polyakov-2

4
8/2/2019 polyakov-2 http://slidepdf.com/reader/full/polyakov-2 1/4 Volume 103B, number 3 PHYSICS LETTERS 23 July 1981 QUANTUM GEOMETRY OF BOSONIC STRINGS A.M. POLYAKOV L.D. Landau Institute for Theoretical Physics, Moscow, USSR Received 26 May 1981 We develop a formalism for computing sums over random surfaces which arise in all problems containing gauge invariance (like QCD, three-dimensional Ising model etc.). These sums are reduced to the exactly solvable quantum theory of the two- dimensional Liouville lagrangian. At D = 26 the string dynamics is that of harmonic oscillators as was predicted earlier by dual theorists, otherwise it is described by the nonlinear integrable theory. There are methods and formulae in science, which serve as master-keys to many apparently different prob- lems. The resources of such things have to be refilled from time to time. In my opinion at the present time we have to develop an art of handling sums over ran- dom surfaces. These sums replace the old-fashioned (and extremely useful) sums over random paths. The replacement is necessary, because today gau~e invar- iance plays the central role in physics. Elementary ex- citations in gauge theories are formed by the flux lines (closed in the absence of charges) and the time development of these lines forms the world surfaces. All transition amplitude are given by the sums over all possible surfaces with fixed boundary. Now, what are the advantages and applications of that representation? The general picture has been envisaged as follows [1 ]. We have, presumably, a theory of free strings which can move through each other without any inter- action. These strings do not correspond to the general gauge theory. However, the interaction among the gauge strings is such that it does not destroy but only modifies conserved currents of the free strings. This picture is an analogue of what happens in 2d-integrable systems (like sine-Gordon) with a change of the word "particle" for the word "string". The analogy goes even further in the case of the Z 2- gauge group (Ising model). In this case, as was stated in ref. [1] and developed in ref. [2], it was possible to introduce some sort of fermionic string which remains flee,just as in the 2d-Ising model one finds free fermion representation. All these considerations had one essential flaw: it was not known what was exactly meant by the "free string". It has been clear, that just as the amplitudes o f free particles are defined as G(x,x') = ~ exp[-mL(Pxx,)] , (1) (paths) where Pxx' is a path connecting points x and x' and L is the length of the path .... one should define: G(C) = ~] exp[-m2A (Sc)] , (2) (Sc) here C is some loop, S C is a surface bounded by the loop, A (Sc) is the area of this surface. Both formulas (1) and (2) are symbolic, but while in the case of (1) we know how to decipher and com- pute it, in the case of (2) such knowledge is not avail- able. It is the purpose of the present work to over- come, at least partly, this drawback. This task is made even more tempting by the arguments given in ref. [2] which show that the fermionic analogue of (2) is di- rectly connected with the physics of phase transitions. Another possible application would be multicolored QCD in which gauge strings also might become free, with the possible addition of fermionic degrees of freedom [3]. We start our analyses from the purely bosonic case, 0 031-9163/81/0000-0000/$ 02.50 © North-Holland Publishing Company 207

Upload: yapmadur

Post on 06-Apr-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: polyakov-2

8/2/2019 polyakov-2

http://slidepdf.com/reader/full/polyakov-2 1/4

Volume 103B, num ber 3 PHYSICS LETTERS 23 July 1981

Q U A N T U M G E O M E T R Y O F B O S O N IC ST R I N G S

A .M . P O L Y A K O V

L.D. Landau Insti tute for Theoretical Physics, Moscow, USSR

Received 26 May 1981

We develop a formalism for computing sums over rand om surfaces which arise in all problems containing gauge invariance(like QCD , three-dimensional Ising model etc.). These sums are reduced to the exactly solvable qua ntum theo ry o f the two -dimensional Liouville lagrangian. At D = 26 the string dynamics is that of harmonic oscillators as was predicted earlier bydual theorists, otherwise it is described by the nonlinear integrable theor y.

T h e r e a r e m e t h o d s a n d f o r m u l a e i n s c ie n c e , w h i c h

s e r v e a s m a s t e r - k e y s t o m a n y a p p a r e n t l y d i f f e r e n t p r o b -

l e m s . T h e r e s o u r c e s o f s u c h t h i n g s h a v e t o b e r e f il l e d

f r o m t i m e t o t i m e . I n m y o p i n i o n a t th e p r e s e n t ti m e

w e h a v e t o d e v e l o p a n a r t o f h a n d l i n g s u m s o v e r r a n -

d o m s u r f ac e s . T h e s e s u m s r e p l ac e t h e o l d - f a s h i o n e d

( a n d e x t r e m e l y u s e f u l ) s u m s o v e r r a n d o m p a t h s . T h e

r e p l a c e m e n t i s n e c e s s a r y , b e c a u s e t o d a y g a u ~ e i n v ar -

i a n c e p l a y s th e c e n t r a l r o le i n p h y s i c s . E l e m e n t a r y e x -

c i t a ti o n s i n g a u g e t h e o r ie s a r e f o r m e d b y t h e f l u x

l i n e s (c l o s e d i n t h e a b s e n c e o f c h a r g e s ) a n d t h e t i m e

d e v e l o p m e n t o f t h e se l i ne s f o r m s t h e w o r l d s u r f a c es .

A l l t r a n s i t i o n a m p l i t u d e a r e g i v e n b y t h e s u m s o v e r a ll

p o s s i b l e s u r f a c e s w i t h f i x e d b o u n d a r y . N o w , w h a t a r e

t h e a d v a n t a g e s a n d a p p l i c a ti o n s o f t h a t r e p r e s e n t a t i o n ?

T h e g e n e r a l p i c t u r e h a s b e e n e n v i s a g e d a s f o l l o w s

[ 1 ] . W e h a v e , p r e s u m a b l y , a t h e o r y o f f r e e s t ri n g s

w h i c h c a n m o v e t h r o u g h e a c h o t h e r w i t h o u t a n y i n te r -

a c t i o n . T h e s e s t ri n g s d o n o t c o r r e s p o n d t o t h e g e n e ra l

g a u ge t h e o r y . H o w e v e r , th e i n t e r a c t i o n a m o n g t h e

g a u g e s t r i n g s i s s u c h t h a t i t d o e s n o t d e s t r o y b u t o n l y

m o d i f i e s c o n s e r v e d c u r r e n t s o f t h e f r ee s t r in g s . T h i s

p i c t u r e i s a n a n a l o g u e o f w h a t h a p p e n s i n 2 d - in t e g r a b le

s y s t e m s ( l ik e s i n e - G o r d o n ) w i t h a c h a n g e o f t h e w o r d

" p a r t i c l e " f o r th e w o r d " s t r i n g " .

T h e a n a l o g y g o e s e v e n f u r t h e r i n t h e c a s e o f t h e Z 2 -

g a u g e g r o u p ( I s i n g m o d e l ) . I n t h i s c a s e , a s w a s s t a t e d i n

r e f . [ 1 ] a n d d e v e l o p e d i n r e f . [ 2 ] , i t w a s p o s s i b l e t o

i n t r o d u c e s o m e s o r t o f fe r m i o n i c s t r in g w h i c h r e m a i n s

f l e e , j u s t a s i n t h e 2 d - I s in g m o d e l o n e f i n d s f re e f e r m i o n

r e p r e s e n t a t i o n .

A l l t h e s e c o n s i d e r a t i o n s h a d o n e e s s e n t i a l f l a w : i t

w a s n o t k n o w n w h a t w a s e x a c t ly m e a n t b y t h e " f r e e

s t r i n g " . I t h a s b e e n c l e a r , t h a t j u s t a s t h e a m p l i t u d e s o f

f r e e p a r t i c l e s a r e d e f i n e d a s

G ( x , x ' ) = ~ e x p [ - m L ( P x x , ) ] , ( 1 )(paths)

w h e r e P x x ' is a p a t h c o n n e c t i n g p o i n t s x a n d x ' a n d L

is t h e l e n g t h o f t h e p a t h .. .. o n e s h o u l d d e f i n e :

G ( C ) = ~ ] e x p [ - m 2 A ( S c ) ] , ( 2 )( S c )

h e r e C i s s o m e l o o p , S C is a s u r f ac e b o u n d e d b y t h e

l o o p , A ( S c ) is t h e a r e a o f t h is s u r f a c e .

B o t h f o r m u l a s ( 1 ) a n d ( 2 ) a r e s y m b o l i c , b u t w h i le

i n t h e c as e o f ( 1 ) w e k n o w h o w t o d e c i p h e r a n d c o m -

p u t e i t , i n t h e c a s e o f ( 2 ) s u c h k n o w l e d g e is n o t a v a i l-

a b l e. I t is t h e p u r p o s e o f t h e p r e s e n t w o r k t o o v e r -

c o m e , a t l e a s t p a r t l y , t h i s d r a w b a c k . T h i s t a s k i s m a d e

e v e n m o r e t e m p t i n g b y t h e a r g u m e n t s g i v en in r ef . [ 2 ]

w h i c h s h o w t h a t t h e f e r m i o n i c a n a l o g u e o f ( 2 ) is d i-

r e c t ly c o n n e c t e d w i t h t h e p h y s i c s o f p h a s e t r a n s i ti o n s .

A n o t h e r p o s s i b l e a p p l i c a t i o n w o u l d b e m u l t i c o l o r e d

Q C D i n w h i c h g a u g e s t ri n g s a ls o m i g h t b e c o m e f r ee ,

w i t h t h e p o s s i bl e a d d i t i o n o f f e r m i o n i c d eg r e es o f

f r e e d o m [ 3 ] .

W e s ta r t o u r a n a l y s e s f r o m t h e p u r e l y b o s o n i c c a s e ,

0 0 3 1 - 9 1 6 3 / 8 1 / 0 0 0 0 - 0 0 0 0 / $ 0 2 . 5 0 © N o r t h -H o l l an d P u b li sh in g C o m p a n y 2 0 7

Page 2: polyakov-2

8/2/2019 polyakov-2

http://slidepdf.com/reader/full/polyakov-2 2/4

Volum e 103B, numb er 3 PHYSICS LETTERS 23 July 1981

a n d w o r k i n e u c l i d e a n s p a c e . L e t u s d e s c r i b e o u r s u r -

f a c e b y t h e p a r a m e t r i z a t i o n × u ( ~ l , ~ 2 ) - F i r st w e n e e d

s e v e r al f a c ts c o n c e r n i n g t h e c l a s s ic a l g e o m e t r y o f s u r -

f a c e s . T h e s e f a c t s a re n o t n e w ( s o m e o f t h e m b e l o n g t o

t h e X I X t h c e n t u r y ) b u t i t i s g o o d f o r o u r p u r p o s e t oh a v e t h e i r c o l l e c t i o n a t h a n d ( s e e al s o r ef . [ 4 ] ) . T h e

a r e a s p a n n e d b y t h e s u r f a c e is g i v e n b y

A = f d Z ~ ( d e t Ilhab ]1)1/2 , hab = ~aXu3b Xp . (3 )

T h e i n t e g r a l g o e s o v e r a f i x e d r e g i o n i n t h e ~ - p la n e ( s a y ,

a un i t c i r c l e ) : ~a = ~a(s). I t i s i n v a r i a n t u n d e r :

x , ( ~ ) ~ x u ( f ( ~ ) ) ( 4 )

T h e m i n i m a l a r e a i s g i v e n b y

8A = -~ habShab = O, ~hab = O(ax tLOb)6Xtt ,

o r , a f t e r i n t e g r a t i n g b y p a r t s :

Oa(X/~habObxU) = 0 , hab = OaXpObX~z. ( 5 )

T h e s a m e e q u a t i o n s c a n b e o b t a i n e d f r o m a n o t h e r

f u n c t i o n a l :

w = l f x /g g a b 3 a X u ~ b X ~ d 2~ , (6 )

w h i c h i s s u p p o s e d t o b e m i n i m i z e d b o t h i n x u ( ~ ) a n d

gab ( ~ ) " I n d e e d , t h e f i r s t v a r i a t i o n g i v es t h e L a p l a c e

e q u a t i o n

0a ( x / ~ g a b O b x p ) = 0

a n d t h e gab - v ar ia ti o n f or c es th e e n e r g y - m o m e n t u m

t e n s o r t o b e z e r o :

1 _ c d ~ . ~ X - 0Tab =O aX u3b Xu - -ggab ,r, ° e Xu a u - • (7 )

F r o m ( 7 ) f o l l o w s t h a t

gab = ~aX#ObXta •

A n o t h e r f a c t w h i c h w e n e e d i s t h a t i t i s p o s s i b l e t oc h a n g e c o o r d i n a t e s ~ ~ f ( ~ ) i n s u c h a w a y t h a t t h e

m e t r i c b e c o m e s c o n f o r m a l l y e u c l i d e a n . T h e f u n c t i o n

f = f l + i f 2 i s d e f i n e d b y t h e e q u a t i o n

Oa = ieaa,X/~ ga'b Ob f . (8 )

T h e s o l u t i o n o f ( 8 ) c a n b e c h o s e n i n s u c h a w a y t h a t

i t m a p s a u n i t d i s c o n t o i t s e l f :

f (~ ( s ) ) = ~ (a ( s ) ) (9 )

( h e r e a ( S ) i s a r e p a ra m e t e r i s a t i o n o f t h e b o u n d a r y ,

u n i q u e l y c o n n e c t e d w i t h t h e o r i g i n a l gab ( ~ ) ) ' T h e

t r a n s f o r m e d m e t r i c i s o f t h e f o r m P(~)~ab; P(~)

- - [ d [ /d ~ 12 . I f w e m i n i m i z e ( 6 ) w i t h r e s p e c t t o x u ( ~ )

w i t h t h e b o u n d a r y c o n d i t i o n

x u(~ ( s )) = x u( s ) , ( 1 0 )

w e g e t t h e r e l a t i o n s

Amin[X(S)] = m i n m i n W [ x ( ~ ) , { g a b (G ) ](g ab } { x . ( o }

= min W m i n [ X . ( o t ( S ) ) , 6 a b ] . ( 1 1 )( ~ ( s ) }

T h e m i n i m a l a r e a A m i n [ x ( s ) ] s a t is f i es t h e e q u a t i o n

[6Amin/6Xu(S)] 2 = ( d x u / d s ) 2 , ( 1 2 )

( d x u / d s ) 6A m in/SX , (S) = O.

U p t o n o w w e d e a l t w i t h m i n i m a l " c l a ss i c a l" s u r -

f a ce s . L e t us p r o c e e d t o t h e q u a n t u m t h e o r y . T h e m o s t

i m m e d i a t e p r o b l e m i s t o d e f i n e t h e p r o p e r m e a s u r e f o r

t h e s u m m a t i o n o v e r c o n t i n u o u s s u r fa c e s . T h i s m e a s u r e

m u s t c o u n t a l l s u r f a c e s o f a g i v e n a r e a w i t h t h e s a m e

w e i g h t . T h a t m e a n s t h a t i f w e h a v e t r a n s f o r m a t i o n g~

w h i c h m a p s a s u r f a c e S c (C i s a b o u n d a r y o f i t ) o n t o a n -

o t h e r s u r f a c e S ~ i n s u c h a w a y t h a t A (S~ ) = A (Sc )

w e m u s t h a v e f o r a n y f u n c t i o n a l ¢)[Sc]

f d u ( S ) ~(Sc) = f d u ( S ) ~ ( S O " 0 3 )

C o n d i t i o n ( 1 3 ) l e a d s t o t h e f o l l o w i n g e x p r e s s i o n f o r

t h e m e a s u r e ( w e a r e n o t g i v i n g t h e d e r i v a t i o n h e r e ) :

f d u ( S ) ~ ( S )

= f [ D g a b ( ~ ) ] e x p ( - X f x / g d 2 ~ )

X f D x ( ~ )[ e x p (- l fD X / g g a b b a x u O b X , d 2 0 ]

X ¢ [ x ( ~ ) ] , ( 1 4 )

w h e r e X i s a n a r b i t r a r y p a r a m e t e r , D i s a u n i t d i s c i n

the ~ -p lane , [Dgab] i s a n i n t e g r a t i o n m e a s u r e o v e r a l l

p o s s i b l e m e t r i c s , t h e s a m e a s i n g e n e r a l r e l a t iv i t y , w i t h

s o m e g a u g e c o n d i t i o n a p p l i e d ( t h e g a u g e w i l l b e s p e -

c i f i e d l a t e r ) . T h i s e x p r e s s i o n m a y b e r e g a r d e d a s a

q u a n t u m c o u n t e r p a r t o f t h e a c ti o n ( 6 ) . T h e r o le o f

gab i n t he c l a ss i ca l l imi t i s t ha t o f a Lagrange mul t ip l i e r ,

2 0 8

Page 3: polyakov-2

8/2/2019 polyakov-2

http://slidepdf.com/reader/full/polyakov-2 3/4

Volume 103B, number 3 PHYSICS LETTER S 23 July 1981

e n s u r i n g u s t h a t Ta b ; 0 . W e o m i t t e d i n (1 4 ) t h e b o u n d -

a r y t e r m s a s s o c i a t e d w i t h E u l e r c h a r a c t e r i s t i c s . T h e i n -

t e g r a t io n i s p e r f o r m e d w i t h t h e c o n d i t i o n xu(~(s))

=x.(s).T h e m o s t s u r p r is i n g f e a tu r e o f t h e m e a s u r e ( 1 4 ) is

t h a t t h e f u n c t i o n a l i n t e g r a l s i n i t c a n b e e x p l i c i t l y

e v a l u a t e d . T h e c o s m o l o g i c a l t e r m i n ( 1 4 ) , w h i c h h a s

b e e n a b s e n t o n t h e c l a s s i c al le v e l , i s n e c e s s a r y f o r r e -

n o r m a l i z a b i l i t y . T h e p o s s i b il i ty o f p e r f o r m i n g a n x u-

i n t e g r a t io n s t e m s f r o m t h e f a c t t h a t b y t h e c o o r d i n a t e

t r a n s f o r m a t i o n ( 8 ) o n e m a k e s t h e m e t r i c c o n f o r m a l l y

e u c l i d e a n a n d t h e r e s u l t i n g i n t e g r a l d e p e n d s o n t h e

c o n f o r m a l f a c t o r o n l y th r o u g h t h e c o n f o r m a l a n o m a l y .

I n s u c h a s i t u a t i o n o n e c a n u s e a w e l l - k n o w n t r i c k [ 5 ]

i n o r d e r t o f i n d t h e p (~ ) - d e p e n d e n c e . N a m e l y , o n e h a s

t o u s e t h e r e l a t i o n

1 abf D x ( ~ ) e x p ( - ~ f x / g g ~ a X u ~ b X u ) = e x p( - F ) ,

g a b 6 F / 6 g a b = g a b ( T a b ) = ( D / 2 4 g ) [ R ( ~ ) + c o n s t ]

(15)

( h e r e R i s t h e s c a l a r c u r v a t u r e , a n d t h e s e c o n d e q u a -

t i o n ( 1 5 ) i s t h e w e l l k n o w n t r a c e a n o m a l y r e l a t i o n ) . I n -

s e r t i n g ( 1 5 ) i n t h e g a u g e gab(~) = P6ab ;R = P - 1 ~2 l o g o

o n e o b t a i n s

D f d 2 ~ [~ (0 a l o g o ) 2 + , 2 p lF - 4 8 7 r

a n d i n a r b i t r a r y c o o r d i n a t e s :

F - D f d 2 ~ d 2 ~ , g l / 2 ( ~ ) g l / 2 ( ~ , ) R ( ~ ) R ( ~ , )4 8 ~

t +XK(~,~ ) cons tfx/~d 2~ (16)

( h e r e K i s a G r e e n ' s f u n c t i o n f o r t h e l a p l a c i a n :

a a ( V t g g a b O b ) K ( ~ , ~ ' ) = 6 ( ~ ~ ' ) ,

/ /2 i s a q u a d r a t i c a l l y d i v e r g e n t r e n o r m a l i z a t i o n o f t h e

c o s m o l o g i c a l c o n s t a n t ) . T h e n e x t s t e p m u s t b e t h e i n -

t e g r a t io n o v e r gab" I n o r d e r t o d o t h i s w e h a v e t o

s p e c if y a ga u ge a n d a c c o u n t f o r t h e F a d d e e v - P o p o v

d e t e r m i n a n t . W e w o u l d l i k e t o u s e t h e c o n f o r m a l

g a u g e i n w h i c h o u r e x p r e s s i o n s s i m p l i f y c o n s i d e r a b l y .

I n o r d e r t o f i n d t h e m e a s u r e o f i n t e g r a ti o n w e u s e t h e

f o l lo w i n g d e c o m p o s i t i o n o f t h e m e t r i c v a r i a t io n :

6gab(~) = 6~°(~)gab(~) + Vaeb + V bea ( 1 7 )

a n d s u b s t i t u t e i t i n t o t h e e x p r e s s i o n f o r t h e n o r m i n

t h e f u n c t i o n a l s p a c e o f p o s s i b l e m e t r i c s :

II~ gab l[ 2

= f d 2 ~ [ g ( ~ ) ] 1 / 2 ( g aa ' g b b ' + c g ab g a ' b ' ) 6 g ab fg a ,b , ,

( 1 8 )

w h e r e C i s a n a r b i t r a r y c o n s t a n t w h i c h w i l l d r o p o u t

o f t h e f i n a l a n s w e r . T h e e x p r e s s i o n ( 1 8 ) i s t h e o n l y

p o s s i b l e l o c a l c o v a r i a n t f o r m u l a . Su b s t i t u t i n g ( 1 7 ) i n t o

( 1 8 ) w e g e t

]If gab II = (1 + 2C ) f ( 5 ~o + VceC) 2 d 2 ~ x / g

+ f 2 b a~ ~ /g-~ba~bb , (1 9 )

dPa = V aCb + VbCa gabV ce c .

F r o m ( 1 9 ) w e d e ri v e t h e e x p r e s s io n f o r th e i n t e g r a t io n

m e a s u r e i n t h e s p a c e o f al l m e t r i c s :

dIa (ga b ) = D~o (~) De a ( ~) ( d e t 1 2 £ ) , ( 2 0 )

i n w h i c h t h e o p e r a t o r £ i s o b t a i n e d f r o m t h e l a s t t e r m

o f ( 1 9 ) a n d g i v e n b y

( £e )a = 7 b(V aeb + 7 be a - - gab V cee) . ( 2 1 )

I t r e s e m b l e s t h e o r d i n a r y v e c t o r l a p l a c ia n b u t d o e s n o t

c o i n c id e w i t h i t. I n t w o d i m e n s i o n s a n d in c o n f o r m a l l y

e u c l id e a n m e t r i c g a b = O6a b e i g e n v a lu e s o f £ a r e d e t e r -

m i n e d f r o m t h e e q u a t i o n

p- 2 ( ~ /~ Z ) ( pO~n /3 Z ) = - Xn t~ n , z = ~1 + i~2 (22 )

S i n c e t h e o p e r a t o r a t t h e l e f t - h a n d s i de o f ( 2 2 ) i s a

p r o d u c t o f t w o c o n f o r m a l l y c o v a ri a n t o p e r a t o r s .

d e t £ i s a g a in d e t e r m i n e d b y t h e c o n f o r m a l a n o m a l y ,

a n d h a s th e f o r m

- ½ l o g d e t £ = A f [ ~ ( O u ~) 2 + u2e 1 d 2 ~ ,

~0 = log p . (23 )

T h e c o n s t a n t A i s m o s t e a s i ly d e t e r m i n e d b y m a t c h i n g

( 2 3 ) w i t h p e r t u r b a t i o n t h e o r y f o r s m a l l ~0 a n d i s f o u n d

t o b e e q u a l t o

A = 1 3 / 2 4 7 r . ( 2 4 )

C o m b i n i n g ( 2 3 ) a n d ( 1 5 ) w e o b t a i n t h e p a r t i t io n f u n c -

t i o n f o r t h e c l o s e d s u r f a c e s :

2 0 9

Page 4: polyakov-2

8/2/2019 polyakov-2

http://slidepdf.com/reader/full/polyakov-2 4/4

Volume 103B, number 3 PHYSICS LETTER S 23 July 1981

Z= f D~o(~)exp(26-D f [½(ilu~°)2+/-~2e~°])(4 8 . ~ 2 5 )

T h i s e x p r e s s io n s h o w s v e r y d e a r l y t h e o r i g in o f t h e c o m -

m o n l y k n o w n c r it ic a l d i m e n s i o n 2 6 i n th e s t r i ng t h e o r y :

a t t h is v a l ue o f t h e d i m e n s i o n o n e c o u l d q u a n t i z e t h e

t h e o r y w i t h o u t b o t h e r i n g a b o u t t h e c o n f o r m a l a n o m a l y ,

a s h a s b e e n d o n e i n d u a l m o d e l s . H o w e v e r , fo r D < 2 6

i n o r d e r t o g e t p r o p e r q u a n t i z a t i o n w e m u s t e x a m i n e

t h e q u a n t u m L i o u v il le t h e o r y d e s c r ib e d b y t h e l a g ra n -

g i a n ( 2 5 ) . T h i s t h e o r y i s t w o - d i m e n s i o n a l , r e n o r m a l i z a -

b l e , a n d c o m p l e t e l y i n t e g ra b l e . A ll t h a t m e a n s t h a t i t is

e x a c t l y s o l v a b l e , j u s t a s s i n e - G o r d o n t h e o r y , a n d t h u s

i t m u s t b e p o s s i b l e t o e v a l u a t e e x p l i c i t l y t h e p a r t i t i o n

f u n c t i o n o f c l o s e d s u r f a c e s . T h i s w o r k i s i n p r o g r e s s

n o w a n d i n t h e p r e s e n t p a p e r I sh a ll o n l y d e m o n s t r a t eh o w t o e x p r e s s d i f f e r e n t p h y s i c a l q u a n t i t i e s , l i k e t h e

s p e c t r u m , sc a t t e r in g a m p l i t u d e s e t c . t h r o u g h t h e c o r r e -

l a t io n f u n c t i o n s o f q u a n t u m L i o u v il le t h e o r y . T h e

b a s i c id e a i s t o s u m o v e r s u r fa c e s w h i c h c o n t a i n a g iv e n

s e t o f p o i n t s { x / } . T h e F o u r i e r t r a n s f o r m o f su c h a n

a m p l i t u d e h a s p o l e s i n g ( p / i s t he m o m e n t u m o f

p o i n t x / ) w h i c h d e f i n e t h e m a s s s p e c t r u m . T h e r e s i d ue s

o f t h e se p o l e s c a n b e i d e n t if i e d w i t h t h e s c a t t e r i n g a m -

p l i t u d e . So , w e c o n s i d e r t h e a v e r a g e

A P l . . .P N )= ( ~ f d 2 ~ / [ g ( ~ / ) ] l / 2 e x p [ i p / x ( ~ / ) ] ) . ( 2 6 )

T h e a v e r ag e i n ( 2 6 ) i s u n d e r s t o o d i n t h e s e n se o f ( 1 4 ) .

A l l f u n c t i o n a l i n t e g r a l s b e i n g g a u s s ia n , t h e y a r e e a s i l y

e v a l u a t e d w i t h t h e r e s u l t

A ( P l . . . p N ) = f D ~ 0 ( ~ ) e x p ( 2 6 - D f 2 ~ d 2 ~

X [ ~ ( 3 u t p ) 2 + / a Z e ~] )

X ; e x p ( / ~ . ~ ( ~ , ) ) / [ I d2~/

T h e f u n c t i o n K ( ~ , ~ ' , ~ o) i s a G r e e n ' s f u n c t i o n f o r t h e

l a p l a c i a n i n t h e m e t r i c g a b = e ~ fa b " I f th e p o i n t s ~ a n d

~ ' d o n o t c o i n c i d e i t i s j u s t

K ( ~ , ~ ' ) = - ( 4 , ) - l l o g ( ~ - ~ ,) 2 . ( 2 8 )

H o w e v e r , w h e n ~ i s c l o s e t o ~ ' e x t r a c a r e i s n e e d e d . W e

h a v e t o r ec a l l a b o u t t h e c u t o f f b u il t i n o u r t h e o r y . T h e

p r o p e r d e f i n i t i o n o f K i s g i v e n b y

K ( ~ , ~ ' ) = ~ [ X n ( ~ ) X n ( ~ ' ) /X n le x p ( - E X n ) , ( 2 9 )

n

w h e r e X a r e e i g e n v a l u e s , X n a r e e i g e n f u n c t i o n s o f t h e

l a p l a c i a n a n d E i s t h e p r o p e r t i m e c u t - o f f .

U s i n g ( 2 9 ) o n e s h o w s t h a t

K ( ~ , ~ P ) = - ( 4 . ) - l lo g (1 / E) I+ ( 4 . ) , - 1 ~ (~ ) ( 3 0 )

a n d i n t h is w a y A f u n c t i o n s a r e d e t e r m i n e d b y t h e

L i o u v i l l e c o r r e l a t o r s . N o t e t h a t a t D = 2 6 o n l y w e o b -

t a in f r o m ( 2 7 ) t h e s ta n d a r d d u a l m o d e l in t h e K o b a -

N i e l s e n f o r m ( s e e re f . [ 6 ] f o r a r e v i e w ) . F o r p h y s i c a l

D o n e h a s t o s o l v e t h e L i o u v i l l e t h e o r y i n o r d e r t o f i n dt h e s c a t te r i n g a m p l i t u d e s .

A f e w w o r d s n o w a b o u t t h e q u a n t i z a t i o n o f th e

H o u v i l l e t h e o r y . T h e l a g r a n g i a n p o s s e s s e s t h e s y m -

m e t r y

~ p ( z , f ) - + ~ p ( w ( z ) , f f 2 ( z ) ) +l og [dw/dz 12 , (31 )

w h i c h i s a l l t h a t r e m a i n s f r o m t h e g e n e r a l c o v a r i a n c e

a f t e r t h e s p e c i fi c a t io n o f t h e c o n f o r m a l g a u g e . T h e

t h e o r y m u s t b e q u a n t i z e d i n s u c h a w a y , t h a t t h i s in -

v a r i a n c e r e m a i n s u n t o u c h e d . I t i s p o s s i b l e t o p r o v e

t h a t t h i s i s i n d e e d p o s s i b l e a n d l e a d s t o a u n i q u e r e n o r -

m a l i z a t i o n p r o c e d u r e .

S o , o u r m a i n c o n c l u s i o n is t h a t t h e s u m m a t i o n o f

r a n d o m s u r fa c e s is r e d u c e d t o t h e t w o - d i m e n s i o n a l ,

e x a c t l y s o lv a b le t h e o r y , a n d t h a t t h e o l d " d u a l " a p -

p r o a c h t o t h e s t r i n g i s c o r r e c t o n l y a t D = 2 6 .

E x t e n s i o n o f t h e se r e s u l ts t o t h e F e r m i c as e a n d

t h e i r p h y s i c a l a p p l i c a t i o n s a r e d i s c u s s e d i n o t h e r p a p e r s

[ 2 ,7 1 .

I a m g r a t e f u l t o A .A . M i g d al a n d

A . B . Z a m o l o d c h i k o v f o r v a l u ab l e c o m m e n t s a n d t o

D . G . M a k o g o n e n k o f o r t h e i n v a l u a b l e e n c o u r a g e m e n ta t t h e l a s t a n d m o s t d i f f i c u l t s t a g e o f t h is w o r k .

R e f e r e n c e s

[1] A.M . Polyakov, Phys. Lett. 82B (1979) 24 7.[2] V.G . Dotsenko and A .M. Polyakov, to be published.[3] A.A. Migdal, Nucl. Phys., to be published[4] L. Brink and J. Schwa rz, Nucl. Phys. B121 (1977) 285.[5] A.S. Schwartz , Comm un. Math. Phys. 64 (1979) 233.[6] S. Ma ndelstam, Phys. Rep. 13C (1974) 261 .[7] A.M . Polyakov, Phys. Le tt. 103B (1981) 211.

2 1 0