pll basic linkedin2

47
1 Goldman Technology 1/26/2012 Page 1 PLL Basics 2 PLL Basics 2 - - 28 28 - - 2009 2009 Stan Goldman Stan Goldman Goldman Technology Goldman Technology

Upload: stanley-goldman

Post on 26-May-2015

763 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Pll Basic Linkedin2

1Goldman Technology 1/26/2012 Page 1

PLL Basics 2PLL Basics 2--2828--20092009Stan GoldmanStan Goldman

Goldman TechnologyGoldman Technology

Page 2: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 2

PLL Basics Agenda

• History

• Applications

• Overview of PLLs

• Background information

• Control Systems

• Test and Measurement

• References and Background Material

Page 3: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 3

History

• De Bellescize in 1932– Synchronous reception of radio signals

– Received audio amplified to speaker

• Television, 1st wide spread use– Synchronization of horizontal and vertical scan

in television

Page 4: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 4

Applications

• Frequency multiplier by multiplying the frequency of the reference oscillator.

• Modulator by adding the modulating signal to the phase error.

• Demodulator by tracking the changes in modulation to the reference input.

• Coherent receiver by operating as a narrow band tunable filter to track the carrier frequency.

• Data synchronizer by operating as a narrow band tunable filter to recover the clock.

Page 5: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 5

Serializer/Deserializer

Page 6: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 6

Hard Disk Drive

Page 7: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 7

Wireless

CELL PHONE

Page 8: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 8

KEY PLL DESIGN REQUIREMENTS

• Architecture

• Loop Stability

• Frequency Range

• Time Jitter

Page 9: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 9

PLL Control System Block DiagramWith Phase Relationships

θ

i θ

i

θo

nmf

θ0

[Goldman 2007 p19]

Page 10: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 10

Key Signals of Interest within a PLL

• Input frequency or reference frequency

• Output frequency

• Tune voltage or current input to the VCO or CCO

• Phase error (comparison of the positive edge of the reference input signal to the phase detector with the positive edge of the feed back signal from the VCO to the phase detector with the positive edge of the reference input as the trigger source)

Page 11: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 11

Ideal VCO Transfer Function,Transduces Voltage to Frequency (Edges)

ωout=ωoff+Kv Vtune ωout=∆θout/∆t

To = 2 M Td

[Goldman 2007 p3]

1 E9

8 E8

4 E8

0

Page 12: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 12

Relationship of Phase/Frequency in VCO,(1/s transfer function relationship)

• Mathematical description of a phase modulated signal, from Taub and Shilling, Principles of Communication Systems, p117 and modified with PLL terminology:

Instantaneous Frequency

Deviation of instantaneous frequencyfrom ωc which equals ω ref in modeling

V o t( ) V a cos ω c t⋅ K v tV tune t( )⌠⌡

d⋅+

ωt

ω c t⋅ K v tV tune t( )⌠⌡

d⋅+

d

dω c K v V tune t( )⋅+

fo

ω ωc t⋅−

2 π⋅

Kv Vtune t( )⋅

2 π⋅

θ oi ω c t⋅ K v tV tune t( )⌠⌡

d⋅+

θ o θ ω c t⋅− K v tV tune t( )⌠⌡

d⋅ K v1

s⋅ V tune s( )⋅

Instantaneous phase

Deviation of instantaneous phase

Page 13: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 13

Digital Phase Detector Timing and Response to Ramped VCO Phase

V C O I N

R I N

V DD

V DD

U P

D O W N

QCC L

QCC L

D Q

D Q

Reset

Page 14: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 14

Ideal Phase Detector Transfer Function,Transduces Frequency (Edge) Differences to Voltage

Vpdavg=Kd θe (5MHz Ref. Freq.)

[Goldman 2007 p2]

-200 -100 0 100 200Ref. – VCO Edge (ns)

Page 15: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 15

Output of Analog Phase Detector vs Phase Error (-cos) with Various Measures of Abscissa

[Goldman 2007 p18]

Page 16: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 16

Example of Lock, Digital Loop(In Phase)

[Goldman 2007 p4]

Page 17: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 17

Mathematical Relationship of Phase and Frequency (Analog Phase Detector)Phase detector as a mixer (analog multiplier)

Signal DefinitionMixing of Two Signals

Eliminating the high frequency productwith a low pass filter yields

Slope

Phase Detector Gain

Kd=Vpbeat

where:

Vpds ( φ)= Phase detector phase slope (volts).

Vpds(θe) = Vpbeat sin(θe )

V pdsθ e

V pbeat cos θ e( )⋅d

dV pbeat sin θ e( )⋅

V1(t) V2(t) =Vp1 Vp2 0.5 [ cos(ωrf t - ωlo t + θe ) ]

=Vpbeat cos( ωbeat t + θe )

where: ωbeat= ωrf - ωlo for ωrf > ωlo, Vpbeat= Vp1 Vp2 x 0.5 x mixer losses, and = The resulting voltage level after mixing (volts).

V1(t) V2(t) = Vp1Vp2 cos(ωrf t + θe ) cos(ωlo t )

Using the trigonometric identity for products of a trigonometric function:

V1(t) V2(t)=Vp1Vp2 0.5 [cos ( ωrf t- ωlo t + θe ) +cos( ωrf t + ωlo t + θe )]

where: V1(t) V2(t) = Mixing process.

V1(t)= Vp1 cos(ωrft+ θe ) where: V1(t)= Source 1 signal, Vp1= Maximum amplitude of source 1 (volts), ωrf= Angular frequency of a Signal at the RF port of the mixer (rad./sec), = 2 π frf, θe= Phase error difference between signal 1 and 2 (rad.), and t= Time variable (seconds).

V2(t) = Vp2 cos(ωlo t ) where: V2(t)= Source 2 signal, Vp2= Maximum amplitude of source 2 (volts), and ωlo= Angular frequency of a signal at the LO port of a mixer (rad./sec).

Page 18: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 18

Charge Pump Output Transduces Frequency (Edge) Differences to Current, Kp=I/(2 π)

Page 19: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 19

Loop Classifications

[Goldman 2007 p8]

Page 20: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 20

Loop Classifications (Continued)

[Goldman 2007 p8]

Page 21: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 21

Example of Lock, Analog Loop (Sinewaves) Phase detector as a mixer (analog multiplier)

VCO Tune Voltage

Page 22: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 22

Vtune, Input, and Output Signals, Locked (Quadrature)

Page 23: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 23

Vtune, Input, and Output Signals, During Acquisition,Searching For Lock

In phase for higher tune voltage Out of phase for lower tune voltage

Page 24: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 24

PLL TRANSFER FUNCTION AND CONTROL SYSTEMS THEORY

• Control System's General Equation for a Closed Loop

- =For positive feedback, + =For negative feedback,

=The closed-loop transfer function,

G(s)=Forward transfer function,H(s)=Feedback transfer function,

G(s) H(s)=Open-loop transfer function, andG(s) H(s)=Ratio of 1 and angle of 0 deg for positive feedback

and 180 deg for negative feedback are theconditions for oscillation.

• Closed Loop PLL Transfer Function from General Equation

Co

Ri

θo

θi

( )sG ( )s

1 .G ( )s H ( )s

=Output phase (rad) and=Input phase (rad).

θ0

θi

)()(1

)(

sHsG

sG

R

C

i

o

⋅±=

Page 25: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 25

Judging Stability from Step Response

[Goldman 2007 p20]

.2 Damping22 deg. Phase Margin

.42 Damping45 deg. Phase Margin

.035 Damping4 deg. Phase Margin

0

0

3 10 4

3 104

6 104

6 104

Freqeuncy (Hz)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

3 104

6 10 4

Time (s)

30 deg or 45 deg. Phase Margin are levels supported in references

~90% Overshoot

~60% Overshoot

~40% Overshoot

Page 26: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 26

PLL Basic Block Diagram For Cascade of Transfer functions for Open Loop Gain

[Goldman 2007 p22]

Page 27: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 27

Type 2 Second Order Open Loop Gain Function (Active Filter)

Cascade of Transfer functions for Open Loop GainG(s)H(s)= (Phase Detector Gain)(Filter Transfer Function)

(VCO Transfer Function)(Divider Transfer Function)

Substitute and Rearrange for Open Loop Gain Expression

Substitute and Rearrange for Closed Loop Gain Expression

= Capacitor in the operational amplifier'sfeedback path (F),

= Resistor in operational amplifier's feedback path (ohms) and,

= Resistor at the negative input terminalof the operational amplifier (ohms).

= Phase detector gain (volts/radian),= VCO transfer function gain

constant (radians/second/volt),= Integer divider value,= Loop Frequency Multiplication Factor,= Output frequency/ input frequency,

Kd

nmf

C

R1

R2

.G( )s H( )s ...K

dK

v

..nmf

C R1

1

s 2..s C R

21

Kv

Page 28: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 28

Converting to Servo Terminology

Closed Loop Gain Expression

G( )s

1 .G( )s H ( )s

..nmf

ωn

2 .s.2 ζ

ωn

1

s 2 .s .2 ζωn

ωn

2

Error Expression

1

1 .G( )s H ( )s

s 2

s 2 .s .2 ζωn

ωn

2

Open loop gain Expression

.G( )s H ( )s ..ωn

2 1

s 2.s

.2 ζω

n

1

Page 29: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 29

Synthesis of Loop Component Values from Servo Terminology

• Active Filter ωn

.Kd

Kv

..R1

C nmf

ζ ..R

2C

2

.Kd

Kv

..R1

C nmf

For selected C value, damping factor, and natural frequency and given Kd and Kv

R1

.Kd

Kv

..ωn

2C n

mf

• Passive Filterω

n

.Kd

Kv

..R1

R2

C nmf

ζ ..1

2

.Kd

Kv

..R1

R2

Cnmf

.R2

C1.K

dK

v

• Charge Pumpω

n

.Kv

Ip

...2 π C nmf

ζ

..Kv

Ip

R2

..2 π nmf

.2 ωn

R2

.2 ζ.ωn C

Page 30: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 30

Charge Pump PLL with Regulator

•Charge pump can not drive high current load•1 pin for external components

Page 31: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 31

Loop Stability, Bode Plot

[Goldman 2007 p27]

Phase Margin

Gain Margin

Magnitude

Phase

Page 32: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 32

Graphical Relationship of Natural Frequency to 0 dB Crossover Frequency

[Goldman 2007 p29]

Page 33: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 33

Open Loop Response (ASIC APLL External Components ) 32, 71, 147 MHz

32 MHz

71 MHz

147 MHz

32 MHz

71 MHz

147 MHz

Page 34: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 34

Closed Loop Response (APLL)

32 MHz

71 MHz

147 MHz

Page 35: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 35

Error Function Response

Page 36: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 36

Test and Measurement of PLL (Brief)

• Spurious signals, hold in range, and lock range

• Frequency Switching Time

• Jitter

Page 37: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 37

Spurious Signals

[Goldman 2007 p357]

Page 38: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 38

Hold In Range, Lock In Range

[Goldman 2007 p355]

Page 39: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 39

Jitter Measurements

• Oscilloscope (Time Domain)

• Modulation Domain Analyzer

• Spectrum Analyzer ( Frequency Domain)

Page 40: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 40

Jitter, Oscilloscope

[Goldman 2007 p388]

Page 41: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 41

Relationship of Modulation Domain to Spectrum Analyzer and Oscilloscope

F

T

V

[Goldman 2007 p378]

Page 42: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 42

Oscilloscope Measurement of 1 and Multiple Periods

1

1

1 clock period oscilloscope measurement with jitter FM modulation

1 period scope measurement

T

1

1

6 clock periods oscilloscope measurement with jitter FM modulation

6th period scope measurement

T

[Goldman 2007 p380]

Page 43: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 43

Frequency Switching Time, Modulation Domain Analyzer

[Goldman 2007 p358]

Page 44: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 44

Comparison Table of Measured Data with Comparable PLL References

0.02%/1%80ps p-p12-6000.061mW at 240MHz.065um 1.2VDCAS 2008

All Digital PLL, diff. ring VCO130ps p-p30-1603.12mW at 160MHz.25um 1.9VFahim TCAS '03

Differential ring VCO, VCR

155ps p-p360MHz10-3500.167mW at 200MHz.13um 1.5VHozer ISSCC '02

Differential ring VCO, self biased48ps p-p30-6500.187mW at 240MHz.13um 1.5V

Maneatis ISSCC '03

Single ended ring CCO21ps p-p500-23500.1530mW at 2000MHz.1um 1.2V

K. Minami CICC '01

Supply ControledRing VCO, wide BW, 2.5MHZ BW0.32%/1%[email protected] 1.9VH. Ahn JSSC '00

Regulator included, single ended ring CCO.007%/1%

44ps p-p at 700MHz600- [email protected] 3.3V

J.M. InginoISSCC '01

Simulated, Supply Controlled Ring VCO, wide BW.06%/1%[email protected] 3.3V

S. SidropoulosVLSI '00

Comments

power supply sensitivity, %-fvco/%-VddJitter

VCO Output Frequency (MHz)

Area (mm2) PowerProcessesDescription

Page 45: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 45

Recommended PLL Books

1. Stanley Goldman, Phase Locked Loop Engineering Handbook, Artech House, Boston, 2007.

2. Roland Best, Phase Locked Loops Design Simulation, & Applications, McGraw Hill, New York, 1997.

3. Behzad Razavi, Monolithic Phase-Locked Loops and Clock Recovery Circuits, EEE Press, New York 1996.

4. James A. Crawford, Frequency Synthesizer Design Handbook, ArtechHouse, Boston.

5. William Egan, Frequency Synthesis by Phase-Lock, Wiley Interscience, New York, 1981.

6. Floyd Martin Gardner, Phaselock Techniques, Wiley Interscience, New York, 1979.

Page 46: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 46

Recommended Background Books

Feedback Control Systems by Charles L. Phillips and Royce D. Harbor

The Fast Fourier Transform by E. Oran Brigham

Network Analysis by Van Valkenburg

Analysis and Design of Analog Integrated Circuits by Paul R. Gray and Robert G. Meyer

Principles of CMOS VLSI Design by Neil H. E. Weste and Kamran Eshraghian

Principles of Communicaton Systems by H. Taub and D. L. Schilling

Page 47: Pll Basic Linkedin2

Goldman Technology 1/26/2012 Page 47

External Websites

• Texas Instruments, High Performance PLLshttp://www.ti.com/sc/docs/products/msp/clock/pll/overview.htm

• National Semiconductorhttp://www.national.com/appinfo/wireless/

• Frequency Response Analysis and Design Tutorialshttp://me.www.ecn.purdue.edu/~me475/ctm/freq/freq.html

• Chip Directoryhttp://icat.snu.ac.kr/chipdir/f/pll.htm

• Phase Locked Loop Fundamentals ( Minicircuits)http://www.minicircuits.com/appnote/vco15-10.pdf

• Monolithic CMOS RF Transceiver (Berkeley)http://kabuki.eecs.berkeley.edu/rf/rf.html

• Analog IC Design, Dr Hellums (UTD)http://www.utdallas.edu/~hellums/

• PLLs , Stan Goldmanhttp://home.tx.rr.com/sgold_1