poli di mi tecnicolano navigation and control of autonomous vehicles with integrated flight envelope...

19
POLI POLI di di MI MI tecnico tecnico lano lano NAVIGATION AND CONTROL OF AUTONOMOUS VEHICLES WITH INTEGRATED FLIGHT ENVELOPE PROTECTION C.L. Bottasso Politecnico di Milano Workshop CRUI-ACARE Napoli, July 14, 2006

Upload: brooke-fisher

Post on 16-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

PO

LIPO

LI

di

di M

IM

Itecn

ico

tecn

ico

lano

lano

NAVIGATION AND CONTROL OF AUTONOMOUS VEHICLES WITH INTEGRATED FLIGHT ENVELOPE PROTECTION

C.L. BottassoPolitecnico di Milano

Workshop CRUI-ACARE Napoli, July 14, 2006

NAVIGATION AND CONTROL OF AUTONOMOUS VEHICLES WITH INTEGRATED FLIGHT ENVELOPE PROTECTION

C.L. BottassoPolitecnico di Milano

Workshop CRUI-ACARE Napoli, July 14, 2006

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

OutlineOutline

• Background on flight envelope protection;

• Proposed research: model-based optimal control with integrated flight envelope protection;

- Envelope-aware path planning (tactical control layer);

- Envelope-aware path tracking (reflexive control layer);

- Adaptive reduced vehicle model;

• Preliminary results;

• Conclusions and outlook.

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

Care-Free ManeuveringCare-Free Maneuvering (CFM):

Monitor and maintain vehicle operation within an operational envelope (Massey 1992).

Example:

Background on Flight Envelope Protection

Background on Flight Envelope Protection

Pull-up with flight envelope violation

V

n

V

n

Pull-up within the flight envelope

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

Background on Flight Envelope Protection

Background on Flight Envelope Protection

CFM CFM working principle:

Piloted flightPiloted flight:

• CFM cues pilot (often tactile cues through force-feel feedback on active control stick, which can be overridden by the pilot), and/or

• CFM interacts with Flight Control System (FCS), which in turn corrects the command inputs.

Autonomous flightAutonomous flight:

• CFM interacts with trajectory planner (tactical controller) so as to generate a safe-to-be-tracked response profile, and/or

• Interacts with trajectory tracker (reflexive controller), by correcting the command inputs.

V

n 1) Predict limit onset

2) Cue pilot and/or modify control actions so as to avoid boundary violation

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

CFM systemsCFM systems:

• Indispensable for utilizing full flight envelopefull flight envelope without exceeding aerodynamic, structural, propulsive and controllability limits;

• Avoid need for conservativeconservative envelope limits (reduced weight, cost, etc. and/or improved performance, safety, handling qualities, etc.);

• Contribute to the reduction of pilot work-load in piloted systems;

but difficultdifficult …

• Due to high agilityhigh agility and maneuverabilitymaneuverability of modern high-performance vehicles;

• Because of need to monitor multiplemultiple flight envelope limits, which depend on multiplemultiple vehicle states and control inputs.

Background on Flight Envelope Protection

Background on Flight Envelope Protection

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

Previous workPrevious work:

dynamic trim (Calise & Prasad), peak-response estimation (Horn), non-linear function response (Horn), reactionary envelope protection (Prasad).

Available methods suffer from various limitationslimitations and approximationsapproximations, especially for UAVs:

• FCS can not typically deal directly with constraints ⇨ coupling with CFM not trivial, possibly inefficient/ineffective;

• Adaptive limit parameter estimation does not exploit adaptive capabilities of FCS;

• Trajectory planning typically very simple (interpolation

of way-points), unable to deal directly with constraints ⇨ no guarantee of feasible within-the-boundary profile.

Background on Flight Envelope Protection

Background on Flight Envelope Protection

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

Optimal Control CFMOptimal Control CFM

Proposed workProposed work:

Optimal-control model-based tactical and reflexive control architecture with integrated flight envelope protection.

HighlightsHighlights:

• Optimal control can rigorously deal with constraints;

• Optimal-control planning of trajectories (tactical layer)

⇨ guaranteed feasibility;

• Optimal-control tracking (reflexive layer) ⇨ constraints accounted for also at the level of the FCS;

• Adaptive reduced model ⇨ improves both FCS and CFM performance.

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

UAV Control ArchitectureUAV Control Architecture

Target

Obstacles

Hierarchical three-layer control architectureHierarchical three-layer control architecture (Gat 1998):

Vision/sensor range

• Strategic layer: assign mission objectives (typically relegated to a human operator);

•Tactical layer: generate vehicle guidance information, based on input from strategic layer and sensor information;• Reflexive layer: track trajectory generated by tactical layer, control, stabilize and regulate vehicle.

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

GoalGoal:

Plan paths compatible with the flight envelope boundaries for high performance vehicles in complex/unstructured environments.

Tactical Layer: Path PlanningTactical Layer: Path Planning

Target

ApproachApproach: at each time step

• Discretize space and identify candidate way-points;

• Compute path by connecting way-points (A* search);

• Smooth path so as to make it compatible with flight envelope boundaries, using motion primitives.

Obstacles

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

Vehicle modelVehicle model: maneuver automaton (Frazzoli et al. 2001), only two possible states: trimtrim or maneuvermaneuver (finite-time transition between two trims).

HighlightsHighlights:

• Highly efficient transcription of the vehicle dynamics in small solution space;

• Transcribed dynamics compatible with flight envelope boundaries.

Tactical Layer: Motion PrimitivesTactical Layer: Motion Primitives

T1: low speed level flight

T2: high speed level flight

T4: low speed right turn

T3: low speed left turn

T6: high speed right turn

T5: high speed left turn

M21: deceleration from T2 to T1

All maneuvers designed using optimal controloptimal control with envelope envelope protection constraintsprotection constraints

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

GoalGoal: plan a maneuver which is compatible with the flight envelope boundaries.

Optimal control: min

Subjected to:

• Reduced model equations:

• Boundary conditions: (initial)

(final)

• ConstraintsConstraints:

Tactical Layer: Maneuver Planning Tactical Layer: Maneuver Planning

Ã(y(T0)) 2 [Ã0min;Ã0max

];Ã(y(T)) 2 [ÃTmin

;ÃTmax];

J plan = Á(y;u)¯¯T

+Z T

T0

L(y;u) dt;

f ( _y;y;u;p¤) = 0;

gplan(y;u;T) 2 [gplanmin ;gplan

max ]:

Trajectory to be tracked by reflexive controller

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

Reflexive Layer: Trajectory Tracking

Reflexive Layer: Trajectory Tracking

1. Tracking

Plant responsePredictive solutions (reduced model)

2. Steering

Prediction window

Steering window

Tracking cost

Prediction window

Tracking cost

Steering window

Tracking costPrediction window

Steering window

Reference trajectory

Optimal Control: min

Subjected to:

• Reduced model equations:

• Initial conditions:

• ConstraintsConstraints:

f ( _y;y;u;p¤) = 0;

y(T track0 ) = ey0;

gtrack(y;u;T) 2 [gtrackmin ;gtrack

max ]:

GoalGoal: track trajectory while satisfying flight envelope constraints.

J track =

Z T t rack

T t rack0

(jjy ¡ y¤jjS t racky

+jj _ujjS t rack_u

) dt;

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

Reduced Model AdaptionReduced Model Adaption

1. Tracking

Plant response

3. Reduced model update

Predictive solutions

2. Steering

Prediction window

Steering window

Tracking cost

Prediction error

Prediction window

Tracking cost

Steering window

Prediction error

Tracking costPrediction window

Steering window

Prediction error

Reference trajectory

GoalGoal:

• Develop reduced modelreduced model capable of predicting the predicting the behavior of the plantbehavior of the plant with minimum error (same outputs when subjected to same inputs) ⇨ critical for faithful flight envelope protection;

• Reduced model must be self-adaptiveself-adaptive (capable of learning) to adjust to varying operating conditions.

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

Reduced Model AdaptionReduced Model Adaption

ApproachApproach:

Neural-augmented reference model (Bottasso et al. 2004), using extended Kalman parameter identification.

IdeaIdea:

A non-linear parametric function is identified online to capture the mismatch (defect) between the plant and a non-linear reference vehicle model.

HighlightsHighlights:

• Good predictions even before even before any learningany learning has taken place (otherwise would need extensive pre-training);

• Easier and faster adaption: the defect is typically a small small quantityquantity, if the reference model is well chosen.

Short transient Short transient = =

fast adaptionfast adaption

Reference model

Plant

Augmented reference

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

Preliminary ResultsPreliminary Results

Procedures tested in a virtual environmentvirtual environment using a high-fidelity helicopter flight simulator.

Planned path

Acceleration, climb, aggressive turn, descent, deceleration, with prescribed state and control limits:

Rotorcraft trajectory

Rotorcraft trajectory when tracking non-compatible path

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

Preliminary ResultsPreliminary Results

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

ConclusionsConclusions

• Proposed a procedure for navigationnavigation and controlcontrol of vehicles which respects the flight enveloperespects the flight envelope;

• Flight envelope constraints are accounted for directlydirectly both at the planningplanning and trackingtracking levels for the first time;

• Applicable to both fixedfixed and rotaryrotary wing vehicles;

• Full system applicable to UAVsUAVs, but components applicable to piloted flightpiloted flight to provide cues to pilots;

• On-line model adaptionmodel adaption improves performance and limit avoidance;

• Basic concept demonstrated in a virtual environment.

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

OutlookOutlook

• Real-time implementation and integration in a rotorcraft UAV (in progress) at the Autonomous Flight Lab at PoliMI;

• Testing and extensive experimentation;

• Integration with vision for fully autonomous navigation in complex environments.

• Develop cueing system and test in the future flight simulation lab at PoliMI.

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

Flig

ht

En

velo

pe P

rote

ctio

n f

or

UA

Vs

POLITECNICO di MILANO

AcknowledgementsAcknowledgements

Work in collaboration with:

A. Croce (Post-Doc), L. Fossati (Graduate student), D. Leonello (Ph.D. candidate), G. Maisano (Ph.D. candidate), R. Nicastro (Graduate student), L. Riviello (Ph.D. candidate), B. Savini (Ph.D. candidate).