plasma discharge in watertez.sdu.edu.tr/tezler/tf03404.pdf · 2020. 8. 20. · argon, oxygen or...

54
T.C. SÜLEYMAN DEMİREL UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES PLASMA DISCHARGE IN WATER MohammedSaifAdden Shaher ISMAEL Supervisor Prof. Dr. Lütfi ÖKSÜZ THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF PHYSICS ISPARTA - 2016

Upload: others

Post on 30-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • T.C.

    SÜLEYMAN DEMİREL UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED

    SCIENCES

    PLASMA DISCHARGE IN WATER

    MohammedSaifAdden Shaher ISMAEL

    Supervisor Prof. Dr. Lütfi ÖKSÜZ

    THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF PHYSICS

    ISPARTA - 2016

  • ©2016 [MohammedSaifAdden Shaher ISMAEL]

  • i  

    TABLEOFCONTENTS

    PagesTABLEOFCONTENTS.......................................................................................................... iABSTRACT................................................................................................................................ iiÖZET............................................................................................................................................ iiiACKNOWLEDGEMENTS...................................................................................................... ivTABLEOFFIGURES............................................................................................................... vINDEXOFSYMBOLSANDABBREVIATION............................................................... vi1.INTRODUCTION................................................................................................................. 11.1.PLASMADEFINITION.............................................................................................. 11.1.1.COLLECTIVEBEHAVIOR............................................................................... 11.2.PLASMATYPES......................................................................................................... 21.2.1.SPACEPLASMA................................................................................................ 21.2.2.LABORATORYPLASMA................................................................................. 21.2.2.1.ATMOSPHERIC‐PRESSSUREPLASMA....................................... 21.2.2.2.VACUUMPLASMA.............................................................................. 21.3.PLASMAPARAMETERS.......................................................................................... 31.4.PLASMADISCHARGE............................................................................................... 41.4.1.LOWPRESSURE(FEWTORR).................................................................... 41.4.2.HIGHPRESSURE(ATMOSPHERE)........................................................... 41.5.PLASMAAPPLICATION......................................................................................... 51.6.PLASMAIONIZATION............................................................................................. 61.6.1.THEPENNINGIONIZATION........................................................................ 61.6.2.ASSOCIATIVIONIZATION............................................................................ 62.LITERATUREREVIEW.................................................................................................... 72.1.THEPERIODBETWEEN(2001‐2005)............................................................. 72.2.THEPERIODBETWEEN(2006‐2010)............................................................. 82.3.THEPERIODBETWEEN(2011‐2016)............................................................. 102.4.DESIGNSABOUTPREVIOUSWORKS.............................................................. 133.EXPERIMENTALSETUP................................................................................................. 173.1.INTRODUCTION......................................................................................................... 173.2.HOWPRODUCEPLASMAINORONWATER................................................ 183.2.1.PLASMAONWATER...................................................................................... 183.2.2.PLASMAATWATERSURFACE.................................................................. 183.2.3.PLASMAATWATERSURFACEFORLONGDISTANCE.................... 193.2.4.PLASMAINWATER........................................................................................ 203.2.5.PLASMAWATERREACTOR(PWR)......................................................... 223.2.6.ARCPLASMADISCHARGEINWATERREACTOR(APDWR)......... 253.2.7.MULTIMICROARCSPLASMAINWATER(MMAPW)...................... 284.RESULTSANDDISCUSSION......................................................................................... 324.1.RESULTS...................................................................................................................... 324.2.DISCUSSION............................................................................................................... 345.CONCLUSIONS................................................................................................................... 36REFRENCES.............................................................................................................................. 37CURRICULUMVITAE............................................................................................................ 41ÖZGEÇMİŞ................................................................................................................................. 43

  • ii  

    ABSTRACT

    Master Science

    PLASMA DISCHARGE IN WATER MohammedSaifAdden Shaher ISMAEL

    Süleyman Demirel University

    Graduate School of Natural and Applied Sciences Department of Physics

    Supervisor: Prof. Dr. Lütfi ÖKSÜZ

    Plasma in Water, A Dense Medium Plasma (DMP) it’s one of plasmasapplication in the water. New system for inactivation of Escherichia Coli inwaterwithD.Cpowersupply(150‐200V&1.5‐2A)willbebuilt.DMPsystemwillbeoptimizingforpowertransferinsidewateranduniformglowdischargeand obtaining with helium gas. Optical and electrical characteristics of theplasmaareexamined.It has been clearly shown that the Dens Medium plasma in the water caninactivation of microorganisms, using physical effects initiated by thedischarge in thewater.100mlofwaterwill beused in this experiment, themaximumsizewillbe400mlandtheminimumsizeitwillbe50ml.Themainproblem it’s howwe can create plasma in thewater, partial discharges areverycomplexphenomenaandexhibitnonstationarybehaviorwithdifferenttime‐dependent characteristics but by using D.C power supply, gas (helium,argon,oxygenorair)androtatingsystem(ifneeded)willbegetit.Togettingtypical plasma (uniform) inside the water we need D.C power supply with200V&2A.Keywords:Plasma,WaterTreatment,ElectricalDischarge.2016,54pages

  • iii  

    ÖZET

    YüksekLisans

    SUİÇİNDEPLAZMA

    MohammedSaifAddenISMAEL

    SüleymanDemirelÜniversitesi

    FenBilimleriEnstitüsüFizikAnabilimDalı

    Danışman:Prof.Dr.LütfiÖKSÜZ

    Su içinde plazma ve uygulamaları, Yoğun ortam plazma (dense mediumplasma‐DMP) su içinde plazma uygulamalarından biridir. DC (150‐200 V ve1.5‐2A)güçkaynağıylaEscherichiaColininsuiçindeyokedilmesiiçinyenibirsistem kurulacaktır. DMP sistemi su içinde düzgün parlak deşarjın heliumgazıyla elde edilmesinde güç transferi için optimize edilecektir. Plazmanınoptikveelektrikselözellikleriincelenmektedir.Yoğun ortam plazmanın su içinde mikroorganizmaları, su içindeki deşarjtarafından başlatılan fiziksel etkiyle yok ettiği açık bir şekilde gösterilmiştir.Budeneyde100mlsukullanılacaktır,maksiumumsuoranı400mlminimumsu oranı 50 ml dir. DC güç kaynağı ve farklı gazlar ( He, Ar, O2, hava)kullanılarak elektrotlar döndürülerek elde edilecek deşarj oldukça karmaşıkvekararlıolmayanbirdavranışsergilemektedir.AnahtarKelimeler:Plazma,WaterTreatment,ElectricalDischrge

    2016,54sayfa

  • iv  

    ACKNOWLEDGEMENTS

    I would like to express sincere appreciation to Professor Lütfi ÖKSÜZ for hisinvaluable,patientsupervisionandsupportduringmystudy.Thisthesiswouldnothavebeenpossiblewithouthissupport.Ihavelearndalotfromhimbesidesplasmaphysics.Also, Iwould like to thank to Lütfi’s team, specially Ali, Ferhat, Emre, Hakan,SabahandRamazantohelpmetocompletefinaldesignofmyexperiment.I like, to thank to theMinstryofEducation in Iraq to supportand fundingmeuntilfinshmygradute.Without the love, pray and support of my family, this study would not becomplete. Iespecially thank themforbelieving inme.My fathercouldnotseeme to finsh this endeavor, but he always belived in that I will do it one day.Special thanks go tomymother forherpray andmybrothers. I dedicate thisthesistomyfatherandfamily.Big thanks tomywife for her love, support, patience and long distance care.Withouthersupportandherlove,itwouldhavebeenmuchhardertoreachmygoalsalone.I would like to thank also Project Management Unit of Scientific ResearchProjects Department in Suleyman Demirel University for supporting thisresearch under contract number (4716‐YL2‐16) and letting people dosomethingforscience.

    MohammedSaifAddenShaherISMAELISPARTA,2016....

  • v  

    TABLEOFFIGURES PagesFIGURE2.1.Schemeofdense‐mediumplasmareactor........................................ 13Fig.2.2.Schematicdiagramoftheexperimentalapparatus............................... 13Fig.2.3.Three‐electrodeglidingarcreactor.............................................................. 14Fig2.4.Aschematicdiagramofthebubbleplasmasystem................................ 14Fig2.5.Multichannelpulsedelectricaldischargeinwater................................. 15Fig2.6.Schematicofbubblepulseddischargeinwater....................................... 15Fig2.7.Fornonthermalplasmaelectrolysis.............................................................. 16Fig.2.8‐Schematicdiagramofthepulsedpowersystem.................................... 16Fig.2.9.Three‐dimensionalschematicdiagramofthediskelectrode........... 16Figure3.1waterdistributiononEarth(onlineimage)......................................... 17Figure3.2humanbodycontainswater(onlineimage)........................................ 17Figure3.3.Characterizeofplasmadischargeabovewatersurface................. 18Figure3.4.Characterizeofplasmadischargeatwatersurface......................... 19Figure3.5.ByiPhonecamera,photoofplasmadischargeatwatersurface

    insideglasstubaroundthemesh......................................................... 19Figure3.6:characterizeofplasmabyglasstublayingonwatersurface

    horizontally.................................................................................................... 20Figure3.7:ByiPhonecamera,plasmaproducedbetweenglasstubbarrier

    andmesh......................................................................................................... 20Figure3.8:characterizeofplasmabyglasstubsubmergedinaglass(plastic)

    potcompletelyfillofwater..................................................................... 21Figure3.9:plasmadistributedonallaspectsoftheglasstubecontainingthe

    positiveelectrode....................................................................................... 21Figure3.10:comparetheresultsbetweenexperiment3&4............................ 22Figure3.11:plasmainsidequartztubearoundtheupperelectrode............. 23Figure3.12:characterizeofplasmawaterreactor................................................. 24Figure3.13:characterizeArcPlasmaDischargeinWaterReactor

    (APDWR)......................................................................................................... 26Figure3.14:HeliumArcPlasmaDischargeinWaterReactor(APDWR)...... 27Figure3.15:MultiMicroArcsPlasmainWater(MMAPW)................................. 29Figure3.16:UpperandlowerelectrodesinMMAPWreactor........................... 30Figure3.17:ArgonMultiMicroArcsPlasmainWater(MMAPW)reactor.. 31Figure4.1:therelationbetweenV&rpm.................................................................... 32Figure4.2:peaksofplasmawaterbetweenwavelengthandintensity......... 33Figure4.3:peaksofplasmawaterbetweenwavelengthandintensity......... 34Figure4.4.OceanOpticsHR4000High‐resolutionmodelwith3inputs

    (200‐1100)nmspacedspectrometer................................................. 35

  • vi  

    INDEXOFSYMBOLSANDABBREVIATIONSAk Thepossibilityoftransitiontothegroundstatec ThespeedoflightC AconstantusedforAtome TheelectronchargeEk Excitationenergyf Frequencygk Statisticalwidthh Planck'sconstantHβ BetawavelengthlineHOLNeutraldischargecycleskB BoltzmannconstantK Kelvinme Themassoftheelectronms millisecondsMHz Megahertzne TheelectrondensityNe cm‐3electrondensityIk TheintensityofemissionlinesRFRadiofrequencyTe ElectrontemperatureTg GastemperatureVm Elasticelectroncollisionfrequencyw Electronimpactparameterε Electricalconductivityoftheemptyspaceλ wavelengthλDDebyelengthKTe ThermalEnergyOfTheelectronω PlasmafrequencyT TimeofcollisionsND Numberofparticles

  • 1  

    1. INTRODUCTION

    1.1. PlasmaDefinition

    Thewordplasmawas firstusedbyCzechScientist JanEvangelistaPurkinje inthe19thcentury.ThewordderivesfromGreekandoriginallymeans"formedormolded" (BellanApr 6, 2006.). Fifty years later, anAmerican Scientist namedIrvingLangmuirmadeascientificdefinitionofplasmamediumin1922tomeanthat theelectrons, ions andquasi‐neutralparticleshave collectivebehaviorofmoleculesmaterialinanionizedgas,andthiscaseappliestosomekindoffluidmedium (Bellan Apr 6, 2006.). Plasma can be defined as the fourth state ofmatter, which means that free charged particles move in random directions(lieberman and Lichtenberg n.d.). They have collective behavior and they arequasi‐neutralwhichbringsustodefinitionsof"collectivebehavior"and“quasi‐neutrality".1.1.1. CollectiveBehaviorWhentheforcesthatimpactonmolecular,naturalairareobserved,itwouldbeseenthatordinarily,moleculesdonothaveelectromagneticforceandtheforcegravity is low. Initially, the molecules are stationary until they collide withothers, and these collisions create themovement of particles. Amicroscopicforce isapplied toaneutral gas.However, the case is completelydifferent inplasma,becauseithaschargedparticles.Theycanproducelocalcondensationof positive or negative charge, which are then conjoined into larger electricfields. Movement of charges produces currents and consequently magneticfields. These fields impact even the movement of other charged particlesfaraway(Chen1929).

  • 2  

    1.2. PlasmaTypes

    Plasmas can be divided in to two categories: space plasmas and lab‐plasmas.Space plasmas involve stars, sun, and solar wind etc. Lab‐plasma includeatmosphericpressureandvacuumplasma.

    1.2.1. Spaceplasma

    SpaceplasmawhichisthroughandoutsideofEarth’satmospherewhichincludestars,sunsandsolarwind(BaumjohannandTreumann1996).

    1.2.2. LaboratoryPlasma

    Laboratory plasmas are produced in the laboratories which includeatmospheric‐pressureplasmaandvacuumplasma.

    1.2.2.1. Atmospheric‐PressurePlasma

    There aremany types of atmospheric‐pressure plasmas such as arcs plasma,plasmatorches,coronadischargesanddielectricbarrierdischarges(Schutze,etal. 1998). Hot plasma is used for cutting material such as Iron, Cupper,Aluminum,etc.Andsurfacetreatment.Coldplasmaisgenerallyusedinmedicaltreatment such as decontamination of E.coli bacteria and Bacillus subtilisbacteria (Cheng , et al. 2005). To produce atmospheric‐pressure plasma, wehavetousehighvoltagepowersupply(D.C,A.CorRf).

    1.2.2.2. VacuumPlasma

    Vacuumplasma is plasmaproduced under lowpressure (10‐3torr) by using avacuum chamber and a rotary pump, so it’s more difficult and expensive toproduce than atmospheric‐pressure plasma. Vacuum plasma has a lot ofadvantages,intermsofgettingbetterresults,overtheplasmaproducedunderatmospheric‐pressure plasma. For this reason, it is used for implementationssuch as coating, deposition, evaporation and spattering. There are differentwaysofprocessing it suchasA.C,D.C,RF,Microwaves.Thereare three forms

  • 3  

    whenusingRfpowersupply:Helicon,HelicalresonatorandinductiveandECRthroughmicrowaves(liebermanandLichtenbergn.d.).

    1.3. PlasmaParameters

    Plasmaasastateofmaterhasdefiningparameters.ThefirstparameterisDebyeShielding(λD)whichisoneofplasmaparameterssoimportanttoinvestigation.The termDebyelength,which ismean ameasure of the shielding distance orthicknessofthesheath(Chen1929)(liebermanandLichtenbergn.d.).

    (1.1)λD:Debyelength.

    KTe:ThermalEnergyOfTheelectron.

    ne:electrondensity.

    OtherparametersarePlasmafrequency(ω),theTime(T)ofcollisionsbetweenneutral atoms, the dimensions (L) of plasmas systems, and number (ND) ofparticlesinDebyesphere(Chen1929)(liebermanandLichtenbergn.d.).Therearethreeconditionsmustbesatisfyinplasmacaseasbelow: 1.λD>>1. 3.ωT>1.The first condition mean it must to be Debye length less than dimensionsplasmasystem.ThesecondconditionmeansthatinDebyesphere,thenumberofparticlesmusttobemorethan1.

  • 4  

    1.4. PlasmaDischarges

    Therearemanydifferentmethodstogenerateplasmainthelaboratorysuchaselectrical discharges. But not all electric discharges create plasma. It happensonly when electron beams have high energy. Historically the study of suchdischargescreatetheinitialfoundationformuchoftheconcept.Twoelectrodescan be connected by a power supply into chamber (or glass tube) for simpledischarge.Thechambercanbeinjectedbyvariousgasesorwithvacuum.Whenthe power is turn on it normally supplies the voltage applied across the twoelectrodes. Then, the current rises sharply and at a certain voltage createselectron breakdown (Fridman and Kennedy, Plasma physics and engineering2004).Therearetwotypesofelectricaldischarge:

    1.4.1. LowPressure(FewTorr)If thepressure is lowthis iscalleda low‐currenthigh‐voltagedevice inwhichthe gas is weakly ionized (plasma). This kind of discharge used for glowdischargearesoimportantofdischarge,forexamplefluorescentlighting.Otherdischargesisusedforglowdischargewhichisan importantdischargesuchasfluorecent lighting. Other discharge used for lighting are mercury vapor andneon(FridmanandKennedy,Plasmaphysicsandengineering2004).

    1.4.2. HighPressure(Atmosphere)

    Ifthepressureishigh(atmosphericpressure)andtheexternalresistanceislowit will breakdown by a thermal arc discharge. Thermal arc discharge usuallycarries largecurrents(more than1A)atvoltagesof theorderof tensofvolts.Thesekindofarcsareoftencoupledwithagasflowtoformhigh‐temperatureplasmajets.Manyothertypesofdischargesaredifferentorcombinationoftheprecedingdescriptions(Fridman,Plasmachemistry2008).

  • 5  

    A classification of discharges has been developed simply based on twoproperties:(FridmanandKennedy,Plasmaphysicsandengineering2004)

    1. Stateoftheionizedgas,thisstatevariesamongthreeoptions:a. Breakdownofthegas.b. Sustaininganone‐quilibriumplasmabytheelectricfield.c. Sustaininganequilibriumplasma.

    2. Frequencyrangeoftheelectricfield,thisstatecriteriaclassifiesthefieldintofourdifferentcases:a. DC,low‐frequency,andpulsedelectricfields(E).b. Radio‐Frequency(RF)electricfields(E).c. Microwavesfields.d. Opticalfields.

    1.5. PlasmaApplications

    Plasma applications range from plasma etching and plasma CVD in micro‐electronics to plasma thermal spray coatings; from plasmametallurgy to theproduction of ozone; from plasma ignition and stabilization of flames to thetreatmentofsyntheticfabricsandotherpolymermaterials;fromplasmaTVstosterilization ofwater and air streams; and from plasma treatment of exhaustgases to direct plasma treatment of burns, ulcers, and other skin diseases.Clearly, each plasma process requires an understanding of its mechanism,development of the most relevant discharge system and choice of the mostoptimal plasma regime (Chen 1929) (lieberman and Lichtenberg n.d.) (Fridman,Plasmachemistry2008).InthisstudyIwilladdresstosterilizationofwaterbyplasma,whichrequiresanunderstandingofitsmechanismaswillbeexplainedbelow(section3).

  • 6  

    1.6. PlasmaIonization

    PlasmaCannotbeproduced fromany ionizedgas (Chen1929).Thereare fivetypesofionizationprocesses:

    1. Directionizationbyelectronimpact.2. Stepwiseionizationbyelectronimpact.3. Ionizationbycollisionwithheavyparticles.4. Photoionizationprocesses.5. Surface ionization (electron emission) provided by electrons (Fridman,

    etal.,2004).

    Ionization by collision with heavy particles is an equilibrium ionizationprocesseswhichwillberepresentedbytwoexamples.

    1.6.1. ThePenningIonizationIf electron excitement energy of state of equilibrium for atom A* skips theionizationpotentialofotheratomB,acollisionbetweenthemcanleadtoanactofionization(Fridman,etal.,2004)(Fridman,2008).

    1.6.2. AssociativeIonizationThisprocessescanoccurwhenthetotalelectronexcitementenergyofcollisionparticlesisnotenough.Theionizationprocesscanoccurdespiteheavyspeciesstick to each other, combining a molecular ion, and therefore the bondingenergycanolsobecontributedintothe ionizationact(Fridman,etal.,2004)(Fridman,2008).

  • 7  

    2. LITERATUREREVIEWRegardingplasmasdischargesinthewater,therearetwofamoustypes:directdischargeinthewaterandbubbledischargeinthewater(Yang,2011).Inthischapter will explain both of them. Most scientists and scholars used thisphenomena(plasmadischargeinthewater)forwatertreatmentingeneralandtheothersuseditfordifferentapplications.Thisstudyisessentiallyfocusingonthewatertreatmentandotherapplicationswillbeaddressedonlybriefy.TherearethreequestionslockedontheinternetandespeciallyGooglesite,namely:

    1. “Plasmadischargeinwater”.2. “Pulsedplasmadischargeinwater”.3. “Plasmabubbleinwater”.

    Alotofjournalandconferencespaperswerepublishedoverthelastfewyears.Thisstudywillfocusontheperiodbetween2001‐2016.2.1. ThePeriodBetween(2001‐2005)In2001incenterofPlasma‐AidedManufacturing,FoodResearchInstitute,andDepartmentofBiologicalSystemengineering,UniversityofWisconsin‐Madisonand naval Research, Manolache and his group studied the levels to whichmicrobial colony forming units are permitted in variouswaters fit for humancontact are carefully regulated by using ‐Dense Medium Plasma reactor‐(Manolacche,etal.,2001).In 2002 a Japanese research team (Sugiarto, Ohshima and Sato) prepared astudyofcomplexorganicdyesbypulsedstreamercoronadischargeinwater.Ithas been carried out using a ring‐to‐cylinder electrode geometry system(Sugiarto,etal.,2002).In 2003, there are three teams from different universities of USA (ColoradoState University, United States Naval Research Laboratory and University ofWisconsin‐Madison) prepared a study ‐Treatment of Methyl tert‐Butyl EtherContaminatedWaterUsingaDenseMediumPlasmaReactor:AMechanisticandKineticInvestigation.Plasmatreatmentofcontaminatedwaterappearstobeapromising alternative for the oxidation of aqueous organic pollutants. Thisstudy examines the kinetic and oxidation mechanisms of methyl tert ‐butylether (MTBE) in a dense medium plasma (DMP) reactor utilizing gaschromatography‐mass spectrometry and gas chromatography‐thermalconductivitytechniques.AratelawisdevelopedfortheremovalofMTBEfromanaqueoussolutionintheDMPreactor(Johnson,etal.2003).In2003, abovementioned Japanese teamalongwithSlovakian researcher (JanD.Skalny) prepared a study of degradation of organic dyes by the pulseddischargeplasmabetweenneedle‐to‐planeelectrodesincontaminatedwater.It

  • 8  

    has been investigated in three discharge modes (streamer, spark and spark‐streamer)(Sugiartoa,etal.2003).In 2004, Manolocha and his team again used Dense Medium Plasma reactor(DMP) to decontaminat water with aromatic compounds. Artificially conta‐minatedwaterwitharomaticcompounds,including(benzene,ethylbenzeneandxylenes) was exposed to DMP environments in the presence of oxygen(Manolache,ShamamianandDenes2004).2.2. ThePeriodBetween(2006‐2010)Severalyearslaterspecificallyin2006LockandSatoandthegrouppreparedastudy which included a review of the application of strong electric fields inwater and organic liquids using 410 references. They explain types ofdischargesusedforwatertreatmentindetail(Locke,etal.2006).In2006,SahniandLockepreparedastudytoexplaintheformationofreductivespecies which has already been documented in various advanced oxidation–reductionprocesses(AORP)suchasultrasoundandradiationprocesses(SahniandLocke2006).Intheseameyear,Burlicaandhisteampreparedapapernamed‘FormationofReactiveSpeciesinGlidingArcDischargeswithLiquidWater’,whichstudiestheeffectsofgascompositiononglidingarc(glidarc)electricaldischargereactorswith pure water, by using AC electric discharge with two different electrodeconfigurations(Burlica,KirkpatrickbandLocke2006).After two years specifically in 2008, a Japanese team prepared a study togenerateplasmainsideexternallysuppliedArbubbles inwater, toexplaintheradio‐frequency glow‐like plasmahavebeenproduced inAr bubbles inwaterthatflowsinaquartztubeequippedwithelectrodes(Aoki,KitanoandHamagu2008).ACzechsresearchersPetrLukesandhisteamin2008preparedapapernamed‘PulsedElectricalDischarge inWaterGeneratedUsingPorous‐Ceramic‐CoatedElectrodes’,whichexplainsaspecialmetallicelectrodecoveredbyathin layerofporousceramicpreparedbythetechnologyofthermalplasmasprayingthathasbeendevelopedandusedfromthegenerationoflarge‐volumenonthermalplasmainwater(Lukes,etal.,2008).A Japanese research team prepared a paper in 2008, in which the dischargeprocessingofpulseddischargesgeneratedinsidebubblesisobservedusinganintensifiedcharge‐coupleddevicecameraatanexposuretimeof5ns(SatoandYasuoka2008).YanzongZhangwithhis team fromChinaUniversityofPetroleumpreparedapaper in 2008, which designs a novel non‐equilibrium plasma‐based watertreatmentreactor,tostudyahighvoltagemulti‐needleelectrodesubmergedinaqueousphaseandreticulatedgroundelectrodesuspendedingasphaseabove

  • 9  

    waterwasdevelopedandapplied to treat lowconcentrationofmethylorange(Zhang,etal.2008).GuptaanIndianresearcherfromtheInstituteforPulsedPowerandMicrowaveTechnology, Forschungszentrum Karlsruhe, in 2008, prepared a paper forpotentialofpulsedunderwaterstreamerdischargesasadisinfectiontechnique,to investigate the effectiveness of pulsed underwater streamer discharges forwater disinfection and its scalability to large throughputs (Gupta and Bluhm2008).In2009sameteamfromCzechRepublicpreparedanotherstudyabouttheroleof surface at ceramic/electrolyte interface in the generation of pulsed coronadischargeinwaterusingporousceramic‐coatedrodelectrodes.Theaimwastoexplain the effects associated with the electrical breakdown of water usingporous ceramic‐coated rodelectrodes.Thywere investigated for two typesofceramics,oxide(corundum)andsilicates(almandine).Propertiesoftheceramiclayeranditsinteractionwiththeelectrolytewerefoundasimportantfactorsinthegenerationofelectricaldischargesinwater(Lukes,etal.,2009).In2009MasayukiSatopreparedapaperforenvironmentalandbiotechnologyapplicationsofhigh‐voltagepulseddischarges inwater.Heexplainshowhigh‐voltage pulse has wide application in fields such as chemistry, physics andbiologyand their combinationsand thehigh‐voltagepulse forms twokindsofphysical processes in water, namely (a) a pulsed electric field (PEF) in theparallel electrode configuration and (b) plasma generation by a pulseddischargeinthewaterphasewithaconcentratedelectricfield(M.Sato2009).In same year a team from Drexel University department of mechanicalengineeringandmechanics,preparedapaperforremovalofCaCO3scalesonafiltermembraneusingplasmadischargeinwater. Theyexplainthatinmodernwastewater treatment, filters are routinely used for removing unwantedparticles fromwater.Sothey investigated ifapulsedsparkdischarge inwatercan be used to remove deposits from the filter membrane for its potentialapplication in drinking and industrial water treatment (Yang, Gutsol, et al.2009).In2009,Britishresearcherspreparedastudyaboutnon‐thermalplasmainandincontactwithliquids.Using237referencestheyexplainedthatduringthelasttwo decades atmospheric (or high) pressure non‐thermal plasmas in and incontactwithliquidshavereceivedalotofattentioninviewoftheirconsiderableenvironmentalandmedicalapplications(BruggemanandLeys2009).In2009,SakiyamaandhisteampreparedapaperfordisinfectionofE.colibynonthermalmicroplasmaelectrolysis innormal salinesolution.Theyaimedatpresentingauniquemethodtoinactivatemicroorganismsin0.9%NaClsolution(normalsalinesolution)bymeansofmicroplasmas.Thedeviceconsistsofathintitaniumwire covered by a glass tube for insulation except for the tip and aground electrode. Application of an asymmetric high‐frequency, high voltage

  • 10  

    results in the formation of microbubbles at both electrodes (Sakiyama, et al.2009).In2009,Joshiandhisteampreparedapaperaboutaspectsofplasmainwater(steamerphysicsandapplications).Physicalmechanismsforstreamerinitiationandelectricalbreakdown inwaterarediscussed.The focus isonvariouspro‐cessesthatcould lead to the inceptionandpropagationofstreamers inwater,physicaldetailsassociatedwithobserveddisparitiesinbreakdownattheanodeversus the cathode, differences in luminosity, and variations in streamerpropagationspeedsarediscussed(Joshi,etal.2009).In 2010 Yang and his team, in Drexel university department of mechanicalengineering andmechanics, prepared a paper for application of pulsed sparkdischargeforcalciumcarbonateprecipitationinhardwater.whichwasstudiedthe effect of underwater pulsed spark discharge on the precipitation ofdissolved calcium ions. Water samples with different calcium hardness wereprepared by continuous evaporation of tap water using a laboratory coolingtower.Itwasshownthattheconcentrationofcalciumionsdroppedby20‐26%after10‐minplasmatreatment,comparedwithnodropforuntreatedcases(Y.Yang,H.KimandA.Starikovskiy,etal.2010).In 2010, a Japanese team, K. Sato and his group, from Tokyo institute oftechnology, prepared a paper for water treatment with pulsed dischargesgeneratedinsidebubbles.Theparalleloperationofpulseddischargesgeneratedinsidebubblesissuccessfullydemonstratedbyapplyingafastrisingvoltagetoamultielectrodesystemimmersedintreatedwater.A10ppmsolutionofaceticacid,whichcannotbedecomposedbyozone,wasusedasapersistentmaterial.Theaceticaciddecompositionefficiencywasevaluatedbymeasuringthetotalorganic carbon (TOC) values of the solution. The electric conductivity of thesolution affected decomposition efficiency because the solution resistance,whichwasinverselyproportionaltotheconductivity,limitedthemagnitudeofthedischargecurrentflowingalongthesurfaceofthebubblesgeneratedbythefeedingofoxygenorargongas(Sato,YasuokaandIshii2010).2.3. ThePeriodBetween(2011‐2016)In this period, the most studies about plasma in the water and spatiallyapplications will be presente, as this periodwas characterized by a focus onsuchapplicationsdramatically.In2011,YongYangwithhisteam,DrexelUniversityinthestateofPhiladelphiaAmerica,preparedastudyaboutpulsedmultichanneldischargearrayinwaterwithstackedcirculardiskelectrodes. Inorder to illustrate theeffectivenessofthe system, stacked circular disk electrodes are developed to generate pulsedmultichannel discharge array in water. Images of the pulsed multichanneldischarge generated in water were obtained by applying pulsed high voltageoverthincircularmetaldiskssandwichedbetweenapairofdielectricdisks.By

  • 11  

    stackingmultiplecirculardisks,thepresentdischargearraysystemcanproducelarge‐volumeplasmadesired for the treatment of a large volumeofwater (Y.Yang,H.KimandA.Starikovskiy,etal.2011).In 2011, an important paper published by plasmamedicine journal, by YangYongandhis team.Thepaperwasaboutanalysisof streamerpropagation forelectric breakdown in liquid/bioliquid. The paper studies direct plasmageneratedinliquid/bioliquidasitfindsmoreapplicationsinbothindustryandacademic research, for all applications, it’s important to get a betterunderstandingofthekeyphysicalmechanismsofthebreakdownprocess.Inhisstudy, streamer propagation during an electrical breakdown process ofdielectric liquidwas analyzed quantitatively using two differentmechanismsbasedonelectrostaticexpansionandlocalheating.Itwasproposedthatattheearly stage of the streamer propagation, the electrostatic force due to thechargingofaliquid‐gasinterfaceunderahighelectricfieldmightbethemajordrivingforceforfilamentgrowth(Yang,Starikovskiy,etal.2011).In2011,LuscieNmcovawithherteam,preparedapaperforchemicalefficiencyofH2O2productionanddecompositionoforganiccompoundsunderactionofDCunderwaterdischargeingasbubbles.TheystudiesDCunderwaterdischargegeneratedingasbubbles(air,Ar,He,andN2)inaNaH2PO4•2H2Osolution.Itisshownthatthemaximalconcentrationofhydrogenperoxideproducedinthedischargedoesnotdependongascomposition(Nemcová,etal.2011).In 2013, Denes and his team from University of Wisconsin‐Madison in USA,prepared a paper for synthesis of nanoparticle systems and structuralmodificationofliquidmediabyusingdensemediumplasmareactor.Inordertostudy atmospheric pressure, dense medium plasma environments wereemployed to synthesize carbon‐host, sole and hybrid, Magnetic‐Nanoparticlesystem (MNS) and silicon and poly‐holo‐silane nanoparticles systems (NPSs)(Denes,ManolacheandJiang2013).In2015, Stratton in2015withhis team fromClarksonUniversity in theUSA,preparedapaperforplasma‐basedwatertreatmenttoimprovethefeasibilityofplasma‐based water treatment technology and develop basic guidelines forreactor design and optimization. The study was conducted to identify andcharacterize design parameters and physical phenomena that influencetreatmentefficiency(Stratton,etal.2015).In Drexel University in the USA, Kim with his team prepared a paper forinactivation of bacteria via application of spark plasma in producedwater tostudytheeffectivenessofsparkplasmadischargesontheinactivationbacteriainproducedwater(Kim,etal.2015).In 2015, a Korean rasearch team led by Kim prepared a paper for synthesisbimetallicnanoparticlesusingpulsedplasmadischargeinwater.Thesyntheticapproach for electrocatalysts is one of the most important methods fordeterminingelectrocatalyticperformance(Kim,ChoandLee2015).

  • 12  

    AtUniversityofStrathclydeintheUnitedKingdom,Liwithhisteampreparedapaper for fluorescence detection of hydroxyl radical in water produced byatmosphericpulseddischarges.Theyprovedthathydroxyl(OH)radicalscanbegenerated by streamer discharges across water surfaces under ambientatmosphericconditions(Li,etal.2015).Inlightofstudiesabove,althoughdirectdischargeeasilyproduceplasmaintheliquid,bubbledischargemoreeffectiveandusefulforliquid,asdirectdischargeheatsthewaterwhilebubbledischargekeepswateratroomtemperature.We conclude from the above that the direct discharge can be used in largevolume water chambers. However the bubble discharge in the liquid cannotused in large volumewater chambers. Hence, this thesis aims at solving thisproblembyusingbubbledischargewithlargevolume.Section3willexplainalldetails about the method and will present advantages and disadvantages fornewmethodofproduction.

  • 13  

    2.4. DesignsAboutPreviousWorksWewillpresentthemostimportantdesignsandindustrialfordirectdischargeandbubbledischargeinwater.Figure 2.1. Bubble discharge in water maximum 200 mL (Manolacche, et al.,2001).Figure2.2.Directdischargeinthewater300mL(Sugiarto,etal.2002).

    Fig.2.2.Schematicdiagramoftheexperimentalapparatus

    FIGURE 2.1. Scheme of dense-medium plasma reactor. 1 -DC power supply; 2 - gases evacuation; 3, 26 - coolant exit and inlet; 4, 7- glass cylinders; 5 - electrical contact; 6 - coolant; 8 – ceramic pin-array; 9, 17 - caps; 10 - nonrotating electrode; 11 - ground;12 -gas inlet; 13 -motor; 14 -digital controller; 15, 18 –magnetic coupling system; 16 - liquid inlet; 19 - rotating electrode; 20 -sealed volume; 21 - quartz isolator; 22 - recirculating pump; 23- pins; 24 - electrical discharges; 25 - recirculated flux; 27 -valve. 

  • 14  

    Figure2.3.Glidingarcdischargeinthewater400mL(Burlica,KirkpatrickbandLocke2006).

    Fig.2.3.Three‐electrodeglidingarcreactor.

    Figure2.4.Bubbleplasmadischargeinthewater(Aoki,etal.2008).

    Fig2.4.Aschematicdiagramofthebubbleplasmasystem.

  • 15  

    Figure2.5.Directdischargeinthewater(Lukes,etal.,2008).

    Fig 2.5. Multichannel pulsed electrical discharge in water generated by usingporous‐ceramic‐coatedmetallicelectrodes.Effectofwaterconductivityon electrical discharge characteristics: (a) 600μS/cm, (b) 1.5mS/cm,(c)6mS/cm,and(d)15mS/cm.

    Figure2.6.Bubblepulseddischrgeinwater(SatoandYasuoka2008).Fig2.6.SchematicofbubblepulseddischargeinwaterbyusingOxygen,Argon,

    andHelium.

  • 16  

    Spectrometer

    Normal saline solution

    OscilloscopPower supply

    PMT

    Figure2.7.Directdischargeinwater(Sakiyama,etal.2009).

    Fig2.7.Fornonthermalplasmaelectrolysis.Figure2.8.Directdischargeinwater(Y.Yang,etal.2010).

    Fig.2.8‐Schematicdiagramofthepulsedpowersystem.Figure2.9.Direct‐pulsedmultichannel‐dischargearrayinwater(Y.Yang,etal.2011).Fig.2.9.Three‐dimensionalschematicdiagramofthediskelectrode.

  • 17  

    3. EXPERIMENTALSETUP3.1. INTRODUCTION The research question it was “HowCanProducePlasma InWater?”. Why waschosethewaterasamediumtoproduceplasma?The water is the essence of life. It covers 71% of earth’s surface (Wikipedia2016),distributedamongLakes,Oceans,Seas,RiversandStreams.Freshwatermakesonlyup2.5%oftotalwaterontheEarth’ssurface(Wikipedia2016) and the ice and the groundwater is actually 98.8% of freshwater (fig.3.1).Thehumanbody contains55% to78%dependingonbody size (fig. 3.2). Forthese reasons and many more that have not been mentioned in this field ofresearch, the scientists and researchers are interested in the study of waterpropertiesandhowtosave,treatandfilterit.  

    Freshwater 2.5%  

    Other saline water 0.9% 

    Oceans 96.5% 

    Total global water 

    Freshwater 

    Groundwater 30.1% 

    Surface/other freshwater 1.2% 

    Glaciers and ice caps 68.7% 

    Atmosphere 3.0% 

    Living things 0.26% Rivers 0.49% Swamps, marshes 2.6% 

    Soil moisture 3.8% 

    Ground ice and 

    permafrost 69.0% 

    Lakes 20.9% 

    Surface water and other freshwater  

    Figure 3.1 water distribution on Earth (online image) Others 

    Nitroge

    Hydrog

    Carbon 

    Oxygen 

    65% 

    18% 

    10% 

    3% 

    Figure 3.2 human body contains water (online image) 

  • 18  

    3.2. HowProducePlasmainoronWater

    There aremultiplemethods to produce plasma in or onwater. This questionwasdifficultinthebeginning,butvariousstudiesandworkexperienceenabledustodiscoveralotofinformationnecessarytoproducethesekindsofplasmas.3.2.1. PlasmaonWaterThe first teqhnique used for plasma on the water (fig. 3.3) was use of highvoltagepowersupplyconnectedbysteelelectrodewhichwasholdbyaholderaboveanaluminumdishfilledwithwater.

    This technique was not enough to kill all microoganisms because plasmadischargewasabovewatersurface.3.2.2. PlasmaatWaterSurface

    The second techniquewas plasma inside a glass tube partially submerged inwater(fig.3.4).Inthisexperiment,weusedhighvoltageconnectedwithmeshsuperconductorputinsideaglasstubwhichwaspartiallysubmergedinwater.Theplasmawasproducedaround themesh insideglass tubeatwatersurface(fig.3.5).

    HV 

    Electrode 

    Aluminum dish 

    Water level  

    Holder  

    Figure 3.3. Description of plasma discharge above water surface 

  • 19  

    Likewise,theproducedplasmawasinsidethetubeonlyaroundthemeshatthewatersurfaceandnotdirectlyinthewater.Thiskindofplasmaisweak,inactiveandcannotkillallmicroorganismsbyitself. 3.2.3. PlasmaatWaterSurfaceforLongDistance

    The third technique was plasma at water surface inside glass tube layinghorizontallyonwatersurface(fig.3.6).Inthiscase,weusedhighvoltagepowersupplyconnectedwithmeshsuperconductivityworkingasapositiveelectrode.Thepositiveelectrodewas coveredbyglass tube layingonwater surfaceandthewaterwasputinaPyrexclasspot(orplastic).AnaluminumlayerwasputunderthePyrexglasspotasanearthingelectrode(fig.3.7).

    Holder 

    Glass tub 

    Mesh  

    Water level 

    Pot superconductor

    HV 

    Figure 3.4. Illusturation of plasma discharge at water surface

    Pot superconductor 

    HV 

    Plasma at water suface 

    Figure 3.5. By  iPhone camera,  Image of plasma discharge at water surface  inside glass tub around the mesh. 

  • 20  

    Ahigh voltagepower supplywasused starting fromzero and thepowerwasgradually increaseduntil it reached9.6KVand50mA,atwhichpointplasmawasproduced.Plasmazonewasatinnerbarrierofglasstub,andtouchedsidesofwatersurface.Inputvoltage

    VOutputvoltage

    KVInputcurrent

    mAOutputcurrent

    mAFrequency

    KHz223 9.6 20 50 55

    3.2.4. Plasmainwater

    The fourth technique, plasma was produced by a covered electrode in aninsulated glass tube submerged in a glass (plastic) pot completely filledwithwater(fig.3.8).Weusedhighvoltagepowersupplyconnectedwithapositiveelectrode and the second electrode worked as an earthing. When a powersupplyisconnectedandthevoltagewasgraduallyincreasedtoareach5KVand

    Figure3.6:Illusturationofplasmabyglasstublayingonwatersurface

    HV Glass tub 

    Mesh superconductivity  

    Pyrex glass pot 

    Water level  

    Aluminum layer  

    Plasma zone  

    Plasma   

    Figure3.7:ByiPhonecamera,plasmaproducedbetweenglasstubbarrier

  • 21  

    20 mA, the plasma was created (fig. 3.9). Observe that the plasma wasdistributedonallsidesoftheglasstubecontainingthepositiveelectrode.

    InputvoltageV

    OutputvoltageKV

    InputcurrentmA

    OutputcurrentmA

    FrequencyKHz

    222 5 10 20 55

    Comparingbetween the resultsof this experimentand3.2.3.,weobserve thattheoutputvoltagesandcurrentsinthisexperiment(5KV,20mA)respectivelywerelowerthanthevoltagesandcurrentsinthethirdexperiment(9.6KV,50

    HV 

    Glass tub Mesh superconductivity  

     Glass pot 

    Water level  

    Aluminum layer  

    Figure 3.8: Illustration of plasma by glass tub submerged in a glass(plastic)potcompletelyfillofwater

    Figure  3.9:  plasma  distributed  on  all  aspects of  the  glass  tube  containing  the positive electrode 

  • 22  

    0

    10

    20

    30

    40

    50

    60

    Input voltage Output voltage Input current Output current Frequency

    Compare the results between 3.2.3. & 3.2.4. 

    Seri1 Seri2

    mA)respectively.Themainreason for thevariation isdue toapproaching thepositiveelectrodeofthegroundelectrode,makingtheelectricaldischargeandproducedplasmaquickly,atanappropriatepotential.The positive electrode was above the water's surface in third experiment,resultinginasignificantenergyisspenttoproduceplasma.Inthisexperiment,theanodeinthewaterwasrelativelyclosertothebottom,whichledtoplasmaproductionwithlessenergy(fig.3.10).

    3.2.5. PlasmaWaterReactor(PWR)

    The fifth technique,weusedadifferentmethod toproduceplasma(fig.3.12).This method involves an upper electrode and a lower electrode. Cylindricalglass chamberwith a capacity of 400mlwaterwas covered by a plastic discfrom upper and bottom sides in addition to a stainless steel disc. The upperelectrode is rotated by a rotating motor in the range (1000‐5000) rpm. It isequipped with cylindrical quartz tube to prevent the ingress of water to theelectrode. At the end of the electrode, small pins were placed. The lowerelectrodehadlittleholesdistributedcircularly.Thelowerelectrodehadaholeto inlet gas. The distance between upper electrode and lower electrode was

    Figure 3.10: compare the results between experiment 3 & 4 . 

  • 23  

    1mm. We used an AC power supply to create plasma, but it was still insidecylindricalquartztubeanddidnotspreadoutsidethequartzbarrier(fig.3.11).Soitwasnotenoughtoinactivatemicroorganismsinthewater.

    Figure 3.11: plasma inside quartz tube around the upper electrode 

  • 24  

    Figure 3.12: Illusturation of plasma water reactor

    HV

    1

    2 3

    4

    8

    5

    6

    7

    10

    11

    12

    13

    14

    15

    17

    18

    19

    16

    20

    9 20

  • 25  

    Figure3.12:characterizeofplasmawaterreactor

    1. DeviceofLasertoTachometer.2. Ironholdersforfixingrotatingmotor,ranginglengthfrom(5‐10)cm.3. Littlehollow,toexitgaseousfromthewaterreactor.4. Ballbearing,torotatingandelectricalconnection.5. Waterlevel,ranginglevelfrom(200‐400)ml.6. Littlecircularhollows,diameters1mm.7. Lowerelectrode,madefromsteel,radius2.5cm.8. Hollowinner,allowsthepassageofgastothelowerelectrode.9. Gasinlet.10. Highvoltagepowersupply(AC,DCorRF).11. Rotatingmotor,rangingfrom(1000‐5000)rpm.12. Metaldisk,tofixingrotatingmotor.13. Teflonpart,toisolatedrotatingmotorfromupperelectrode.14. Upperelectrode,madefromsteel.Radius1.25cmandlength19cm.15. Plasticdisc,tocoveringwaterreactor.16. Quartztub.17. Plasmazone.18. Glasschamber.19. Steelpins.20. Ironstand.21. Grounded.

    3.2.6. ArcPlasmaDischargeinWaterReactor(APDWR)

    The sixth technique (APDWR), we developed (PWR). So, the upper electrodehadsteelpinsonthesidestrechingoutsidethequartztubedirectlyintowater(3.13).Withthesechanges,wefinallycreatedplasmainthewater(3.14).Becausetheupper electrodewasdirectly contactedwithwater and itwas closer to lowerelectrodewith(0.5)mmbetweenthem.WeusedDCpowersupply(170V,20A), and helium gas as a cofactor, so plasma glow hadwhite color.Water gotheatedasthecurrentwashigh,androtatingwasunder1000rpm.Thistimeallmicroorganismswerekilledthoroughly(fig.3.14).

  • 26  

    This experiment succeeded and we presented the results in the 42nd IEEEInternational Conference on Plasma Science (ICOPS), in May 2015, in Belek,Antalya,Turkey(Mohammed,etal.2015).

    HV

    1

    2 3

    4

    8

    5

    6

    7

    10

    11

    12

    13

    14

    15

    17

    18

    19

    16

    20

    9 21

    Figure3.13:IllustrationArcPlasmaDischargeinWaterReactor(APDWR)

  • 27

    Figure 3.14: Helium Arc Plasma Discharge in Water Reactor (APDWR).

  • 28 

    3.2.7. MultiMicroArcsPlasmainWater(MMAPW)

    Theseventh technique (MMAPW),wecompletely finished thedesignofwatertreatment reactor (fig.3.15). In this experiment (MMAPW),wedeveloped lastdesign(APDWR) fromupperand lowerelectrodes (fig.3.16).Allaredesignedanddevelopedatplasmalab,SüleymanDemirelUniversity.Theupperelectrode(fig.3.16),in(MMAPW)reactoriscomposedofstainlesssteelshaft,fixedonthehead,cylindricalpartofsamemetal(1),thesmallpins(2),fixedonthediscofdoublelayer,oneoftheminsulated(4),thesecondisconductivitylayer(3).Thedisc with small pins is interchangeable. The lower electrode is hollow, madefromstainlesssteel(6),andcontainsinterchangeablehollowconicalfixedintheupper end of the electrode (5). The distance between upper and lowerelectrodesis0.18mm.Shaftlengthofupperelectrodeis13cm.Numberofpinsis 9, and their lengths are 1 cm (0.4 cm through the disc). The diameter ofhollowconicalof lowerelectrode is1.5cm.ArgonorHeliumgasandrotatingsystem (3000) rpm, were used to produce micro arcs plasma. Water degreebeforeplasmaproductionwas19oCandafterplasmaproductionitwas21oC.DCpowersupplywasusedforthisexperiment.TheinputvoltageandcurrentwereAC(220‐240V&2‐4A)respectively.OutputvoltageandcurrentwereDC(356V&0.77mA)(fig.3.17).

    Parameters Beforeplasma AfterplasmaVoltageDC 0‐355V 356VCurrantDC 2A 0.77mAWaterdegree 19oC 21oC

    Revolutionperminute(rpm)

    3000 3000

  • 29 

    Figure 3.15: Multi Micro Arcs Plasma in Water (MMAPW).

  • 30 

    Figure3.16:UpperandlowerelectrodesinMMAPWreactor

    1. Stainlesssteelshaft,upperelectrode,13cmlength.2. Copperpins,9numbers&1cmlengths.3. Upperconductivitylayer,1.5cmdiameter.4. Lowerinsulatedlayer,1.5cmdiameter.5. Interchangeablehollowconical.6. Stainlesssteellowerelectrode.

    2 3 

  • 31 

    Figure 3.17: Argon Multi Micro Arcs Plasma in Water (MMAPW) reactor.

  • 32 

    expriment1

    expriment2expriment3expriment4

    0

    500

    1000

    1500

    VI

    Time minrpm

    plasma

    expriment1 expriment2 expriment3 expriment4

    4. RESULTSANDDISCUSSION

    Developmentofwater reactor atPlasmaLab in SuleymanDemirelUniversity,lead to produce plasma inside water. Inside water plasma, lead to watersterilization.It’smeantokillallmicroorganisms.AllresultsofMultiMicroArcsPlasmainWaterexperience,asbelow.

    4.1.Results:

    Toproduceplasmawetriedfourtime,thefirstexperimentweuseddifferentmeasurements(100V,2Am,5minand400rpm),plasmadidn’tcreate.Thesecondexperimentweused(200V,4Am,10minand450rpm),noplasmaalso.Thethirdexperimentweused(250V,5Am,10minand600rpm)plasmacreatedbutitwasarcplasma.Fourthexperimentweused(356V,0.7Am,15minand1500rpm)wegottomicroarcplasmaitwasperfectresult(table4.1)(fig.4.1).

    Ex  V  I  Time min 

    rpm  plasma  

    expriment1  100  2 5 400 0expriment2  200  4 10 450 0expriment3  250  5 10 600 600expriment4  356  0.7 15 1500 1500

    Figure 4.1: the relation between V& rpm.

    Table 4.1: the relation between V, I, Time& rpm.

  • 33 

    ByusingOptical Emission Spectroscopy (OES) (fig. 4.4), to analysis plasmaofH2O (fig. 4.2). We got a lot of peaks of plasma bubble in water, this peaksbetweenwavelengthand intensity.Comparing thevalueon(NIST)website, tofind chemical elements (Kramida 2015).We found elements as a (O,I,Co,N,C)withdifferentwavelengths.

    OIV:2s22p2Po3/2–2s2p(1Po)3p2S½III:5s25p3(2Po)6s3Po2–5s25p3(2Po)6p3P2.CoII:3d7(4F)4sa5F4–3d7(4F)5p3Go5.NI:2s22p2(3P)3p4So3/2–2s22p2(3P)9s4P¾.(Kramida2015)

    Figure 4.2: peaks of plasma water between wavelength and intensity 

  • 34 

     

    NaIII:2s22p4(1D)3p2Po½‐2s22p4(3P)3d2P½.HeII:4p2Po3/2–6s2S½.

    4.2.Discussion

    Thechemicalelementsintheanalysisofplasmaspectram,allofthemions.İt’smeanetherionexcept electronforareachtosteadystate,or lefelectron.Forexample:OIIwichmeanO+oxygenionleftelectronoutsidofatom.OIIIwichmeanO++oxygenionlosecoupleofelectrons.Andgoon.

    Figure 4.3: peaks of plasma water between wavelength and intensity 

  • 35  

    Figure4.4.OceanOpticsHR4000High‐resolutionmodelwith3inputs(200‐1100)nmspacedspectrometer

    OceanOpticsHR4000High‐resolutionisanothermethodofanalysiswetested,byusingtheopticalemissionsmeasuringthatgeneratedintheplasmawecandistinguish Ocean Optics as shown in (fig. 4.4), by using model HR4000spectrometer'shighresolution,optical fibercablesfixedtoseetheareawheretheplasmaisformed.The special constants were Standards and the other data for atoms in theequation, so from (NIST) that was as established reference taken from thewebsite.BywayofillustrationforthesymbolswhichmeasurementsbyOpticalemissionvalues and intensities obtained from argon plasma? Sowe obtain the data ofatomsfrom(NIST)whichhasestablishedareferencetakenfromthewebsite.sowe can recall them by Electronic distribution of energy levels as seen in InFiguresection4.2,4.3.  

  • 36  

    5. CONCLUSSIONS

    We conclude from the above that the direct discharge can be used in largevolume water chambers. However the bubble discharge in the liquid cannotused in large volumewater chambers. Hence, this thesis aims at solving thisproblem by using bubble discharge with large volume. Section 3 explaind alldetailsaboutthemethodfornewofproduction.Thefirstexperiencewithplasma,wasplasmaabovewatersurface.Thesecondatwatersurfaceplasma,weusedA.Chighvoltagepowersupply.Longdistanceplasmaatwatersurfaceandinwater,weusedA.Chighvoltagepowersupply.Thevoltageandcurrent forproduceplasmaabovewater,morethan inwater.Plasmawater reactor, have passed different stage of development, to a reachfinaldesign.Andproducemultimicroarcsplasmadischarge.      

  • 37 

    REFERENCES

    Fridman,Alexander.2008.Plasmachemistry.Aoki,Hironori,KatsuhisaKitano,andSatoshiHamagu.2008."Plasmageneration

    inside externally supplied Ar bubbles in water." PLASMA SOURCESSCIENCEANDTECHNOLOGY1‐6.

    Baumjohann, Wolfgang , and A. Rudolf Treumann. 1996. Sasic SpacePlasmaPhysics.London:ImperialCollegePress.

    Bellan, Paul M. Apr 6, 2006. Fundamentals of Plasma Physics. CambridgeUniversityPress,.

    Bruggeman,Peter,andChristopheLeys.2009."Non‐thermalplasmasinandincontactwithliquids."JOURNALOFPHYSICSD:APPLIEDPHYSICS1‐28.

    Burlica,Radu,MichaelJ.Kirkpatrickb,andBruceR.Locke.2006."Formationofreactive species in gliding arc dischargeswith liquidwater." JournalofElectrostatics35‐43.

    Chen,FrancisF.1929.lntroductiontoplasmaphysicsandcontrolledfusion.Cheng,Cheng,LiuPeng,XuLei,ZhangLi‐Ye,ZhanRu‐Juan,andZhangWen‐Rui.

    2005. "Development of a new atmospheric pressure cold plasma jetgeneratorandapplicationinsterilization."(ChinesePhysics)15.

    Denes, Ferencz S., S. Manolache, and H. Jiang. 2013. "Dense Medium PlasmaEnviroments Used for the Synthesis Of Nanopartice Systems anStructuralModificationofliquidMedia."JournalofPhotopolymerScienceandtechnology513‐527.

    Fridman, Alexander, and Lawrance A. Kennedy. 2004. Plasma physics andengineering.

    Gupta, Suryakant B., and Hansjoachim Bluhm. 2008. "The Potential of PulsedUnderwater Streamer Discharges as a Disinfection Technique." IEEETRANSACTIONSONPLASMASCIENCE1621‐1632.

    Johnson,D.C.,V.A.Shamamian,J.H.Callahan,F.S.Denes,S.O.Manolache,andD.S.Dandy.2003. "TreatmentofMethyl tert‐ButylEtherContaminatedWaterUsingaDenseMediumPlasmaReactor:AMechanisticandKineticInvestigation."ENVIRONMENTALSCIENCE&TECHNOLOGY4804‐4810.

    Joshi, Ravindra P., Juergen F. Kolb, Shu Xiao, and Karl H. Schoenbach. 2009."AspectsofPlasmainWater:StreamerPhysicsandApplications."PlasmaProcessandPolymers763‐777.

  • 38  

    Kim, Hyoung Sup, KamauWright, Joshua Piccioni, Daniel J. Cho, and Young I.Cho.2015."Inactivationofbacteriabytheapplicationofsparkplasmainproducedwater."Separationandpurificationtechnology544‐552.

    Kim, Sung Min, Ah‐Rong Cho, and Sang‐Yul Lee. 2015. "Characterization andelectrocatalytic activity of Pt–M (M=Cu, Ag, and Pd) bimetallicnanoparticles synthesized by pulsed plasma discharge in water." JNanopartRes284(1‐13).

    Krcma, Frantisek, Zdenka Stara, and Jana Prochazkova. 2010. "DiaphragmDischargeinLiquids:FundamentalsandApplications."JournalofPhysics1‐6.

    Li, S., I. v.Timoshkin,M.Maclean, S. J.MacGregor,M.P.Wilson,M. J.Given,T.Wang, and J. G. Anderson. 2015. "Fluorescence Detection of HydroxylRadicals in Water Produced by Atmospheric Pulsed Discharges." IEEETransactionsonDielectricsandElectricalInsulation1856‐1865.

    lieberman, Michael A., and Allan J. Lichtenberg. n.d. Principles of plasmadischargeandmaterialsprocessing,.2ndEd.

    Locke, B. R., M. Sato, P. Sunka, M. R. Hoffmann, and J. ‐S. Chang. 2006."Electrohydraulic Discharge and Nonthermal Plasma for WaterTreatment."Ind.Eng.Chem.Res.882‐905.

    Lukes, Petr, Martin Clupek, Vaclav Babicky, and Pavel Sunka. 2008. "PulsedElectrical Discharge in Water Generated Using Porous‐Ceramic‐CoatedElectrodes."IEEETRANSACTIONSONPLASMASCIENCE1146‐1147.

    Lukes,Petr,MartinClupek,VaclavBabicky,andPavelSunka.2009."TheRoleofSurfaceChemistryatCeramic/ElectrolyteInterfacesintheGenerationofPulsed Corona Discharges inWater Using Porous Ceramic‐Coated RodElectrodes."PlasmaProcessandPolymers719‐728.

    Manolache,S.,E.B.Somers,A .C .L.Wong,V.Shamamian,andF.Denes.2001."Dense Medium Plasma Environments: A New Approach for theDisinfection of Water." ENVIRONMENTAL SCIENCE & TECHNOLOGY3780‐3785.

    Manolache, Sorin, Vasgen Shamamian, and Ferencz Denes. 2004. "DenseMedium Plasma‐Plasma‐Enhanced Decontamination of Water ofAromaticCompounds."JournalofEnvironmental17‐25.

    Mohammed , Sh ISMAEL, Bozduman F, Gulec A, Noree Sabah, Almamoori M.,Durmaz Y, U Koc I, and U Ulusoy S. 2015. "Plasma Treatment For TheInactivationOfEschichiaColiInWater."ICOPS.Belek,Antalya,Turkey.

  • 39  

    Nemcová,Lucie,A.Nikiforov,C.Leys,andF.Krcm.2011."ChemicalEfficiencyofH2O2 Production and Decomposition of Organic Compounds UnderAction of DC Underwater Discharge in Gas Bubbles." IEEETRANSACTIONSONPLASMASCIENCE865‐870.

    Sahni,Mayank,andBruceR.Locke.2006. "QuantificationofReductiveSpeciesProduced by High Voltage Electrical Discharges in Water." PlasmaProcessandPolymers342‐354.

    Sakiyama, Yukinori, Takaaki Tomai,MasaruMiya, and David B. Graves. 2009."DisinfectionofE.colibynonthermalmicroplasmaelectrolysisinnormalsalinesolution."APPLIEDPHYSICSLETTERS1‐3.

    Sato , K., and K. Yasuoka. 2008. "Pulsed Discharge Development in Oxygen,Argon,andHeliumBubbles inWater." IEEETRANSACTIONSONPLASMASCIENCE1144‐1145.

    Sato, Keisuke, Koichi Yasuoka, and Shozo Ishii. 2010. "Water Treatment withPulsed Discharges Generated Inside Bubbles." ElectricalEngineering inJapan401‐406.

    Sato, Masayuki . 2009. "Environmental and biotechnological applications ofhigh‐voltage pulsed discharges in water." PLASMA SOURCES SCIENCEANDTECHNOLOGY1‐7.

    Schutze, Andreas, James Y. Jeong , Steven E. Babayan, Jaeyoung Park, Gary S.Selwyn , andRobertF.Hicks.1998. "TheAtmospheric‐PressurePlasmaJet: A Review and Comparison to Other Plasma Sources." (IEEETRANSACTIONSONPLASMASCIENCE)26.

    Stratton, Gunnar R., Christopher L. Bellona, Fei Dai, Thomas M. Holsen, andSelma Mededovic Thagard. 2015. "Plasma‐based water treatment:Conception and application of a new general principle for reactordesign."ChemicalEngineeringJournal543‐550.

    Sugiarto, Anto Tri, Takayuki Ohshima, and Masayuki Sato. 2002. "Advancedoxidation processes using pulsed streamer corona discharge inwater."ThinSolidFilms174–178.

    Sugiartoa,AntoTri,ShunsukeItoa,TakayukiOhshim,asayukiSatoa,andJanD.Skalnyb. 2003. "Oxidative decoloration of dyes by pulsed dischargeplasmainwater."JournalofElectrostatics135–145.

    2016. Wikipedia. April 26. Accessed may 11, 2016.https://en.wikipedia.org/wiki/Water#External_links.

  • 40 

    Yang, Yong. 2011. PlasmaDischarge inWaterand ItsApplication for IndustrialCoolingWaterTreatment.

    Yang, Yong, Alexander Gutsol, Alexander Fridman , and Young I. Cho. 2009."RemovalofCaCO3scalesonafiltermembraneusingplasmadischargeinwater."InternationalJournalofHeatandMassTransfer4901‐4906.

    Yang, Yong, Andrey Starikovskiy, Alexander Fridman, andYoung I. Cho. 2011."Analysis of Streamer Propagation for Electric Breakdown inLiquid/Bioliquid."PlasmaMedicine65‐83.

    Yang,Yong,HyoungsupKim,AlexanderFridman,andYoungI.Cho.2010."Effectaplasma‐assistedself‐cleaningfilterontheperformanceofPWTcoilforthe mitigation of mineral fouling in a heat exchanger." InternationalJournalofHeatandMassTransfer412‐422.

    Yang, Yong, Hyoungsup Kim, Andery Starikovskiy, Alexander Fridman, andYoungI.Cho.2011."PulsedMultichannelDischargeArrayinWaterWithStacked Circular Disk Electrodes." IEEE TRANSACTIONS ON PLASMASCIENCE2624‐2625.

    Yang, Yong, Hyoungsup Kim, Andrey Starikovskiy, Alexander Fridman, andYoung I. Cho. 2010. "Application of pulsed spark discharge for calciumcarbonateprecipitationinhardwater."WaterResearch3659‐3668.

    Zhang, Yanzong, Jingtang Zheng, Xianfeng Qu, and Honggang Chen. 2008."Design of a novel non‐equilibrium plasma‐based water treatmentreactor."Chemosphere1518‐1524.

  • 41 

    CURRICULUMVITAE

    NameandSurname:MohammedSaifAddenShaherISMAELPlaceofBirth :IraqDateofBirth :17/07/1978MaritalStatus :MarriedNationality :IraqiExtraneousLanguage:English,Turkish,andArabicMobile :05070582193E‐posta :[email protected]

    EducationalBackground

    Graduate Al‐MustansiriyahUniversity‐CollegeofEducation,DepartmentofPhysics

    HighSchool AliBinEbiTalibsecondaryschool–Dayala‐Iraq

    Certificateinformation

    IC3InternetandComputingCoreCertification. ICDLInternetionalComputerDrivingLicence. NikonImageAnalysisSoftware–Nikon. NikonInvertedMicroscopes–Nikon. ShuttlePix3DLab.Microscopes–Nikon.

    Workexperiences

    IraqiMinistryofEducationinmaraframHigherSchoolFor8years

  • 42  

    Publication

    Ismael,M.,Bozduman,F.,Gulec,A.,Noree,S.,Al‐Mamoori,M.,Durmaz,Y.,Koc,U.,Ulusoy, S., 2015. Plasma treatment for the ınactivation of escherichıa coli inwater,ICOPS,Antalya.Al‐obaidi,S.N.,Bozduman,F.,Koc,U.,Gulec,A.,Ismael,M.,Durmaz,Y.,Oksuz,L.,2015.GraphenesynthesısbyPECVD,ICOPS,Antalya.Durmaz,Y.,Bozduman,F.,Koc,U.,Ismael,M.,Noree,S.,Gulec,A.,Oksuz,L.,2015.Inductivelycoupledplasmaforgrapheneproduction,ICOPS,Antalya.

    Bozduman,F.,Gulec,A.,Noree,S.,Durmaz,Y.,Ismael,M.,UygunOksuz,A.,2015.Graphene synthesıs by atmospheric pressure microwave plasma, ICOPS,Antalya.

  • 43  

    ÖZGEÇMİŞAdıSoyadı ::MohammedSaifAddenShaherISMAELDoğumYeri :IraqDoğumYılı:17/07/1978MadeniHali:evliUyruk:IrakYapancıDili:İngilizceveArapçaCepTelefonu :05070582193E‐posta :[email protected]

    EğitimDurumu

    Lisans Al‐MustansiriyahÜniversitesi‐(ÖrgünÖğretim)

    EğitimFakültesi,FizikBölümü–Arapçaveİngilizce

    Lise AliBinEbiTaliblisesı‐Diyala‐Iraq SertifikaBilgileri

    IC3InternetandComputingCoreCertification. ICDLInternetionalComputerDrivingLicence. GrafikTasarımvePhotoshop NikonImageAnalysisSoftware‐Nikon NikonInvertedMicroscopes‐Nikon ShuttlePix3DLab.Microscopes–Nikon

    İşDeneyimleri

    8yılMilliEğitimBakanlığıIrak,maraframLisesi'nde PlazmaAraştırmaLaboratuvarı,SüleymanDemirelÜniversitesi,2014‐

    devam.

  • 44 

    Yayınlar

    Ismael,M.,Bozduman,F.,Gulec,A.,Noree,S.,Al‐Mamoori,M.,Durmaz,Y.,Koc,U.,Ulusoy, S., 2015. Plasma treatment for the ınactivation of escherichıa coli inwater,ICOPS,Antalya.Al‐obaidi,S.N.,Bozduman,F.,Koc,U.,Gulec,A.,Ismael,M.,Durmaz,Y.,Oksuz,L.,2015.GraphenesynthesısbyPECVD,ICOPS,Antalya.

    Durmaz,Y.,Bozduman,F.,Koc,U.,Ismael,M.,Noree,S.,Gulec,A.,Oksuz,L.,2015.Inductivelycoupledplasmaforgrapheneproduction,ICOPS,Antalya.

    Bozduman,F.,Gulec,A.,Noree,S.,Durmaz,Y.,Ismael,M.,UygunOksuz,A.,2015.Graphene synthesıs by atmospheric pressure microwave plasma, ICOPS,Antalya.