practice 2: developing and using models career and college readiness conferences summer 2015

41
Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Upload: milo-booth

Post on 17-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Practice 2: Developing and Using Models

Career and College Readiness ConferencesSummer 2015

Page 2: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

2

A Review of NGSS

Page 3: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

3

2011-2013

July 2011

Developing the Standards

Instruction

Curricula

Assessments

Professional Learning

Pre-Service Education

Page 4: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

4

A Framework for K-12 Science Education

Three-Dimensions:

Scientific and Engineering Practices

Crosscutting Concepts

Disciplinary Core Ideas

View free PDF form The National Academies Press at www.nap.edu

Page 5: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

5

A Framework for K-12 Science Education

• Not separate treatment of “content” and “practices”

• Curriculum materials, assessments and classroom instruction need to do more than present and assess scientific ideas

• Involve learners in using scientific practices to develop and apply scientific ideas

Page 6: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

6

Scientific and Engineering Practices

1. Asking questions (for science) and defining problems (for engineering)

2. Developing and using models

3. Planning and carrying out investigations

4. Analyzing and interpreting data

5. Using mathematics and computational thinking

6. Constructing explanations (for science) and designing solutions (for engineering)

7. Engaging in argument from evidence

8. Obtaining, evaluating, and communicating information

Page 7: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

7

1. Patterns

2. Cause and effect: Mechanism and explanation

3. Scale, proportion, and quantity

4. Systems and system models

5. Energy and matter: Flows, cycles, and

conservation

6. Structure and function

7. Stability and change

Crosscutting Concepts

Page 8: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Life Science Physical ScienceLS1: From Molecules to Organisms:

Structures and Processes

LS2: Ecosystems: Interactions, Energy, and Dynamics

LS3: Heredity: Inheritance and Variation of Traits

LS4: Biological Evolution: Unity and Diversity

PS1: Matter and Its Interactions

PS2: Motion and Stability: Forces and Interactions

PS3: Energy

PS4: Waves and Their Applications in Technologies for Information Transfer

Earth & Space Science Engineering & TechnologyESS1: Earth’s Place in the Universe

ESS2: Earth’s Systems

ESS3: Earth and Human Activity

ETS1: Engineering Design

ETS2: Links Among Engineering, Technology, Science, and Society

8

Disciplinary Core Ideas

Page 9: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Life Science Earth & Space Science Physical Science Engineering & Technology LS1: From Molecules to Organisms:

Structures and ProcessesLS1.A: Structure and FunctionLS1.B: Growth and Development of 

OrganismsLS1.C: Organization for Matter and Energy 

Flow in OrganismsLS1.D: Information Processing 

LS2: Ecosystems: Interactions, Energy, and Dynamics

LS2.A: Interdependent Relationships in Ecosystems

LS2.B: Cycles of Matter and Energy Transfer in Ecosystems

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

LS2.D: Social Interactions and Group Behavior

 

LS3: Heredity: Inheritance and Variation of Traits

LS3.A: Inheritance of TraitsLS3.B: Variation of Traits 

LS4: Biological Evolution: Unity and Diversity

LS4.A: Evidence of Common Ancestry and Diversity

LS4.B: Natural SelectionLS4.C: AdaptationLS4.D: Biodiversity and Humans

ESS1: Earth’s Place in the UniverseESS1.A: The Universe and Its StarsESS1.B: Earth and the Solar SystemESS1.C: The History of Planet Earth 

ESS2: Earth’s SystemsESS2.A: Earth Materials and SystemsESS2.B: Plate Tectonics and Large-

Scale System InteractionsESS2.C: The Roles of Water in Earth’s 

Surface ProcessesESS2.D: Weather and ClimateESS2.E: Biogeology 

ESS3: Earth and Human ActivityESS3.A: Natural ResourcesESS3.B: Natural HazardsESS3.C: Human Impacts on Earth 

SystemsESS3.D: Global Climate Change

 PS1: Matter and Its InteractionsPS1.A: Structure and Properties of 

MatterPS1.B: Chemical ReactionsPS1.C: Nuclear Processes 

PS2: Motion and Stability: Forces and Interactions

PS2.A: Forces and MotionPS2.B: Types of InteractionsPS2.C: Stability and Instability in 

Physical Systems 

PS3: EnergyPS3.A: Definitions of EnergyPS3.B: Conservation of Energy and 

Energy TransferPS3.C: Relationship Between Energy 

and ForcesPS3.D:Energy in Chemical Processes 

and Everyday Life 

PS4: Waves and Their Applications in Technologies for Information Transfer

PS4.A: Wave PropertiesPS4.B: Electromagnetic RadiationPS4.C: Information Technologies 

and Instrumentation

 ETS1: Engineering DesignETS1.A: Defining and Delimiting an 

Engineering ProblemETS1.B: Developing Possible SolutionsETS1.C: Optimizing the Design Solution 

ETS2: Links Among Engineering, Technology, Science, and Society

ETS2.A: Interdependence of Science, Engineering, and Technology

ETS2.B: Influence of Engineering, Technology, and Science on Society and the Natural World

Note: In NGSS, the core ideas for Engineering, Technology, and the Application of Science are integrated with the Life Science, Earth & Space Science, and Physical Science core ideas

Core and Component Ideas

Page 10: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Closer Look at a Performance Expectation

10

2.PS1 Matter and Its Interactions Students who demonstrate understanding can: 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials

by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.] 

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Disciplinary Core Ideas Crosscutting Concepts

Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. • Plan and conduct an investigation 

collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1)

PS1.A: Structure and Properties of Matter • Different kinds of matter exist and 

many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1)

Patterns • Patterns in the natural and human 

designed world can be observed. (2-PS1-1) 

Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

Page 11: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Closer Look at a Performance Expectation

11

2.PS1 Matter and Its Interactions Students who demonstrate understanding can: 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials

by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.] 

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Disciplinary Core Ideas Crosscutting Concepts

Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. • Plan and conduct an investigation 

collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1)

PS1.A: Structure and Properties of Matter • Different kinds of matter exist and 

many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1)

Patterns • Patterns in the natural and human 

designed world can be observed. (2-PS1-1) 

Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

Page 12: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Closer Look at a Performance Expectation

12

2.PS1 Matter and Its Interactions Students who demonstrate understanding can: 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials

by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.] 

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Disciplinary Core Ideas Crosscutting Concepts

Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. • Plan and conduct an investigation 

collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1)

PS1.A: Structure and Properties of Matter • Different kinds of matter exist and 

many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1)

Patterns • Patterns in the natural and human 

designed world can be observed. (2-PS1-1) 

Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

Page 13: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Closer Look at a Performance Expectation

13

2.PS1 Matter and Its Interactions Students who demonstrate understanding can: 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials

by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.] 

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Disciplinary Core Ideas Crosscutting Concepts

Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. • Plan and conduct an investigation 

collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1)

PS1.A: Structure and Properties of Matter • Different kinds of matter exist and 

many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1)

Patterns • Patterns in the natural and human 

designed world can be observed. (2-PS1-1) 

Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

Page 14: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

14

Instructional Shifts

More ….Less ….

Page 15: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

15

Using Models in the Classroom

Page 16: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Outcomes:

• Define the types of models used in science and engineering

• Determine the purpose of incorporating models in classroom instruction

• Develop strategies for incorporating models into instruction

Page 17: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Poll:  How are models used?

What is the most common way models and modeling are used in classrooms?

A. To show students what some aspect of a physical phenomenon looks like

B. To help students remember or reinforce ideas presented in class

C. To assess students’ ideas

D. To help students develop or reason with ideas

Page 18: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

18

NGSS Definition

Models include diagrams, physical replicas, mathematical representations, analogies, and computer simulations. -NGSS Appendix F

Page 19: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

19

Use of Models in NGSS

Grade

PE with models as the SEP

% of PE

DCI PE with models as the SEP

% of PE

ES 12 15.4% PS 13 18.3%

MS 16 27.1% LS 14 21.9%

HS 15 21.1% ESS 14 23.7%

ETS 2 14.3%

Developing and using models• 43 out of 208 PE use it (20.7%)• Only Constructing Explanations and

Solutions is used more (21.6%)

Page 20: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

20

A System of Practices

Asking Questions and

Defining Problems

Developing and Using

Models

Obtaining, Evaluating, and Communicating

Information

Engaging in Argument

From Evidence

Constructing Explanations and Design Solutions

Using Mathematical

and Computational

Thinking

Analyzing and Interpreting

Data

Planning and Carrying Out

Investigations

Page 21: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

21

Explore a Model

• Participants will be randomly placed into one of three groups

• Explore the model assigned to the group. Using the PE provided, develop some ideas of how this model could be used by students to meet that PE.

• On a piece of chart paper, record your ideas. Be prepared to share.

Page 22: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

22

Groups

• Group 1 – Boat on the Ocean– Develop a model of waves to describe patterns in terms of 

amplitude and wavelength and that waves can cause objects to move.

• Group 2- Flashlight– Develop and use a model to describe that waves are reflected, 

absorbed, or transmitted through various materials. 

• Group 3 – Bending Light– Use mathematical representations to support a claim regarding 

relationships among the frequency, wavelength, and speed of waves traveling in various media.

Page 23: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

23

Building Complexity• Look at the chart on page 6 of Appendix F 

(handout)

• How do the expectations of using models progress across the grade levels? 

• Identify at least one piece of evidence from the chart to support the answer.

Page 24: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

24

Mental and Conceptual Models

Mental Models• Internal, personal, 

idiosyncratic, incomplete, unstable, and essentially functional

• Being a tool for thinking with, making predictions, and making sense of experience

Conceptual Models• Explicit representations that 

are in some ways analogous to the phenomena they represent

• Used to better visualize and understand a phenomenon under investigation or develop a possible solution to a design problem

Page 25: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

25

Roles of models

Page 26: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Roles of Models

How can models, like the ones we just looked at, be used to facilitate student understanding in a science classroom?

Page 27: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Models Serve Four Important Roles

1. Data syntheses

2. Representations of science ideas

3. Substitutes for natural phenomena

4. Hypotheses or claims

Page 28: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Group Activity

• Review the roles of models in your groups (See handout).

• Go back to the chart paper and identify the role the models would play in the examples that were created.

• Record your responses on the chart paper. Be prepared to share.

Page 29: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Scientific Models: ARE NOT…

• just ART PROJECTS!

• to be constructed simply for the sake of constructing the model.

• to be EDIBLE, if it is, then it is probably not a model!

• simple tools, physical replicas of objectsThe model must be useful for helping predict or

explain a system or natural phenomenon. If the model is only descriptive and doesn’t help to answer a

question about how, or why, then it isn’t a scientific model. (Cynthia Passmore – NSTA webinair)

Page 30: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

30

Evaluating Models Currently Being Used

Ask the following questions:1. What performance expectation would

students be able to achieve when they use the model?

2. What are the core ideas that align with the model?

3. How does the model help students achieve/better understand the PE?

4. What is the role of the student and of the teacher when models are utilized?

Page 31: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

31

Making Models a Part of the Classroom

Page 32: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Using Models in the Classroom

“All models are approximations. Essentially, all models are wrong, but some are useful. However, the approximate nature of the model must always be borne in mind…”

-George Edward Pelham BoxIf this statement is true, why use models in the

science classroom at all?

Page 33: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Using Models in the Science Classroom

Four broad categories for teaching students about models

1.Critiquing Models

2.Models as a Source of Evidence

3.Testing Models

4.Building Models

Page 34: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

34

Incorporating Models in Science Instruction

Look at the groups chart paper and identify which category  the example the group provided would fit into.

1. Critiquing Models

2. Models as a Source of Evidence

3. Testing Models

4. Building Models

– Think of a way to modify how the students interact with the model that might make it fit into another category?

Page 35: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

35

Incorporating Models in Science Instruction

Look at Appendix F and determine which bullets under each grade could go under each category.

1.Critiquing Models

2.Models as a Source of Evidence

3.Testing Models

4.Building Models

Page 36: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

36

Critiquing models

K-2 3-5 6-8 9-12

Compare models to identify common features and differences.

Identify limitations of models.

Evaluate limitations of a model for a proposed object or tool.

Evaluate merits and limitations of two different models of the same proposed tool, process, mechanism or system in order to select or revise a model that best fits the evidence or design criteria.

Distinguish between a model and the actual object, process, and/or events the model represents.

Design a test of a model to ascertain its reliability.

Page 37: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

37

Models as a Source of Evidence 

K-2 3-5 6-8 9-12

Develop and/or use a model to represent amounts, relationships, relative scales (bigger, smaller), and/or patterns in the natural and designed world(s).

Develop a model using an analogy, example, or abstract representation to describe a scientific principle or design solution.

Develop and/or revise a model to show the relationships among variables, including those that are not observable but predict observable phenomena.

Develop and/or use a model (including mathematical and computational) to generate data to support explanations, predict phenomena, analyze systems, and/or solve problems.

Develop and/or use models to describe and/or predict phenomena.

Develop and/or use a model to predict and/or describe phenomena.

Page 38: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

38

Testing Models

K-2 3-5 6-8 9-12

Develop a simple model based on evidence to represent a proposed object or tool.

Use a model to test cause and effect relationships or interactions concerning the functioning of a natural or designed system.

Develop and/or use a model to generate data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales.

Develop a complex model that allows for manipulation and testing of a proposed process or system.

Page 39: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

39

Building ModelsK-2 3-5 6-8 9-12

Develop and/or use a model to represent amounts, relationships, relative scales (bigger, smaller), and/or patterns in the natural and designed world(s).

Collaboratively develop and/or revise a model based on evidence that shows the relationships among variables for frequent and regular occurring events.

Develop or modify a model—based on evidence – to match what happens if a variable or component of a system is changed.

Develop, revise, and/or use a model based on evidence to illustrate and/or predict the relationships between systems or between components of a system.

Develop a simple model based on evidence to represent a proposed object or tool.

Develop a diagram or simple physical prototype to convey a proposed object, tool, or process.

Develop a model to describe unobservable mechanisms.

Page 40: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

Reflection

Identify which NGSS shifts are addressed when using

models in the science classroom.

Share with a partner.

Page 41: Practice 2: Developing and Using Models Career and College Readiness Conferences Summer 2015

41

1. Using models to introduce facts and terminology while developing explanations and designing solutions supported by evidence-based arguments and reasoning.

2. Systems thinking and modeling to explain phenomena and to give a context for the ideas to be learned.

3. Students using models, conducting investigations, solving problems, and engaging in discussions with teachers’ guidance.

4. Students evaluating open-ended models and questions that focus on the strength of the evidence used to generate claims.

5. Students using models as a source of data and information. Students developing summaries of information learned from their experiences.

6. Multiple investigations (interactions with models) driven by students’ questions with a range of possible outcomes that collectively lead to a deep understanding of established core scientific ideas.

7. Students drawing, developing, evaluating, and creating models, writing of journals, reports, posters, media presentations that explain and argue.

8. Providing supports so that all students can engage in interacting with various types of models and other science and engineering practices.

The Shifts of NGSS – MORE…