polyhedral optimization lecture 5 – part 2 m. pawan kumar [email protected] slides available...

28
Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar [email protected] Slides available online http://cvn.ecp.fr/personnel/pawan/

Upload: godwin-cobb

Post on 05-Jan-2016

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Polyhedral OptimizationLecture 5 – Part 2

M. Pawan Kumar

[email protected]

Slides available online http://cvn.ecp.fr/personnel/pawan/

Page 2: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• (Extended) Polymatroid

• Optimization over Polymatroids

• Minimizing Submodular Functions

Outline

Page 3: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Polymatroid

Set S

Real vector x of size |S|x1

Submodular function f

Pf = {x ≥ 0, x(U) ≤ f(U) for all U S}⊆

EPf = {x(U) ≤ f(U) for all U S}⊆

Polymatroid

Extended Polymatroid

Page 4: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Tight Sets

Set S Submodular function f

EPf = {x(U) ≤ f(U) for all U S}⊆

U is tight with respect to x EP∈ f if x(U) = f(U)

Tight sets are closed under union

Tight sets are closed under intersection

Proof?

Page 5: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Proof Sketch

Let T and U be tight wrt x EP∈ f

≥ x(T U) + ∪ x(T ∩ U)

f(T) + f(U) ≥ f(T U) + f(T ∩ U)∪

= x(T) + x(U)

= f(T) + f(U)

All inequalities must be equalities

Page 6: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• (Extended) Polymatroid

• Optimization over Polymatroids

• Minimizing Submodular Functions

Outline

Page 7: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Primal Problem

max wTx

x EP∈ f

Assume f(null set) ≥ 0

Otherwise EPf is empty

f(null set) can be set to 0 Why?

Decreasing f(null set) maintains submodularity

Page 8: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Primal Problem

max wTx

x EP∈ f

Assume w ≥ 0

Otherwise the optimal solution is infinity Why?

Let us first try to find a feasible solution

Page 9: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Greedy Algorithm

max wTx

x EP∈ f

Order s1,s2,…,sn S such that w(s∈ i) ≥ w(si+1)

Define Ui = {s1,s2,..,si}

xGi = f(Ui) – f(Ui-1) xG EP∈ f Proof?

Page 10: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Proof Sketch

We have to show that xG(T) ≤ f(T) for all T S⊆

Trivial when T = null set

Mathematical induction on |T|

Page 11: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Proof Sketch

Let k be the largest index such that sk T∈

Clearly |T| ≤ |Uk|

xG(T) = xG(T\{sk}) + xGk

= f(T\{sk}) + f(Uk) - f(Uk-1)

≤ f(T)

≤ f(T\{sk}) + xGk Why?Induction

Why?

Why?Submodularity

Definition

Page 12: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Dual Problem

max wTx

x EP∈ f

min ∑T yT f(T)

yT ≥ 0, for all T S⊆

∑T yTvT = w

Let us first try to find a feasible dual solution

Page 13: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Greedy Algorithm

Order s1,s2,…,sn S such that w(s∈ i) ≥ w(si+1)

Define Ui = {s1,s2,..,si}

yGUi = w(si) - w(si+1) yG is feasible

yGS = w(sn)

yGT = 0, for all other T

Proof?

Page 14: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Proof Sketch

Trivially, yG ≥ 0

Consider si S∈

∑T s∋ i yG

T = ∑j≥i yGUj = w(si)

∑T yTvT = w

Page 15: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Optimality

Primal feasible solution xG

Dual feasible solution yG

Primal value at xG = Dual value at yG

Proof?

Page 16: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Proof Sketch

wTxG = ∑s S∈ w(s)xGs

= ∑i {1,2,…,n}∈ w(si)(f(Ui) - f(Ui-1))

= ∑i {1,2,…,n-1}∈ f(Ui)(w(si) - w(si+1)) + f(S)w(sn)

= ∑T yGT f(T)

Page 17: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Optimality

Primal feasible solution xG

Dual feasible solution yG

Primal value at xG = Dual value at yG

Therefore, xG is an optimal primal solution

And, yG is an optimal dual solution

Page 18: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

• (Extended) Polymatroid

• Optimization over Polymatroids

• Minimizing Submodular Functions

Outline

Page 19: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Submodular Function Minimization

minT S⊆ f(T)

We will assume f(null set) = 0

If not, we can add a constant

Page 20: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Submodular Function Minimization

minT S⊆ f(T)

Brute force search is exponential in |S|

We will prove that SFM is easy

First, we need two properties

Page 21: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Property 1

f(U) = max {x(U) | x EP∈ f}

Set w = vU

Proof?

f is a submodular function over S

Page 22: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Property 2

f is a submodular function over S

Define f’(U) = minT U⊆ f(T)

f’ is also submodular Proof?

Page 23: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Proof Sketch

We have to prove the following

f’(T) + f’(U) ≥ f’(T U) + f’(T ∩ U)∪

for all T, U S⊆

f’(T) = f(X) for some X T⊆

f’(U) = f(Y) for some Y S⊆

Page 24: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Proof Sketch

f’(T) + f’(U) = f(X) + f(Y)

≥ f(X Y) + f(X ∩ Y)∪

≥ f’(T U) + f’(T ∩ U)∪

Page 25: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Property 2 Continued

f is a submodular function over S

Define f’(U) = minT U⊆ f(T)

f’ is also submodular

EPf’ = { x EP∈ f, x ≤ 0} Proof?

Page 26: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Proof Sketch

If x P, then ∈ x(U) ≤ f(U) for all U S ⊆

x(T\U) + x(U) ≤ f(U), for all U T S⊆ ⊆

Why?

Because x EP∈ f

Why?

Because x ≤ 0

We can show that { x EP∈ f, x ≤ 0} = P EP⊆ f’

Page 27: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Proof Sketch

We can show that { x EP∈ f, x ≤ 0} = P EP⊇ f’

If x EP∈ f’ then x EP∈ f

For any s S, x∈ s ≤ 0

Why?

Because x(U) ≤ f(U) for all U S ⊆

Why?

Because xs ≤ f(null set) = 0

Page 28: Polyhedral Optimization Lecture 5 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online

Submodular Function Minimization

minT S⊆ f(T) = f’(S) f’(U) = minT U⊆ f(T)

Optimization over EPf is easy

= max{x(S) | x EP∈ f’}

= max{x(S) | x EP∈ f, x ≤ 0}

Separation over EPf is easy

Separation over EPf’ is easy

Optimization over EPf’ is easy

HenceProved