] (𝑙 β‹… 𝑝)

. (6)

Averaging over all directions transverse to 𝑝

/𝑙 β†’ /𝑝𝑝 (𝑝 β‹… 𝑙) = /𝑝

2𝑝 𝑙 + 𝑝 βˆ’π‘š βˆ’ 𝑝 βˆ’ 2𝑝 β‹… 𝑙 + 𝑙 βˆ’ π‘š β†’ /𝑝2𝑝 𝑙 + 𝑝 βˆ’π‘š , (7)

we obtain the following expressions:

Ξ£ = 𝑖𝑔 𝐢 𝑗( ) + π‘šπ‘ 𝑗( ) βˆ’ 𝑗( ) 1 βˆ’ π’Ÿ

2 /𝑝 + π’Ÿπ‘—( )π‘š , (8)

Ξ£ = βˆ’2𝑖𝑔 𝐢 2𝑗( ) + 𝑗( ) /𝑝 + 𝑗( )π‘š , (9)

C: \Users \Grisha \Documents \Active work \Munchen \Renormalization \Planar gauge 2.tex p.1

Page 2: Planar Gauge 2

Appendix Ch.2

where the integrals 𝑗( ) are de ined in the Appendix.

Renormalization factors s.1.2There are two ways for further processing of Eqs.(8): either remove regularization after inte-

gration and then expand the result near mass-shell, or irstly expand the integrands near mass-shell and then remove regularization after integration. These two possibilities are not equal sincethe 𝑝 β†’ π‘š limit does not commutewith theπ’Ÿ β†’ 4 limit. The former case is known as β€œoff-shell”renormalization while the latter is referred to as β€œon-shell”. The difference is clear for 𝑗( ) integral(15) which is proportional to:

𝐼( ) (π‘Ž, 𝑧) = β€–π‘Žβ€– 𝑑𝑦𝑦 (𝑦 + �̄�𝑧) , (10)

where 𝑧 = π‘š βˆ’ 𝑝 /π‘š . The result for the regularized integrand in given by Eq. (16). Howeverif one expands the integrand with respect to 𝑧 before integration, then only a part of Eq. (16)appears:

𝐼( ) (π‘Ž, 𝑧) β†’ β€–π‘Žβ€–1 βˆ’ 2π‘Ž 𝐹 (1, π‘Ž; 2π‘Ž; 𝑧). (11)

It is clear that the last expression corresponds to the contribution of the β€œhard” region in themethod of expansion by regions, thus it acquires additional β€œinfrared” singularities in compari-son with the full result (16).

Ifwe consider onlyΞ£ , theoff-shell renormalization results in the standard𝑀𝑆 renormalizationfactors:

𝑍 = 1 βˆ’ οΏ½ΜƒοΏ½πœ– , 𝑍 = 1 βˆ’ 3

πœ– οΏ½ΜƒοΏ½, (12)where οΏ½ΜƒοΏ½ = 𝐢 𝛼 / (4πœ‹) andπ‘š = 𝑍 π‘š, hence. The covariant part of the β€œon-shell” renormaliza-tion leads to the factors well known form QED:

𝑍 = 𝑍 = 1 + οΏ½ΜƒοΏ½ βˆ’3πœ– βˆ’ 4 . (13)

It is remarkable the self-energy in the planar gauge Ξ£ = Ξ£ + Ξ£ yields the result for 𝑍 dif-ferent from that of the covariant gauge (13):

𝑍 = 1 + οΏ½ΜƒοΏ½ 3πœ– βˆ’ 8 . (14)

Appendix Ch.2

𝑗( ) =[d𝑙]

𝑙 (𝑝 βˆ’ 𝑙) βˆ’ π‘š= 𝑑𝑦

[d𝑙][𝑙 βˆ’ 𝑦 𝑝 βˆ’ 𝑦 (π‘š βˆ’ 𝑝 )]

= 𝑖 π‘šπœ‡

π’Ÿ/β€–2 βˆ’ π’Ÿ/2β€– 𝑑𝑦

𝑦 π’Ÿ/ (𝑦 + �̄�𝑧) π’Ÿ/ = 𝑖 π‘šπœ‡

π’Ÿ/𝐼( ) 2 βˆ’ π’Ÿ

2 , 𝑧 , (15)

where 𝑧 = π‘š βˆ’ 𝑝 /π‘š and

𝐼( ) (π‘Ž, 𝑧) = β€–π‘Žβ€– 𝑑𝑦𝑦 (𝑦 + �̄�𝑧)

= (1 βˆ’ 𝑧) 𝑧 β€–1 βˆ’ π‘Žβ€–2π‘Ž βˆ’ 1β€– + β€–π‘Žβ€–1 βˆ’ 2π‘Ž 𝐹 (1, π‘Ž; 2π‘Ž; 𝑧). (16)

C: \Users \Grisha \Documents \Active work \Munchen \Renormalization \Planar gauge 2.tex p.2

Page 3: Planar Gauge 2

Appendix Ch.2

This result is easy to check by comparison with a tadpole:

𝐼( ) 2 βˆ’ π’Ÿ2 , 1 = βˆ’β€–1 βˆ’ π’Ÿ/2β€–. (17)

The second integral is as follows:

𝑗( ) =[d𝑙]

π‘š (𝑙 βˆ’ π‘š + 𝑖0) = βˆ’π‘– π‘šπœ‡

π’Ÿ/β€–1 βˆ’ π’Ÿ/2β€–. (18)

The third master integral has the form:

𝑗( ) =[d𝑙]

(βˆ’2𝑙 β‹… 𝑝) (𝑝 βˆ’ 𝑙) βˆ’ π‘š + 𝑖0= 𝑑𝑦

[d𝑙]

𝑙 + 𝑝 1 βˆ’ (1 + 𝑦) βˆ’ π‘š

= 𝑖‖2 βˆ’ π’Ÿ2 β€–

d𝑦(π‘š βˆ’ 𝑝 + 𝑦 𝑝 ) π’Ÿ/ = 𝑖 π‘š

πœ‡

π’Ÿ/𝐼 2 βˆ’ π’Ÿ

2 , 𝑧 , (19)

where the following integral de ined:

𝐼( ) (π‘Ž, 𝑏) = β€–π‘Žβ€– d𝑦(𝑧 + 𝑦 οΏ½Μ„οΏ½) = β€–π‘Žβ€–

2π‘Ž βˆ’ 1 𝐹 (1, π‘Ž; π‘Ž + 1/2; 𝑧) , (20)

where again 𝑧 = π‘š βˆ’ 𝑝 /π‘š .

C: \Users \Grisha \Documents \Active work \Munchen \Renormalization \Planar gauge 2.tex p.3