poster at embl: diagnosis and monitoring of leptomeningeal disease using circulating free dna in the...

1
Diagnosis and monitoring of Leptomeningeal Disease using Circula5ng free DNA in the cerebrospinal fluid (CSF cfDNA) R. H. Shah 1 , E. I. Pentsova 2 , J. Tang 5 , A. Boire 2 , D. You 5 , S. Briggs 2 , A. Omuro 2 , X. Lin 2 , M. Fleisher 3 , C. Grommes 2 , F. Meng 5 , S. D. Selcuklu 5 , S. Ogilvie 4 , N. Distefano 4 , L.Shagabayeva 2 , M.Rosenblum 2 , L. M. DeAngelis 2 , A. Viale 5 , I. K. Mellinghoff 2, , M. F. Berger 1,5, 1 Department of Pathology, Memorial Sloan KeTering Cancer Center, New York, NY 10065, USA. 2 Department of Neurology, Memorial Sloan KeTering Cancer Center, New York, NY 10065, USA. 3 Department of Laboratory Medicine, Memorial Sloan KeTering Cancer Center, New York, NY 10065, USA. 4 Department of Neurosurgery; Memorial Sloan KeTering Cancer Center, New York, NY 10065, USA. 5 Center for Molecular Oncology, Memorial Sloan KeTering Cancer Center, New York, NY 10065, USA Background Conclusion Leptomeningeal metastases (LM) in solid tumors (ST) represent a devasta]ng complica]on of cancer with a median survival of only 1214 weeks a_er diagnosis [1]; however, establishing the diagnosis of LM can be difficult, par]cularly at early stages before the pa]ent is disabled. The diagnosis is based on CSF cytologic analysis and/or MRI findings.[24] Brain and spine MRIs have been increasingly preferred for the ini]al evalua]on of LM because of their noninvasive nature and convenience to pa]ents. However, MRI findings are nega]ve in 25%50% of pa]ents [3, 4], and unequivocal findings may only appear in latestage disease when the pa]ent is already debilitated. CSF cytologic analysis provides diagnos]c confirma]on of LM but is associated with a rela]vely low sensi]vity (approximately 50% on the first lumbar puncture) and is highly examinerdependent. Improved diagnos]c tools are required to facilitate early diagnosis. To this end, we explored whether sufficient quan]ty and quality of DNA can be isolated from CSF for genomic study and whether the CSF pellet or CSF supernatant, would be more suitable for detec]ng cfDNA. We used an inhouse sequencing assay, MSKIMPACT [5], to interrogate 341 clinically relevant cancer genes in tumor derived cfDNA from 53 pa]ents. Results of CSF cfDNA were compared to standard CSF cytopathologic analysis from that same CSF sample and with MRI findings performed at the same ]me. When possible, we compared CSF cfDNA with DNA from tumor ]ssue (primary tumor and nonCNS sites) to determine similari]es and differences in gene]c altera]ons between these different compartments. Acknowledgements Introduc5on Methods References Our study demonstrates that genomic analysis of CSF, using a sufficiently sensi]ve and comprehensive plaiorm, may be useful to facilitate diagnosis of tumor in the CNS, monitor the evolu]on of the cancer genome during treatment of CNS cancers, guide the choice of secondline agents, and perhaps iden]fy pathways that are uniquely associated with cancer spread to the central nervous system. Center of Molecular Oncology, Department of Pathology & Department of Neurology Targeted Capture, Sequencing & Genomic Analysis Captures all proteincoding exons of 341 cancerassociated genes Sequence pairend reads (2x100) on HiSeq 2500 Analyse genomic data using methods described previously [5]. Extrac]on of cfDNA. Centrifuged at 10,000 g for 30 min at 4to remove residual precipitated cellular components QIAamp Circula]ng Nucleic Acid Kit Cerebrospinal Fluid Collec]on and Prepara]on. Lumbar Puncture Centrifuged at 1,000 x g, 4°C for 5 min to separate supernatent & pellet Image 1: Comparison of tumorderived DNA from CSF cell pellet and supernatant. (A) Schema]c of separa]on of CSF pellet and supernatant. Cellular DNA is isolated from the pellet, and cfDNA is isolated from the supernatant. (B) Variant allele frequencies for known muta]ons in CSF cfDNA and pellet DNA. (C) Log2 ra]os of normalized sequence coverage for target exons in CSFcfDNA and pellet DNA for pa]ent 8 . Greater than 10fold amplifica]on of HER2 was observed in CSFcfDNA, whereas HER2 amplifica]on was barely detectable in pellet DNA. (D) Evidence of EML4ALK gene fusion in CSF cfDNA and pellet DNA for pa]ent 6. Readpairs suppor]ng the fusion (red) are visualized using the Integra]ve Genomics Viewer. Results Muta5ons detected in most pa5ents with LM disease Image 2: (A) Schema]c showing paTerns of CNS involvement in pa]ents with solid tumors. (B) Percentage of pa]ents for which highconfidence soma]c altera]ons were detected by MSKIMPACT. Pa]ents are grouped according to the presence or absence of intraparenchymal brain metastases and leptomeningeal metastases (LM) Drugresistance mechanisms in CSF in pa5ents with CNS relapse Image 3: Summary of genomic profiling results from CSF and other tumor sites in pa]ents who developed progressive CNS disease during treatment with the indicated kinase inhibitors. Tumor evolu5on in pa5ents with primary brain tumors. Image 4: Tumor evolu5on in pa5ents with primary brain tumors. (A) Spa]al and temporal heterogeneity between samples obtained at diagnosis, at recurrence and from CSF in pa]ent 42 with recurrent glioblastoma. CSF cfDNA harbors a PTEN R130* muta]on (VAF=0.25), while resec]on #2 harbors a PIK3CA H1047R muta]on (VAF=0.441). (B) CSF molecular profile for a pa]ent 45 with anaplas]c oligodendroglioma contains the IDH1 R132H muta]on and 1p/19q dele]on found in ]ssue resec]on #2, as well as 454 nonsilent soma]c muta]ons. 448 SNVs represent C>T/G>A muta]ons demonstra]ng temozolomideinduced mutagenesis. A B 1. Le Rhun, E., S. Taillibert, and M.C. Chamberlain, Carcinomatous meningi]s: Leptomeningeal metastases in solid tumors. Surg Neurol Int, 2013. 4(Suppl 4): p. S26588. 2. Wasserstrom, W.R., J.P. Glass, and J.B. Posner, Diagnosis and treatment of leptomeningeal metastases from solid tumors: experience with 90 pa5ents. Cancer, 1982. 49(4): p. 75972. 3. Clarke, J.L., et al., Leptomeningeal metastases in the MRI era. Neurology, 2010. 74(18): p. 144954. 4. Freilich, R.J., G. Krol, and L.M. DeAngelis, Neuroimaging and cerebrospinal fluid cytology in the diagnosis of leptomeningeal metastasis. Ann Neurol, 1995. 38(1): p. 517. 5. Cheng, D.T., et al., Memorial Sloan Ke-eringIntegrated Muta4on Profiling of Ac4onable Cancer Targets (MSKIMPACT): A Hybridiza4on CaptureBased NextGenera4on Sequencing Clinical Assay for Solid Tumor Molecular Oncology. J Mol Diagn, 2015. 17(3): p. 25164. Pilot: CSF cell pellet vs. CSF cfDNA

Upload: ronak-shah

Post on 08-Apr-2017

103 views

Category:

Science


0 download

TRANSCRIPT

Page 1: Poster at EMBL: Diagnosis and monitoring of Leptomeningeal Disease using Circulating free DNA in the cerebrospinal fluid (CSF cfDNA)

Diagnosis  and  monitoring  of   Leptomeningeal  Disease  using  Circula5ng  free  DNA  in  the  cerebrospinal  fluid  (CSF  cfDNA)    R.  H.  Shah1,  E.  I.  Pentsova2,    J.  Tang5,  A.  Boire2,  D.  You5,  S.  Briggs2,  A.  Omuro2,  X.  Lin2,  M.  Fleisher3,  C.  Grommes2,  F.  Meng5,  S.  D.  Selcuklu5,  S.  Ogilvie4,  N.  Distefano4,  L.Shagabayeva2,  M.Rosenblum2,  L.  M.  DeAngelis2,  A.  Viale5,  I.  K.  Mellinghoff2,,  M.  F.  Berger1,5,  1Department  of  Pathology,  Memorial  Sloan  KeTering  Cancer  Center,  New  York,  NY  10065,  USA.2Department  of  Neurology,  Memorial  Sloan  KeTering  Cancer  Center,  New  York,  NY  10065,  USA.  3Department  of  Laboratory  Medicine,  Memorial  Sloan  KeTering  Cancer  Center,  New  York,  NY  10065,  USA.4Department  of  Neurosurgery;  Memorial  Sloan  KeTering  Cancer  Center,  New  York,  NY  10065,  USA.  5Center  for  Molecular  Oncology,    Memorial  Sloan  KeTering  Cancer  Center,  New  York,  NY  10065,  USA  

Background

Conclusion

Leptomeningeal  metastases  (LM)  in  solid  tumors  (ST)  represent  a  devasta]ng  complica]on  of  cancer  with  a  median  survival   of   only   12-­‐14   weeks   a_er   diagnosis   [1];   however,   establishing   the   diagnosis   of   LM   can   be   difficult,  par]cularly  at  early  stages  before  the  pa]ent  is  disabled.  The  diagnosis  is  based  on  CSF  cytologic  analysis  and/or  MRI  findings.[2-­‐4]  Brain  and  spine  MRIs  have  been  increasingly  preferred  for  the  ini]al  evalua]on  of  LM  because  of  their  non-­‐invasive  nature  and  convenience  to  pa]ents.  However,  MRI  findings  are  nega]ve  in  25%-­‐50%  of  pa]ents  [3,  4],  and  unequivocal  findings  may  only  appear  in  late-­‐stage  disease  when  the  pa]ent  is  already  debilitated.  CSF  cytologic  analysis  provides  diagnos]c  confirma]on  of  LM  but  is  associated  with  a  rela]vely  low  sensi]vity  (approximately  50%  on  the  first  lumbar  puncture)  and  is  highly  examiner-­‐dependent.  Improved  diagnos]c  tools  are  required  to  facilitate  early  diagnosis.  To  this  end,  we  explored  whether  sufficient  quan]ty  and  quality  of  DNA  can  be  isolated  from  CSF  for  genomic   study  and  whether   the  CSF  pellet   or  CSF   supernatant,  would  be  more   suitable   for  detec]ng   cfDNA.  We  used  an   in-­‐house  sequencing  assay,  MSK-­‐IMPACT  [5],  to   interrogate  341  clinically  relevant  cancer  genes   in  tumor-­‐derived  cfDNA  from  53  pa]ents.  Results  of  CSF  cfDNA  were  compared  to  standard  CSF  cytopathologic  analysis  from  that  same  CSF  sample  and  with  MRI  findings  performed  at  the  same  ]me.  When  possible,  we  compared  CSF  cfDNA  with  DNA  from  tumor  ]ssue  (primary  tumor  and  non-­‐CNS  sites)  to  determine  similari]es  and  differences  in  gene]c  altera]ons  between  these  different  compartments.      

Acknowledgements  

Introduc5on   Methods  

References Our   study   demonstrates   that   genomic   analysis   of   CSF,   using   a  sufficiently  sensi]ve  and  comprehensive  plaiorm,  may  be  useful  to  facilitate  diagnosis  of  tumor  in  the  CNS,  monitor  the  evolu]on  of   the   cancer   genome   during   treatment   of   CNS   cancers,   guide  the  choice  of  second-­‐line  agents,  and  perhaps  iden]fy  pathways  that   are   uniquely   associated  with   cancer   spread   to   the   central  nervous  system.    

 Center  of  Molecular  Oncology,  Department  of  Pathology  &    Department  of  Neurology  

Targeted  Capture,  Sequencing  &  Genomic  Analysis  Captures  all  protein-­‐coding  exons  of  341  cancer-­‐associated  genes  

Sequence  pair-­‐end  reads  (2x100)  on  HiSeq  2500    

Analyse  genomic  data  using  methods  described  previously  [5].  

Extrac]on  of  cfDNA.  

Centrifuged  at  10,000  g  for  30  min  at  4℃  to  remove  residual  precipitated  cellular  components   QIAamp  Circula]ng  Nucleic  Acid  Kit  

Cerebrospinal  Fluid  Collec]on  and  Prepara]on.  

Lumbar  Puncture   Centrifuged  at  1,000  x  g,  4°C  for  5  min  to  separate  supernatent  &  pellet  

Image  1:  Comparison  of  tumor-­‐derived  DNA  from  CSF  cell  pellet  and  supernatant.  (A)  Schema]c  of  separa]on  of  CSF  pellet  and  supernatant.  Cellular  DNA  is  isolated  from  the  pellet,  and  cfDNA  is  isolated  from  the  supernatant.  (B)  Variant  allele  frequencies  for  known  muta]ons  in  CSF  cfDNA  and  pellet  DNA.  (C)  Log2  ra]os  of  normalized  sequence  coverage  for  target  exons  in  CSF-­‐cfDNA  and  pellet  DNA  for  pa]ent  8  .  Greater  than  10-­‐fold   amplifica]on  of  HER2  was   observed   in   CSF-­‐cfDNA,  whereas  HER2   amplifica]on  was   barely   detectable   in   pellet  DNA.   (D)  Evidence   of  EML4-­‐ALK   gene   fusion   in  CSF   cfDNA  and  pellet  DNA   for  pa]ent  6.  Read-­‐pairs   suppor]ng   the   fusion   (red)   are   visualized  using   the   Integra]ve  Genomics  Viewer.    

Results Muta5ons  detected  in  most  pa5ents  with  LM  disease  

Image   2:   (A)   Schema]c   showing   paTerns   of   CNS   involvement   in   pa]ents   with   solid  tumors.   (B)   Percentage  of  pa]ents   for  which  high-­‐confidence   soma]c  altera]ons  were  detected  by  MSK-­‐IMPACT.  Pa]ents  are  grouped  according  to  the  presence  or  absence  of  intraparenchymal  brain  metastases  and  leptomeningeal  metastases  (LM)    

Drug-­‐resistance  mechanisms  in  CSF  in  pa5ents  with  CNS  relapse  

Image   3:   Summary   of   genomic   profiling   results   from   CSF   and   other   tumor   sites   in  pa]ents  who   developed   progressive   CNS   disease   during   treatment  with   the   indicated  kinase  inhibitors.    Tumor  evolu5on  in  pa5ents  with  primary  brain  tumors.    

Image  4:  Tumor  evolu5on  in  pa5ents  with  primary  brain  tumors.  (A)  Spa]al  and  temporal  heterogeneity  between  samples  obtained  at  diagnosis,  at  recurrence  and  from  CSF  in  pa]ent  42  with  recurrent  glioblastoma.  CSF  cfDNA  harbors  a  PTEN  R130*  muta]on   (VAF=0.25),  while   resec]on  #2  harbors  a  PIK3CA  H1047R  muta]on   (VAF=0.441).   (B)  CSF  molecular  profile   for  a  pa]ent  45  with  anaplas]c  oligodendroglioma  contains   the   IDH1  R132H  muta]on  and  1p/19q  dele]on  found  in  ]ssue  resec]on  #2,  as  well  as  454  non-­‐silent  soma]c  muta]ons.  448  SNVs  represent  C>T/G>A  muta]ons  demonstra]ng  temozolomide-­‐induced  mutagenesis.    

A   B  

1.  Le  Rhun,  E.,  S.  Taillibert,  and  M.C.  Chamberlain,  Carcinomatous  meningi]s:  Leptomeningeal  metastases  in  solid  tumors.  Surg  Neurol  Int,  2013.  4(Suppl  4):  p.  S265-­‐88.  2.  Wasserstrom,  W.R.,  J.P.  Glass,  and  J.B.  Posner,  Diagnosis  and  treatment  of  leptomeningeal  metastases  from  solid  tumors:  experience  with  90  pa5ents.  Cancer,  1982.  49(4):  p.  759-­‐72.  3.  Clarke,  J.L.,  et  al.,  Leptomeningeal  metastases  in  the  MRI  era.  Neurology,  2010.  74(18):  p.  1449-­‐54.  4.  Freilich,  R.J.,  G.  Krol,  and  L.M.  DeAngelis,  Neuroimaging  and  cerebrospinal  fluid  cytology  in  the  diagnosis  of  leptomeningeal  metastasis.  Ann  Neurol,  1995.  38(1):  p.  51-­‐7.  5.  Cheng,  D.T.,  et  al.,  Memorial  Sloan  Ke-ering-­‐Integrated  Muta4on  Profiling  of  Ac4onable  Cancer  Targets  (MSK-­‐IMPACT):  A  Hybridiza4on  Capture-­‐Based  Next-­‐Genera4on  Sequencing  Clinical  Assay  for  Solid  Tumor  Molecular  Oncology.  J  Mol  Diagn,  2015.  17(3):  p.  251-­‐64.    

Pilot:  CSF  cell  pellet  vs.  CSF  cfDNA