plasticity (described with tensors)

13
Plasticity (described with tensors) Youngung Jeong

Upload: others

Post on 14-Apr-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Plasticity (described with tensors)

Plasticity (described with tensors)Youngung Jeong

Page 2: Plasticity (described with tensors)

Theory of plasticityโ€ข Rodney Hill

Page 3: Plasticity (described with tensors)

Yield criterion with stress tensor (not scalar)

โ€ข In order to use tensorial quantities and apply the former method, weโ€™ll need to adjust a few assumptions.โ€ข The use of Heaviside like function for yield criterion

!๐ป ๐œŽ โˆ’ ๐‘Œ โ†’ !๐ป ๐ˆ, ๐‘Œ . !๐ป ๐œŽ!" , ๐‘Œ .

We cannot just subtract ๐œŽ!" โˆ’ ๐‘Œ: ๐œŽ!" is a tensor, ๐‘Œ is a scalar quantity.

We introduce a scalar function, called the yield function.Yield criterion is described as a function of ๐œŽ!" (two free indices)We introduce a scalar function, called the yield function.Yield criterion is described as a function of ๐œŽ!" (two free indices)

๐œ™ = ๐œ™ ๐œŽ!" and Letโ€™s use ๐œ™ to see if yield condition is met (๐œ™ = ๐‘Œ) or not (๐œ™ < ๐‘Œ).

Page 4: Plasticity (described with tensors)

Strain-hardening with stress, strain tensors (not scalars)โ€ข One use length of vector to quantify the โ€˜sizeโ€™ of a vector.

โ€ข Similarly, we use equivalent scalar quantities for stress and strain tensors.

โ€ข The equivalent scalar quantity for stress tensor is simply called โ€˜equivalent stressโ€™, and the same is applied to strain tensor (โ€™equivalent strainโ€™).

โ€ข There are a few types of equivalent quantities. Weโ€™ll use only von Mises quantity.

โ€ข The definition of equivalent strain is not straightforward. Weโ€™ll have to determine the amount of plastic work done to the material that is under the given stress ๐œŽ!"(thus providing us the above equivalent stress tensor).

-๐œŽ#$ =12 ฯƒ%% โˆ’ ฯƒ&& & + ฯƒ&& โˆ’ ฯƒ'' & + ฯƒ'' โˆ’ ฯƒ%% & + 6 ฯƒ%&& + ฯƒ&'& + ฯƒ%'&

(.*

Page 5: Plasticity (described with tensors)

Plastic work doneโ€ข Apparently, plasticity is non-linear, the work done for the time from 0 to t is defined

using integration:

โ€ข ๐‘ค#$ ๐‘ก = ๐‘ค#$ ๐‘ก = 0 + โˆซ%& ๐‘‘๐‘ค

โ€ข ๐‘‘๐‘ค#$ = ๐ˆ: ๐‘‘๐œบ#$ = ๐œŽ!"๐‘‘๐œ€!"#$ (two dummy indices ๐‘–, ๐‘—)

โ€ข We postulate the work done calculated by stress and strain tensor (as done above) should be the same as the one calculated by the equivalent stress, equivalent strain.

โ€ข Theabovepostulationisexpressedasbelow:

โ€ข ๐‘‘๐‘ค#$ = ๐œŽ!"๐‘‘๐œ€!"#$ = ๐œŽ'(๐‘‘๐œ€'( โ†’ ๐‘‘๐œ€'( =

)!"*+!"#$

*)%&

โ€ข For materials without previous deformation, the above can be written as:

๐œ€'( ๐‘ก = I%

&๐ˆ: ๐‘‘๐œบ#$

๐‘‘๐œŽ'(

๐œ€#$ ๐‘ก = ๐œ€#$ ๐‘ก = 0 + 6(

+๐‘‘๐œ€#$ = ๐œ€#$ ๐‘ก = 0 + 6

(

+ ๐œŽ!"๐‘‘๐œ€!",-

๐‘‘๐œŽ#$

Page 6: Plasticity (described with tensors)

Strain hardening?

โ€ข Say, your material obeys the Hollomon equation,

๐œŽ = ๐พ.๐œ€/

๐ˆ = ๐พ.๐œบ/ not possibly ; The mathematical operation of โ€˜exponentialโ€™ is not available.

๐œŽ#$ = ๐พ. ๐œ€#$ /; Instead of using the tensors, we use โ€˜equivalentโ€™ quantities (that are scalars).

โ€ข In case your material obeys linear hardening:๐œŽJK = ๐พ๐œ€JK

Page 7: Plasticity (described with tensors)

Now, letโ€™s look at the constitutive model again

๐‘‘๐œบ๐‘‘๐‘ก

= ๐‘ &๐ป ๐ˆ โˆ’ ๐‘˜ ๐œบ(๐‘ก) โˆ’ -!

" 1๐”ผ:๐‘‘๐ˆ๐‘‘๐‘ก๐‘‘๐‘ก +

1๐”ผ:๐‘‘๐ˆ๐‘‘๐‘ก

The term for strain hardening ๐‘˜ ๐œบ(๐‘ก) โˆ’ โˆซ(+ %๐”ผ1๐”ผ1+๐‘‘๐‘ก should be replaced by the

empirical laws based on equivalent quantities.

๐ˆ โˆ’ ๐‘˜ ๐œบ ๐‘ก โˆ’ 6(

+ 1๐”ผ:๐‘‘๐ˆ๐‘‘๐‘ก๐‘‘๐‘ก

๐‘ should be somehow replaced with a tensorial quantity similar to 1๐œบ!"

1+

โ†’ ๐œ™ ๐ˆ โˆ’ ๐œŽ#$(๐œ€#$) ๐œ€#$ ๐‘ก = 6(

+๐ˆ: ๐‘‘๐œบ๐‘‘๐œŽ#$

Page 8: Plasticity (described with tensors)

Now, letโ€™s look at the constitutive model again

๐‘‘๐œบ๐‘‘๐‘ก

= ๐‘ &๐ป ๐ˆ โˆ’ ๐‘˜ ๐œบ(๐‘ก) โˆ’ -!

" 1๐”ผ:๐‘‘๐ˆ๐‘‘๐‘ก๐‘‘๐‘ก +

1๐”ผ:๐‘‘๐ˆ๐‘‘๐‘ก

Letโ€™s assume the linear strain hardening ๐œŽ#$ = ๐พ.๐œ€#$ is valid for our material, so that ๐‘˜ ๐œบ(๐‘ก) โˆ’ โˆซ(

+ %๐”ผ: 1๐ˆ1+๐‘‘๐‘ก should be replaced by ๐พ.๐œ€#$

๐ˆ โˆ’ ๐‘˜ ๐œบ ๐‘ก โˆ’ 6(

+ 1๐”ผ:๐‘‘๐ˆ๐‘‘๐‘ก๐‘‘๐‘ก

๐‘ should be somehow replaced with a tensorial quantity similar to 1๐œบ!"

1+, for now,

Letโ€™s replace ๐‘ with 1๐œบ!"

1+as ๐œบ = ๐œบ,- + ๐œบ#-. (โ†’ 1๐œบ

1+= 1๐œบ!"

1++ 1๐œบ#"

1+)

โ†’ ๐œ™ ๐ˆ โˆ’ ๐พ.๐œ€#$ ๐œ€#$ ๐‘ก = 6(

+๐ˆ: ๐‘‘๐œบ๐‘‘๐œŽ#$

๐‘‘๐œบ๐‘‘๐‘ก

=๐‘‘๐œบ#$

๐‘‘๐‘ก&๐ป ๐œ™ ๐ˆ โˆ’ ๐พ%๐œ€&' +

1๐”ผ:๐‘‘๐ˆ๐‘‘๐‘ก

Page 9: Plasticity (described with tensors)

Finding unknown plastic strain !"!"

!#๐‘‘๐œบ๐‘‘๐‘ก

=๐‘‘๐œบ#$

๐‘‘๐‘ก&๐ป ๐œ™ ๐ˆ โˆ’ ๐พ%๐œ€&' +

1๐”ผ:๐‘‘๐ˆ๐‘‘๐‘ก

๐‘‘๐œบ๐‘‘๐‘ก

=๐‘‘๐œบ#$

๐‘‘๐‘ก&๐ป ๐œ™ ๐ˆ โˆ’ ๐พ%๐œ€&' +

1๐”ผ:๐‘‘๐ˆ๐‘‘๐‘ก

๐‘‘๐œบ๐‘‘๐‘ก

=๐‘‘๐œบ#$

๐‘‘๐‘ก+1๐”ผ:๐‘‘๐ˆ๐‘‘๐‘ก

๐‘‘๐œบ,-

๐‘‘๐‘ก ? ?Letโ€™spostulateHillโ€™sidea(associatedflowrule)

๐‘‘๐œบ,-

๐‘‘๐‘ก =๐‘‘๐œ€#$

๐‘‘๐‘ก๐œ•๐œ™ ๐ˆ๐œ•๐ˆ

IfweusevonMisesyieldcriterion:

๐‘‘๐œ€'()*

๐‘‘๐‘ก=๐‘‘๐œ€+,

๐‘‘๐‘ก

๐œ• 12 ฯƒ-- โˆ’ ฯƒ.. . + ฯƒ.. โˆ’ ฯƒ// . + ฯƒ// โˆ’ ฯƒ-- . + 6 ฯƒ-.. + ฯƒ./. + ฯƒ-/.

0.2

๐œ•๐œŽ'(

IfweusevonMisesyieldcriterion:

๐‘‘๐œ€'()*

๐‘‘๐‘ก=๐‘‘ โˆซ0

3๐ˆ: ๐‘‘๐œบ๐‘‘๐œŽ+,๐‘‘๐‘ก

๐œ• 12 ฯƒ-- โˆ’ ฯƒ.. . + ฯƒ.. โˆ’ ฯƒ// . + ฯƒ// โˆ’ ฯƒ-- . + 6 ฯƒ-.. + ฯƒ./. + ฯƒ-/.

0.2

๐œ•๐œŽ'(

Page 10: Plasticity (described with tensors)

IfweusevonMisesyieldcriterion:

๐‘‘๐œ€'()*

๐‘‘๐‘ก=๐‘‘ โˆซ0

3๐ˆ: ๐‘‘๐œบ๐‘‘๐œŽ+,๐‘‘๐‘ก

๐œ• 12 ฯƒ-- โˆ’ ฯƒ.. . + ฯƒ.. โˆ’ ฯƒ// . + ฯƒ// โˆ’ ฯƒ-- . + 6 ฯƒ-.. + ฯƒ./. + ฯƒ-/.

0.2

๐œ•๐œŽ'(

๐œ• 12 ฯƒ!! โˆ’ ฯƒ"" " + ฯƒ"" โˆ’ ฯƒ## " + ฯƒ## โˆ’ ฯƒ!! " + 6 ฯƒ!"" + ฯƒ"#" + ฯƒ!#"

$.&

๐œ•๐œŽ'(

Notice the two free indices (i,j)Letโ€™ssay,

๐‘‹ = ฯƒ!! โˆ’ ฯƒ"" " + ฯƒ"" โˆ’ ฯƒ## " + ฯƒ## โˆ’ ฯƒ!! " + 6 ฯƒ!"" + ฯƒ"#" + ฯƒ!#"Then,

๐œ• 12๐‘‹

$.&

๐œ•๐œŽ'(=๐œ• 1

2๐‘‹$.&

๐œ•๐‘‹๐œ•๐‘‹๐œ•๐œŽ'(

=12

$.& ๐œ• ๐‘‹ $.&

๐œ•๐‘‹๐œ•๐‘‹๐œ•๐œŽ'(

=12

$.&0.5 ๐‘‹)$.&

๐œ•๐‘‹๐œ•๐œŽ'(

= 0.512๐‘‹

$.& ๐œ•๐‘‹๐œ•๐œŽ'(

๐œ•๐‘‹๐œ•๐œŽ!!

= 2 ๐œŽ!! โˆ’ ๐œŽ"" + 2 ๐œŽ!! โˆ’ ๐œŽ##๐œ•๐‘‹๐œ•๐œŽ""

= 2 ๐œŽ"" โˆ’ ๐œŽ!! + 2(๐œŽ"" โˆ’ ๐œŽ##)๐œ•๐‘‹๐œ•๐œŽ##

= 2 ๐œŽ## โˆ’ ๐œŽ!! + 2(๐œŽ## โˆ’ ๐œŽ"")

๐œ•๐‘‹๐œ•๐œŽ!"

= 12๐œŽ!" =๐œ•๐‘‹๐œ•๐œŽ"!

๐œ•๐‘‹๐œ•๐œŽ"#

= 12๐œŽ"# =๐œ•๐‘‹๐œ•๐œŽ#"

๐œ•๐‘‹๐œ•๐œŽ!#

= 12๐œŽ!# =๐œ•๐‘‹๐œ•๐œŽ#!

Page 11: Plasticity (described with tensors)

Problem: stretching an elasto-plastic rod with linear hardening

๐‘‘๐’–๐‘‘๐‘ก

=โˆ‡๐’–

10 [๐‘ ๐‘’๐‘]

โˆ‡๐ฎ =0.01 0 00 โˆ’0.005 00 0 โˆ’0.005

Letโ€™s assum your material obeys the von Mises yield criterion

๐‘‘๐œบ๐‘‘๐‘ก

=๐‘‘๐œบ#$

๐‘‘๐‘ก&๐ป ๐œ™ ๐ˆ โˆ’ (๐‘Œ! + ๐‘˜๐œ€&') +

1๐”ผ:๐‘‘๐ˆ๐‘‘๐‘ก

Perfect-plastic (no hardening; ๐‘Œ( is constant)

with associated flow rule: 14#$

1+56 ๐ˆ5๐ˆ

๐œบ =0.01 0 00 โˆ’0.005 00 0 โˆ’0.005

๐‘‘๐œบ๐‘‘๐‘ก

=0.001 0 00 โˆ’0.0005 00 0 โˆ’0.0005

Page 12: Plasticity (described with tensors)

Elastic predictor and corrector algorithm

๐‘‘ ๐›๐’–๐‘‘๐‘ก

=110

0.01 0 00 โˆ’0.005 00 0 โˆ’0.005

๐‘ฟ initial positions

๐’™(๐‘ก) = ๐‘ฟ + ๐’–(๐’•)

While time increment is ฮ”๐‘ก

ฮ”๐œบ =7 %&(โˆ‡๐’–;โˆ‡๐’–

')

1+ฮ”๐‘ก

Initiallyassumingthatallstrainiselasticฮ”๐ˆ = ๐”ผ: ฮ”๐œบ

Stressisupdated:๐ˆ(/;%) = ๐ˆ(/) + ฮ”๐ˆ๐ˆ(/;%) = ๐ˆ(/) + ๐”ผ: ฮ”๐œบ= ๐ˆ(/) + ๐”ผ: ฮ”๐œบ

Checkif๐œŽ(/;%) reallygivesonlyelasticcontribution

๐œ™(๐œŽ(/;%)) < ๐‘ or ๐œ™ ๐œŽ(/;%) = ๐‘ or ๐œ™(๐œŽ(/;%)) > ๐‘

Correcting elastic strain ฮ”๐œŽ = ๐”ผ(ฮ”๐œ€ โˆ’ ฮ”๐œ€,-)

You are correct about the strain decomposition, letโ€™s move on to next time increment (end)

Plasticity update

ฮ”๐œ€!",- = ฮ”๐œ€#$

๐œ•๐œ™๐œ•๐œŽ!"

ฮ”๐œ€!" = ฮ”๐œ€!"#- + ฮ”๐œ€!",-

Page 13: Plasticity (described with tensors)

Elastic predictor and corrector algorithm

Initiallyassumingthatallstrainiselasticฮ”๐œŽ!" = ๐”ผ!"=-ฮ”๐œ€=-

Findthestresscorrespondingtothecurrentstressincrement๐ˆ(/;%) = ๐ˆ(/) + ฮ”๐ˆ

Checkif๐ˆ(/;%) isinside,onorovertheyieldcriterion๐œ™ ๐ˆ(/;%) < ๐‘Œ( + ๐‘˜(๐œ€(/)

#$ + ฮ”๐œ€#$)or ๐œ™ ๐ˆ(/;%) = ๐‘Œ( + ๐‘˜(๐œ€(/)

#$ + ฮ”๐œ€#$)or ๐œ™ ๐ˆ(/;%) > ๐‘Œ( + ๐‘˜(๐œ€(/)

#$ + ฮ”๐œ€#$)

Plastic strain update

ฮ”๐œ€!",- = ฮ”๐œ€#$

๐œ•๐œ™๐œ•๐œŽ!"

Correcting elastic strain ฮ”๐œ€!"#- = ฮ”๐œ€!" โˆ’ ฮ”๐œ€!"

,-

That gives new stress incrementฮ”๐œŽ!" = ๐”ผ>?@A(ฮ”๐œ€=- โˆ’ ฮ”๐œ€=-

,-)(adjust strain decomposition

If ๐œ™ ๐ˆ(/;%) โ‰ค ๐‘Œ( + ๐‘˜(๐œ€(/)#$ + ฮ”๐œ€#$)

๐ˆ(/;%) is consistent with our theory.Letโ€™s move on to next time increment