predicting new materials and their properties with ... · s. botti // predicting new perovskites //...

32
Predicting new materials and their properties with supercomputers The example of perovskites Silvana Botti Friedrich-Schiller Universit¨ at Jena Germany OSI, Dublin 29.6.2017

Upload: others

Post on 20-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Predicting new materials and theirproperties with supercomputers

    The example of perovskites

    Silvana Botti

    Friedrich-Schiller Universität JenaGermany

    OSI, Dublin 29.6.2017

  • New perovskites for photovoltaics

    1 Our toolsTheory, algorithms, codes and databases

    2 Exploring the periodic tableHigh-throughput calculationsMore accurate characterizationImprove efficiency with machine learning

    S. Botti // Predicting new perovskites // Uni Jena

  • How many materials do we know?

    Ü Molecules: 112 million (CAS)Ü Inorganic crystals: 181 000 (ICSD)

    but...

    Ü Remove duplicatesÜ Remove alloysÜ Remove incomplete structures (e.g., missing hydrogens)

    Materials Project Database: 50 000 structures!

    S. Botti // Predicting new perovskites // Uni Jena

  • How many materials do we know?

    Ü Molecules: 112 million (CAS)Ü Inorganic crystals: 181 000 (ICSD)

    but...

    Ü Remove duplicatesÜ Remove alloysÜ Remove incomplete structures (e.g., missing hydrogens)

    Materials Project Database: 50 000 structures!

    S. Botti // Predicting new perovskites // Uni Jena

  • Exploring the periodic table

    The number of combinations of elements is enormous!

    S. Botti // Predicting new perovskites // Uni Jena

  • Searching for perovskites

    Perovskites are some of the most interesting materials knownÜ Magnetism, ferroelectricity, piezoelectricity, photovoltaics,

    thermoelectricity, superconductivity.Ü Composition ABX3 where X is O, S, Se, Te, F, Br, Cl, or I.Ü In most of the cases, perovskites crystallize in a deformed

    version of the ideal cubic structure, with unit cells with10–40 atoms.

    Can we find more perovskites?

    S. Botti // Predicting new perovskites // Uni Jena

  • Which tools do we need?

    1. Reliable equations from quantum mechanics2. Efficient algorithms and codes3. Fast computers and databases

    S. Botti // Predicting new perovskites // Uni Jena

  • How to determine the stability of a compound?

    The distance to the convex hull Ehull is a measure of stability

    Energies are calculated with DFT (VASP) and structures arepredicted with the minima hopping method

    S. Körbel, M.A.L. Marques, S. Botti, J. Chem. Mater. C 4, 3157 (2016)

    S. Botti // Predicting new perovskites // Uni Jena

  • Finding new structures

    For a given composition, we are interested in finding the globalminimum of the ground-state Born-Oppenheimer surface.Other low-lying minima are also interesting as they may bestabilized by temperature, pressure, doping, etc.

    ...but the number of local minima increasesexponentially with the number of atoms inthe unit cell.

    Ü Solution: Global Structural Predictionmethods (genetic algorithms, randomsearch, minima hopping method, etc.)

    Ü Density functional theory to determineenergy and forces (VASP)

    S. Botti // Predicting new perovskites // Uni Jena

  • Minima Hopping Method

    S. Goedecker, J. Chem. Phys. 120, 9911 (2004)M. Amsler and S. Goedecker, J. Chem. Phys. 133, 224104 (2010)

    S. Botti // Predicting new perovskites // Uni Jena

  • Materials Project database

    The MP gathers already ≈ 1000 ABX3 structures

    Ü We use the structures of the MP databaseÜ Our new structures are sent to the MP database

    materialsproject.org

    S. Botti // Predicting new perovskites // Uni Jena

    materialsproject.org

  • The quest for new materials

    1 Our toolsTheory, algorithms, codes anddatabases

    2 Exploring the periodic tableHigh-throughput calculationsMore accurate characterizationImprove efficiency with machinelearning

    S. Botti // Predicting new perovskites // Uni Jena

  • Nitride perovskites

    Ü Composition ABX3 where X is O, S, Se, Te, F, Br, Cl, or I.

    What about perovskites with X=N?

    S. Botti // Predicting new perovskites // Uni Jena

  • Stability map for ABN3

    CsRb KNa LiBa SrCa YLa

    ScZr HfTi TaNb VCr

    MoW ReTc OsRu

    IrRh PtPd

    AuAg CuNi CoFe MnMg ZnCd HgBe AlGa InTl

    PbSn GeSi

    BC NP

    AsSb BiTe

    SeS OI BrCl FH

    Cs

    Rb

    K

    Na

    Li

    Ba

    SrC

    a

    YLa

    Sc

    Zr

    Hf

    Ti

    TaN

    b

    VC

    r Mo

    W

    R

    eTc

    Os

    Ru

    Ir

    Rh

    Pt

    Pd

    AuAg

    Cu

    Ni

    Co

    Fe

    M

    nM

    g

    Zn

    Cd

    Hg

    Be

    AlG

    a

    InTl

    Pb

    Sn

    G

    eSi

    B

    C

    NP

    AsSb

    Bi

    Te

    SeS

    O

    I Br

    Cl

    FH

    A (1

    a)

    B (1b)

    ABN3

    -50

    0

    50

    100

    150

    200

    250

    300

    350

    400

    R. Sarmiento-Pérez, T.F.T. Cerqueira, S. Körbel, S. Botti, M.A.L. Marques, Chem.Mater. 27, 5957 (2015)

    S. Botti // Predicting new perovskites // Uni Jena

  • Nitride cubic perovskites

    1

    H

    3

    Li

    11

    Na

    19

    K

    37

    Rb

    55

    Cs

    4

    Be

    12

    Mg

    20

    Ca

    38

    Sr

    56

    Ba

    21

    Sc

    39

    Y

    57

    La

    22

    Ti

    40

    Zr

    72

    Hf

    23

    V

    41

    Nb

    73

    Ta

    24

    Cr

    42

    Mo

    74

    W

    25

    Mn

    43

    Tc

    75

    Re

    26

    Fe

    44

    Ru

    76

    Os

    27

    Co

    45

    Rh

    77

    Ir

    28

    Ni

    46

    Pd

    78

    Pt

    29

    Cu

    47

    Ag

    79

    Au

    30

    Zn

    48

    Cd

    80

    Hg

    31

    Ga

    13

    Al

    5

    B

    49

    In

    81

    Tl

    6

    C

    14

    Si

    32

    Ge

    50

    Sn

    82

    Pb

    7

    N

    15

    P

    33

    As

    51

    Sb

    83

    Bi

    8

    O

    16

    S

    34

    Se

    52

    Te

    84

    Po

    9

    F

    17

    Cl

    35

    Br

    53

    I

    85

    At

    10

    Ne

    2

    He

    18

    Ar

    36

    Kr

    54

    Xe

    86

    Rn

    LaXN3400 eV

    1

    2

    3

    4

    5

    6

    1 IA

    2 IIA

    3 IIIB 4 IVB 5 VB 6 VIB 7 VIIB 8 VIIIB 9 VIIIB 10 VIIIB 11 IB 12 IIB

    13 IIIA 14 IVA 15 VA 16 VIA 17 VIIA

    18 VIIIA

    Ü 3906 cubic perovskites testedÜ Structural prediction for 23 compositionsÜ 21 stable ABN3 phases (3 perovskites)

    Sarmiento-Pérez et al. Chem. Mater. 27, 5957 (2015)Körbel, Marques, Botti, J. Chem. Mater. C 4, 3157 (2016)

    S. Botti // Predicting new perovskites // Uni Jena

  • ABN3 structures

    (a) spg 221 (b) spg 62 (c) spg 161

    (d) spg 15 (d) spg 14 (e) spg 12

    Sarmiento-Pérez et al. Chem. Mater. 27, 5957 (2015)Körbel, Marques, Botti, J. Chem. Mater. C 4, 3157 (2016)

    S. Botti // Predicting new perovskites // Uni Jena

  • High-throughput screening of ABX3 perovskites0

    24

    68

    10

    12

    CsO

    F3

    RbInCl 3

    CsSnI 3

    LaW

    N3

    RbSnBr 3

    CsSnBr 3

    RbGeI

    3

    BaHfS

    3

    CsG

    eI3

    CsSnCl 3

    RbSnCl 3

    RbGeB

    r 3KCuF3

    RbCuF3

    SrT

    cO3

    TlCuF3

    CsG

    eBr 3

    BaSnO

    3

    KGeC

    l 3TlSnCl 3

    CsP

    bBr 3

    RbGeC

    l 3TlFeF

    3

    RbHgF3

    CsH

    gF3

    InSnCl 3

    CsG

    eCl 3

    CsP

    bCl 3

    InGeC

    l 3CsC

    dCl 3

    RbCdCl 3

    PbTiO

    3

    KTaO

    3

    SrT

    iO3

    KNbO

    3

    RbMnCl 3

    BaTiO

    3

    RbVF3

    InMnF3

    TlH

    gF3

    RbIO

    3

    TlM

    nF3

    KMnF3

    CsSnF3

    NaTaO

    3

    AgMgF3

    TlN

    iF3

    TlIO

    3

    RbMnF3

    PbHfO

    3

    PbZrO

    3

    CsM

    nF3

    BaZrO

    3

    CsP

    bF3

    RbPbF3

    LaAlO

    3

    CsC

    aI 3

    BaHfO

    3

    RbNiF

    3

    CsSrB

    r 3KNiF

    3

    RbCdF3

    TlM

    gF3

    CsC

    dF3

    TlZnF3

    RbMgCl 3

    TlCdF3

    RbCaBr 3

    KMgCl 3

    KZnF3

    CsC

    aBr 3

    RbZnF3

    CsSrC

    l 3RbCaCl 3

    CsC

    aCl 3

    CsSrF

    3

    KCaF3

    RbCaF3

    KMgF3

    RbMgF3

    CsC

    aF3

    Eg(eV)

    01020304050607080

    CsP

    bF3

    RbPbF3

    KNbO

    3

    TlCdF3

    NaTaO

    3

    BaTiO

    3

    InMnF3

    TlIO

    3

    PbTiO

    3

    TlH

    gF3

    LaW

    N3

    |P|(µC/cm

    2)

    HSE directHSE indirect

    LDA

    S. Körbel, M.A.L. Marques, S. Botti, J. Chem. Mater. C 4, 3157 (2016)

    S. Botti // Predicting new perovskites // Uni Jena

  • Theoretical spectroscopy

    1 Our toolsTheory, algorithms, codes anddatabases

    2 Exploring the periodic tableHigh-throughput calculationsMore accurate characterizationImprove efficiency with machinelearning

    S. Botti // Predicting new perovskites // Uni Jena

  • The quest for new materials

    1 Our toolsTheory, algorithms, codes anddatabases

    2 Exploring the periodic tableHigh-throughput calculationsMore accurate characterizationImprove efficiency with machine learning

    S. Botti // Predicting new perovskites // Uni Jena

  • Machine learning

    Given a set of N training features of the form {(xi, yi)}, wherey = Ehull, the learning algorithm seeks the function y(xi) thatbest fits the data.

    Ü Create a large database of DFTcalculations (250 000 perovskites)

    Ü Probe a training set for structure withmachine learning: ridge regression,random forests, extremely randomizedtrees (including adaptive boosting), andneural networks.

    Ü Predict new data, validate the model, andspeed up calculations

    Predicting the thermodynamic stability of solids combining density functional theoryand machine learning, Schmidt et al., Chem. Mat. 29 5090 (2017).

    S. Botti // Predicting new perovskites // Uni Jena

  • Machine learning

    Given a set of N training features of the form {(xi, yi)}, wherey = Ehull, the learning algorithm seeks the function y(xi) thatbest fits the data.

    Ü Create a large database of DFTcalculations (250 000 perovskites)

    Ü Probe a training set for structure withmachine learning: ridge regression,random forests, extremely randomizedtrees (including adaptive boosting), andneural networks.

    Ü Predict new data, validate the model, andspeed up calculations

    Predicting the thermodynamic stability of solids combining density functional theoryand machine learning, Schmidt et al., Chem. Mat. 29 5090 (2017).

    S. Botti // Predicting new perovskites // Uni Jena

  • Benchmark dataset

    DFT calculations of 250 000 cubic perovskites

    Reliability:Ü 59% of experimental

    compounds < 0Ü 76% < 25 meV/atomÜ 85% < 50 meV/atomÜ 95% < 150 meV/atom

    Why?Ü It is possible to stabilize compounds above hullÜ Errors in databases (A↔ B)Ü ABX3 compounds that are not perovskites

    S. Botti // Predicting new perovskites // Uni Jena

  • Feature importance

    The minimum MAE (120 meV/atom) is obtained using 11features per atom:

    Ü atomic numberÜ Pauling electronegativityÜ most common oxidation stateÜ average ionic radiusÜ number of valence electronsÜ period in the periodic table

    Ü group in the periodic tableÜ ionization energyÜ polarizabilityÜ number of s+ p valence

    electronsÜ number of d or f valence

    electrons.

    The location of the elements in the periodic table is alreadysufficient to predict the distance to the convex hull with a MAEonly 20 meV/atom higher than the best MAE!

    S. Botti // Predicting new perovskites // Uni Jena

  • Energy distance to the convex hull

    MAE (meV/atom) Machine learning model298.9± 0.3 Ridge regression155.5± 4.8 Neural network140.0± 0.6 Random forests126.6± 1.0 AdaBoost/Random forests123.1± 0.8 Extremely randomized trees121.3± 0.8 AdaBoost/Extremely randomized trees

    S. Botti // Predicting new perovskites // Uni Jena

  • Dependence on the size of the training set

    50

    100

    150

    200

    250

    300

    0 10000 20000 30000 40000 50000

    MAE

    (eV/

    atom

    )

    size of training set

    errorpower

    Ü Doubling the size of the training set only decreases theerror by 20%

    S. Botti // Predicting new perovskites // Uni Jena

  • Dependence of the MAE on the chemistry

    1 H(145)

    3 Li(126)

    11Na(122)

    19 K(117)

    37Rb(121)

    55Cs(149)

    4 Be(137)

    12Mg(122)

    20Ca(106)

    38Sr(106)

    56Ba(112)

    21Sc(111)

    39 Y(113)

    57La(130)

    22Ti(105)

    40Zr(105)

    72Hf(116)

    23 V(118)

    41Nb(110)

    73Ta(124)

    24Cr(160)

    42Mo(114)

    74W(129)

    25Mn(175)

    43Tc(116)

    75Re(125)

    26Fe(127)

    44Ru(109)

    76Os(122)

    27Co(103)

    45Rh(109)

    77 Ir(121)

    28Ni(105)

    46Pd(112)

    78Pt(113)

    29Cu(101)

    47Ag(104)

    79Au(114)

    30Zn(110)

    48Cd(109)

    80Hg(108)

    31Ga(106)

    13Al(119)

    5 B(149)

    49 In(104)

    81Tl(105)

    6 C(163)

    14Si(115)

    32Ge(97)

    50Sn(110)

    82Pb(103)

    7 N(184)

    15 P(117)

    33As(99)

    51Sb(98)

    83Bi(105)

    8 O(196)

    16 S(131)

    34Se(110)

    52Te(109)

    84Po

    9 F(194)

    17Cl(139)

    35Br(136)

    53 I(129)

    85At

    10Ne

    2 He

    18Ar36Kr54Xe86Rn

    MAE90 110 130 150 170 meV/atom

    1

    2

    3

    4

    5

    6

    IA

    IIA

    IIIB IVB VB VIB VIIB VIIIB VIIIB VIIIB IB IIB

    IIIA IVA VA VIA VIIA

    VIIIA

    Larger errors: first row anomaly, magnetic systems, problemwith pseudopotentials

    S. Botti // Predicting new perovskites // Uni Jena

  • Strategy: accelerate calculations!

    1. DFT calculation of 20 000 cubic perovskites withrandom compositions;

    2. train the learning machine (extremely random trees);3. predict the distance to the hull of the remaining≈230 000 possible compounds without performing onthem explicit DFT calculations;

    4. remove all systems that lie higher than a certain cutoffenergy form the hull. For example, putting the cutoff at700 meV/atom allows us to recover 99.4% of allsystems that are stable within DFT;

    5. calculate using DFT these compounds. In ourexample, this amounts to an extra 41 000 DFTcalculations, leading to a total saving of computationtime of 73%.

    S. Botti // Predicting new perovskites // Uni Jena

  • Conclusions and perspectives

    Ü The dream to create new materials in silico is getting real

    Ü Need for: accurate theories, efficient algorithms andcodes, materials databases, supercomputers

    Ü New developments: from perfect crystals to real materials

    Ü Which properties?Many possible application fields are open!New materials for photovoltaics is a great challenge!

    S. Botti // Predicting new perovskites // Uni Jena

  • Conclusions and perspectives

    Ü The dream to create new materials in silico is getting real

    Ü Need for: accurate theories, efficient algorithms andcodes, materials databases, supercomputers

    Ü New developments: from perfect crystals to real materials

    Ü Which properties?Many possible application fields are open!New materials for photovoltaics is a great challenge!

    S. Botti // Predicting new perovskites // Uni Jena

  • Conclusions and perspectives

    Ü The dream to create new materials in silico is getting real

    Ü Need for: accurate theories, efficient algorithms andcodes, materials databases, supercomputers

    Ü New developments: from perfect crystals to real materials

    Ü Which properties?Many possible application fields are open!New materials for photovoltaics is a great challenge!

    S. Botti // Predicting new perovskites // Uni Jena

  • Conclusions and perspectives

    Ü The dream to create new materials in silico is getting real

    Ü Need for: accurate theories, efficient algorithms andcodes, materials databases, supercomputers

    Ü New developments: from perfect crystals to real materials

    Ü Which properties?Many possible application fields are open!New materials for photovoltaics is a great challenge!

    S. Botti // Predicting new perovskites // Uni Jena

  • Thank you to my coworkers!

    Valerio ArmuzzaPedro BorlidoWenwen CuiSabine KörbelSun LinChristoph OtzenClaudia RödlJingming ShiIvan GuilhonTiago CerqueiraRafael SarmientoUniversity of Jena

    [email protected]://www.ico.uni-jena.de/

    Miguel MarquesJonathan SchmidtUniversity of Halle

    Stefan GoedeckerUniversity of BaselMax AmslerNorthwestern UniversityFernando NogueiraUniversity of CoimbraLiming ChenEcole Centrale Lyon

    S. Botti // Predicting new perovskites // Uni Jena

    http://www.ico.uni-jena.de/

    Our toolsTheory, algorithms, codes and databases

    Exploring the periodic tableHigh-throughput calculationsMore accurate characterizationImprove efficiency with machine learning

    anm0: 0.EndLeft: 0.StepLeft: 0.PauseLeft: 0.PlayLeft: 0.PlayPauseLeft: 0.PauseRight: 0.PlayRight: 0.PlayPauseRight: 0.StepRight: 0.EndRight: 0.Minus: 0.Reset: 0.Plus: