prediction of arctic plant phenological sensitivity to

14
Ecology and Evoluon 2017; 7: 1325–1338 | 1325 www.ecolevol.org Received: 17 August 2016 | Revised: 13 November 2016 | Accepted: 27 November 2016 DOI: 10.1002/ece3.2702 ORIGINAL RESEARCH Predicon of Arcc plant phenological sensivity to climate change from historical records Zoe A. Panchen | Root Gorelick This is an open access arcle under the terms of the Creave Commons Aribuon License, which permits use, distribuon and reproducon in any medium, provided the original work is properly cited. © 2017 The Authors. Ecology and Evoluon published by John Wiley & Sons Ltd. Department of Biology, Carleton University, Oawa, ON, Canada Correspondence Zoe A. Panchen, Department of Biology, Carleton University, Oawa, ON, Canada. Email: [email protected] Funding informaon Natural Sciences and Engineering Research Council of Canada, Canadian Graduate Scholarship (NSERC CGS); Ontario Graduate Scholarship (OGS); NSERC Discovery Grant Abstract The pace of climate change in the Arcc is dramac, with temperatures rising at a rate double the global average. The ming of flowering and fruing (phenology) is oſten temperature dependent and tends to advance as the climate warms. Herbarium specimens, photographs, and field observaons can provide historical phenology records and have been used, on a localised scale, to predict species’ phenological sensivity to climate change. Conducng similar localised studies in the Canadian Arcc, however, poses a challenge where the collecon of herbarium specimens, photographs, and field observaons have been temporally and spaally sporadic. We used flowering and seed dispersal mes of 23 Arcc species from herbarium specimens, photographs, and field observaons collected from across the 2.1 million km 2 area of Nunavut, Canada, to determine (1) which monthly temperatures influ- ence flowering and seed dispersal mes; (2) species’ phenological sensivity to tem- perature; and (3) whether flowering or seed dispersal mes have advanced over the past 120 years. We tested this at different spaal scales and compared the sensiv- ity in different regions of Nunavut. Broadly speaking, this research serves as a proof of concept to assess whether phenology–climate change studies using historic data can be conducted at large spaal scales. Flowering mes and seed dispersal me were most strongly correlated with June and July temperatures, respecvely. Seed dispersal mes have advanced at double the rate of flowering mes over the past 120 years, reflecng greater late-summer temperature rises in Nunavut. There is great diversity in the flowering me sensivity to temperature of Arcc plant spe- cies, suggesng climate change implicaons for Arcc ecological communies, in- cluding altered community composion, compeon, and pollinator interacons. Intraspecific temperature sensivity and warming trends varied markedly across Nunavut and could result in greater changes in some parts of Nunavut than in others. KEYWORDS Arcc, climate change, flowering me, herbarium specimen, Nunavut, seed dispersal me, temperature sensivity

Upload: others

Post on 31-Dec-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Prediction of Arctic plant phenological sensitivity to

Ecology and Evolution 2017; 7: 1325–1338  | 1325www.ecolevol.org

Received:17August2016  |  Revised:13November2016  |  Accepted:27November2016DOI: 10.1002/ece3.2702

O R I G I N A L R E S E A R C H

Prediction of Arctic plant phenological sensitivity to climate change from historical records

Zoe A. Panchen | Root Gorelick

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.© 2017 The Authors. Ecology and Evolution publishedbyJohnWiley&SonsLtd.

DepartmentofBiology,CarletonUniversity,Ottawa,ON,Canada

CorrespondenceZoeA.Panchen,DepartmentofBiology,CarletonUniversity,Ottawa,ON,Canada.Email:[email protected]

Funding informationNaturalSciencesandEngineeringResearchCouncilofCanada,CanadianGraduateScholarship(NSERCCGS);OntarioGraduateScholarship(OGS);NSERCDiscoveryGrant

AbstractThepaceofclimatechangeintheArcticisdramatic,withtemperaturesrisingataratedoubletheglobalaverage.Thetimingoffloweringandfruiting(phenology)isoftentemperaturedependentandtendstoadvanceastheclimatewarms.Herbariumspecimens, photographs, and field observations can provide historical phenologyrecordsandhavebeenused,ona localisedscale, topredictspecies’phenologicalsensitivitytoclimatechange.Conductingsimilar localisedstudies intheCanadianArctic,however,posesa challengewhere thecollectionofherbariumspecimens,photographs, andfieldobservationshavebeen temporally and spatially sporadic.Weusedfloweringandseeddispersaltimesof23Arcticspecies fromherbariumspecimens,photographs,andfieldobservationscollectedfromacrossthe2.1millionkm2areaofNunavut,Canada,todetermine(1)whichmonthlytemperaturesinflu-encefloweringandseeddispersaltimes;(2)species’phenologicalsensitivitytotem-perature;and(3)whetherfloweringorseeddispersaltimeshaveadvancedoverthepast120years.Wetestedthisatdifferentspatialscalesandcomparedthesensitiv-ityindifferentregionsofNunavut.Broadlyspeaking,thisresearchservesasaproofofconcepttoassesswhetherphenology–climatechangestudiesusinghistoricdatacanbeconductedat largespatialscales.FloweringtimesandseeddispersaltimeweremoststronglycorrelatedwithJuneandJulytemperatures,respectively.Seeddispersaltimeshaveadvancedatdoubletherateoffloweringtimesoverthepast120years, reflecting greater late-summer temperature rises inNunavut. There isgreatdiversityinthefloweringtimesensitivitytotemperatureofArcticplantspe-cies,suggestingclimatechangeimplicationsforArcticecologicalcommunities, in-cluding altered community composition, competition, and pollinator interactions.Intraspecific temperature sensitivity and warming trends varied markedly acrossNunavut and could result in greater changes in some parts of Nunavut than inothers.

K E Y W O R D S

Arctic,climatechange,floweringtime,herbariumspecimen,Nunavut,seeddispersaltime,temperaturesensitivity

Page 2: Prediction of Arctic plant phenological sensitivity to

1326  |     PANCHEN ANd GORELICK

1  | INTRODUCTION

Thetimingoffloweringand fruiting (phenology) isoften influencedbytemperaturesinthemonthortwoprecedingfloweringorfruiting(Fitter,Fitter,Harris,&Williamson,1995;Panchen&Gorelick,2015;Panchen,Primack,Aniśko,&Lyons,2012).Phenologicaltemperaturesensitivityhasbeenusedtoidentifyplantsthatareindicatorsofclimatechange and the responsiveness of plants to climate change (Bertin,2015; Gallagher, Leishman, & Hughes, 2009; Menzel etal., 2006;Panchenetal.,2012;Rumpff,Coates,&Morgan,2010;Springate&Kover,2014).Herbariumspecimens,pressedplantsoftencollectedinflowerorfruit,provideareliablehistoricalrecordoffloweringandfruit-ing phenology for use in phenology–climate change studies (Davis,Willis, Connolly, Kelly, & Ellison, 2015). Many herbarium specimenstudies from temperate regions have been used to study floweringtime responses to contemporary climate change (Davis etal., 2015;Diskin, Proctor, Jebb, Sparks, & Donnelly, 2012; Gallagher etal.,2009;Hart,Salick,Ranjitkar,&Xu,2014;Lavoie&Lachance,2006;MacGillivray, Hudson, & Lowe, 2010; Munson & Sher, 2015; Neil,Landrum,&Wu,2010;Panchenetal.,2012;Park&Schwartz,2015;Primack,Imbres,Primack,Miller-Rushing,&DelTredici,2004;Robbirt,Davy,Hutchings,&Roberts,2010).Thereare,however,fewstudiesontheeffectsofclimatechangeonthetimingoffruitingevents(Gallinat,Primack,&Wagner,2015)and,toourknowledge,nostudiesthathaveusedherbariumspecimenstoassesstheimpactsofclimatechangeontimingofseeddispersalnoronfloweringandseeddispersaltimesofArcticplants. It is importanttostudymultiple lifehistorystagesbe-causephenologicalresponsivenesstoclimatechangecanvaryacrosslifehistorystages (Post,Pedersen,Wilmers,&Forchhammer,2008).TheArctic isexperiencingunprecedentedclimatechangewith tem-peratures rising at a rate double the global average (AMAP,2012a;Furgal&Prowse,2007;McBean,2004;Przybylak,2003)andhencetheimportanceofunderstandingArcticplantphenologicalresponsestoclimatechange.

In temperate regions, herbarium specimens have often beencollected regularly on a local scale enabling the construction of afloweringphenologytimeseriesatasingle locationoverextendedperiods of time, and hence, most temperate phenology–climatechange studies have focused on a localised area with homoge-neous topography and climatology. In situations where there arespatial or temporal gaps in the phenology record from herbariumspecimens, thephenological historical recordshavebeen success-fully augmented with dated photographs and field observations(Bertin, 2015; MacGillivray etal., 2010; Miller-Rushing, Primack,Primack, & Mukunda, 2006; Panchen etal., 2012; Robbirt etal.,2010). Conducting a similar study in theArctic, however, poses achallenge (Holopainen, Helama, Lappalainen, & Gregow, 2013).Herbarium specimens, photographs, and field observations haveonlybeencollectedsporadicallyand,onmanyoccasions,onlyoncefroma particular location across thewhole of the topographicallyand climatologically varied Nunavut territory, Canada, necessitat-ingastudyonlargespatialscales.Thelargestarea,todate,usedinherbariumspecimenclimatechangephenologyanalysis is inOhio,

wherea116,000km2 areawith26weatherstationswasassessed(Calinger,Queenborough,&Curtis,2013).Nunavuthasanareaof2.1million km2 and just 11weather stationswith long-term tem-perature records. In addition, almost all of theweather stations inNunavutarecoastalandhence influencedbytheeffectoftheseaice and itsmelting regime and thereforemay not be reflective oftemperaturesintheinterior(Atkinson&Gajewski,2002).

Long-term studies of the temperature sensitivity ofArctic plantfloweringandfruitingtimesarelimited(Cadieuxetal.,2008;Ellebjerg,Tamstorf, Illeris, Michelsen, & Hansen, 2008; Iler, Hoye, Inouye, &Schmidt, 2013a; Panchen & Gorelick, 2015; Thórhallsdóttir, 1998).However,therehavebeenanumberofexperimentalwarmingstudiesonArcticfloweringphenologicalsensitivitytowarmingtemperatures,indicatingthatmanyArcticplantsadvancefloweringinwarmertem-peratures (Alatalo & Totland, 1997; Bjorkman, Elmendorf, Beamish,Vellend,&Henry, 2015; Jones, Bay,&Nordenhall, 1997;KhorsandRosaetal.,2015;Oberbaueretal.,2013;Stenström,Gugerli,&Henry,1997;Welker,Molau,Parsons,Robinson,&Wookey,1997),butthereisevidencethatsuchstudiesunderestimatethephenologicalimpactofawarmingclimate (Wolkovichetal.,2012).Theobservedclimatechange in theArctic is predominantly in late summer, autumn, andwinterwhichmayfavouradvancingseeddispersalphenologyoverad-vancingfloweringphenology(AMAP,2012a;Furgal&Prowse,2007;McBean,2004;Panchen&Gorelick,2015).Otherfactorsthatcanbecorrelatedwiththetimeoffloweringarephotoperiodandsnowmelt-out date (Bernier & Périlleux, 2005; Inouye, Saavedra, & Lee-Yang,2003;Rathcke&Lacey,1985),buttemperatureappearstobethekeydriver in thetimingoffloweringofArcticandalpineplants (Hülber,Winkler, & Grabherr, 2010; Keller & Körner, 2003; Thórhallsdóttir,1998).

The primary objectives of this researchwere to use herbariumspecimens,photographs,andfieldobservationscollectedfromacrossNunavuttodetermine(1)whichmonthlytemperaturesmoststronglyinfluence the timing of flowering and timing of seed dispersal ofArctic plants; (2) the sensitivity ofArctic plant flowering times andseeddispersaltimestotemperatureasanindicatoroftheimpactofclimatechangeonArcticplantphenology;and(3)whethertherehasbeenachange infloweringtimesandseeddispersaltimesoverthelast120yearsinNunavut.Acomplementaryobjectivewastoassesscontemporaryclimatechangewithregardtochangesinmonthlytem-peraturesinNunavut.Morebroadly,thisresearchwillserveasaproofofconcepttoassesswhetherphenology–climatechangestudiesusinghistoricdatacanbeconductedatlargespatialscales.

2  | MATERIALS AND METHODS

2.1 | Flowering time and seed dispersal time data

Todeterminethefloweringandseeddispersaltimesof23commonNunavutArcticplantspecies(Table1)overthepast120years,weex-aminedherbariumspecimenscollectedfromacrossNunavut,Canada,from1896to2015(TableS1).Wealsoincludedinthedatasetflow-eringandseeddispersaltimes fromfieldobservationsatbothLake

Page 3: Prediction of Arctic plant phenological sensitivity to

     |  1327PANCHEN ANd GORELICK

Hazen,QuttinirpaaqNationalPark,EllesmereIsland,andIqaluit,BaffinIsland,Nunavut,in2013–2015(Panchen,2016;Panchen&Gorelick,2016)andphotographsfromtheCanadianMuseumofNature’spho-tographiccollectionandprivatephotographiccollections (TableS1).Weexcludedfromthedatasetherbariumspecimensandphotographsthatwereanyofthefollowing:southofthetreeline,westoflongi-tude111°W,duplicateherbariumspecimensorphotographs,oranyrecordsofplantsnotinflowerornotdispersingseed.Foreachherbar-iumspecimen,fieldobservation,orphotograph(henceforthreferredto as a collection data point), we recorded the phenological state(floweringordispersingseed),collectiondaterepresentingthetimeoffloweringortimeofseeddispersalinnumberofdaysfrom1stJanuary(henceforthreferredtoasfloweringdayofyear[DOY]ordispersingseedDOY),yearofcollection,andlatitudeandlongitudeofthecollec-tiondatapointlocation.Thesamplesizeforallcollectiondatapointswas3,795,with3,353inflowerand442dispersingseed.Forthefieldobservations,thepopulation’smeanpeakfloweringorpeakseeddis-persaldateatasitewasusedasthecollectiondate.The“flowering”phenology statewaswhen thepetalswereopen, i.e., not in abud,thepetals lookedfreshandwerenotwiltedordiscoloured,andthestigmas and anthers were visible. The “dispersing seed” phenologystatewaswhenthe fruithaddehiscedor thestyleswereextendedanduntwisted(Dryas integrifoliaL.)orthecapitulumhadformedinto

a spherical seed head (Asteraceae species). Therewere no dispers-ing seed collection data points forDiapensia lapponica L., Saxifraga cernuaL.,andTofieldia pusilla (Michx.)Pers.InordertocomparethephenologicalsensitivitytotemperatureindifferentpartsofNunavutandatdifferentspatialscales,weclassifiedeachcollectiondatapointbyregion(NunavutmainlandorNunavutarchipelago),byisland(forNunavut archipelago collectiondatapointsonly), andby locale (forLakeHazen or Iqaluit collection data points only; Figures1 and 2).Islands north of Hudson Bay, and Boothia andMelville PeninsulaswereclassifiedasNunavutarchipelago. Islandsfurthersouthand inHudsonBaywereclassifiedwiththelatitudinallyandclimaticallycom-parableNunavutmainland(CanadianIceService,2002).

Theprocessweusedtochoosethe23speciesforthisstudywasasfollows.First,specieswithatleast50herbariumspecimensinflowerwereselectedtoensurealargeenoughsamplesize.Second,specieswhosetaxonomywasindoubtwereeliminatedfromtheanalysis.Windpollinatedspecieswerealsoeliminatedbecauseanthesisorreceptivestigmaarerarelycapturedoreasyto identifyonaherbariumspeci-men.Third,usingourphenologymonitoringdatafromLakeHazenandIqaluit,specieswithlongfloweringdurations(>3weeks),e.g.,Cassiope tetragona (L.)D.Donwhichflowers for3–4weeks (Panchen,2016;Panchen & Gorelick, 2016), were eliminated because there wouldbelargevarianceinfloweringDOY.Specieswhereitwasdifficultto

TABLE  1 Mean,standarddeviation,minimum,maximum,andrangeoffloweringdayofyear(DOY)overthepast120years(1896–2015)of23plantspeciesasdeterminedfromherbariumspecimens,photographs,andfieldobservationscollectedfromacrossNunavut,Canada

Species Mean flower DOY N Std Dev Min DOY Max DOY Range

Erysimum pallasii(Pursh)Fern. 182.6 58 9.1 163 206 43

Saxifraga oppositifoliaL. 186.3 282 15.8 145 229 84

Androsace septentrionalisL. 187.3 34 11.4 164 211 47

Erigeron compositus Pursh 192.2 48 12.9 172 227 55

Ranunculus nivalisL. 192.6 115 19.0 155 243 88

Eutrema edwardsiiR.Br. 194.8 123 12.6 157 227 70

Diapensia lapponicaL. 195.7 57 12.8 173 228 55

Pedicularis hirsutaL. 195.8 207 12.1 171 233 62

Pedicularis flammeaL. 196.1 71 10.4 177 225 48

Dryas integrifolia Vahl 196.4 280 13.8 168 233 65

Ranunculus sulphureusSol. 197.2 155 13.8 166 237 71

Pedicularis arcticaR.Br. 197.7 109 12.9 171 226 55

Pedicularis capitataAdams 199.9 126 11.0 175 226 51

Tofieldia pusilla(Michx.)Pers. 202.1 60 8.0 183 220 37

Pedicularis lapponicaL. 202.3 78 12.3 173 237 64

Arnica angustifolia Vahl 202.7 124 13.6 172 237 65

Saxifraga flagellarisWilld. 203.8 133 14.5 174 239 65

Saxifraga tricuspidataRottb. 204.2 227 13.3 172 243 71

Saxifraga cespitosaL. 204.6 340 14.6 164 246 82

Chamerion latifolium(L.)Holub 205.2 195 10.6 180 237 57

Saxifraga cernuaL. 210.0 260 14.0 172 252 80

Saxifraga hirculusL. 210.6 201 15.1 172 245 73

Saxifraga aizoidesL. 212.7 70 12.6 188 240 52

Page 4: Prediction of Arctic plant phenological sensitivity to

1328  |     PANCHEN ANd GORELICK

determinewhethertheplantwasinflower,e.g.,Oxyria digyna(L.)Hill,werealsoeliminatedfromtheanalysis.

2.2 | Temperature data

For the 11 Nunavut weather stations with continuous or close tocontinuousdatafrom1946to2015(Figure1),weextractedmonthlymeantemperaturesdirectlyfromEnvironmentCanada’snationalcli-matedataarchive(EnvironmentCanada,2016)orcalculatedmonthlymean temperatures from Environment Canada’s daily temperaturearchive data. In some instances, the monthly temperatures weremissing from theEnvironmentCanadadataand, in thesecases,wehindcastorreconstructedthemonthlymeantemperatureusingdatafromtheclosestweatherstation(Leathers,Malin,Kluver,Henderson,

& Bogart, 2008; Panchen & Gorelick, 2015; Panchen etal., 2012;Throop, Smith, & Lewkowicz, 2010). The latitude, longitude, andelevationoftheweatherstationshavenotchangedoverthe70-yearperiod. Each collectiondata pointwas associatedwith the nearest,mostclimaticallylogicalweatherstationbasedonsynopticandseaiceregimes(CanadianIceService,2002;Fletcher&Young,1970;Fraser,1983)andhencewiththatweatherstations’monthlymeantempera-turesintheyearofcollection(Figure1).

2.3 | Analysis

Todeterminewhichmonthlytemperaturesaremoststronglycorre-latedwiththetimeoffloweringofArcticplantsacrossNunavut,weranastandardleastsquaresmixedmodelwithfloweringDOYasthe

F IGURE  1 Locationsof(a)floweringand(b)seeddispersingcollections(1946–2015)colorcodedbytheassignedweatherstationforeachlocation

(a)

(b)

Page 5: Prediction of Arctic plant phenological sensitivity to

     |  1329PANCHEN ANd GORELICK

responsevariable,speciesasarandomeffectandMay,June,July,andAugustmeantemperaturesasfixedeffects.Werepeatedthismodelrun separately for each region, each island (Baffin and EllesmereIslands only), and each locale (Lake Hazen and Iqaluit only), usingNunavut mainland, Nunavut archipelago, Baffin Island, EllesmereIsland,LakeHazen,orIqaluitfloweringcollectiondatapoints.Weranasimilarsetofmodelstodeterminewhichmonthlytemperaturesaremoststronglycorrelatedwiththetimeofseeddispersalwithdispers-ing seedDOYas the responsevariable.Baffin IslandandEllesmereIslandwerechosenfromtheislandclassificationbecausetheyweretheonlyislandswithregularcollectionssince1920forBaffinIslandandsince1957forEllesmereIsland(Figure2).

TodeterminesensitivityofArcticplantfloweringtimestotempera-ture,weranlinearregressionsforeachspeciesfromacrossNunavutseparately with flowering DOY as the response variable and Junemeantemperatureas theexplanatoryvariable.Werepeated the re-gressionanalysesseparatelyforeachregion,island,andlocaleinordertocomparethefloweringtimetemperaturesensitivityofplantsontheNunavutmainlandversusconspecificplantsonNunavutarchipelagoandsimilarlyBaffinIslandplantsversusEllesmereIslandconspecifics,andLakeHazenplantsversusIqaluitconspecifics.Therewereinsuffi-cientdatatodeterminesensitivityofArcticplantseeddispersaltimestotemperatureperspecies;hence,weusedastandardleastsquaresmixedmodeltodetermineseeddispersaltimetemperaturesensitivityacrossNunavuttoJulymeantemperatureacrossthe20specieswithdispersingseedDOYastheresponsevariable,Julymeantemperatureasthefixedeffect,andspeciesasarandomeffect,andrepeatedfor

Nunavutarchipelago,BaffinIsland,andEllesmereIslandwherethereweresufficientdata.

Todeterminewhethertherehasbeenatrendtowardearlierflow-eringtimesoverthepast120years(1896–2015)acrossNunavut,weranastandardleastsquaresrandominterceptmixedmodelwithflow-eringDOYastheresponsevariable,speciesasarandomeffect,andyearasafixedeffect.Weranasimilarmodeltodeterminewhetherthere has been a trend toward earlier seed dispersal times overthe past 120years (1896–2015),with dispersing seed DOY as theresponsevariable.

Totestwhethertherewasabiasincollectiondatestowardearlierherbariumspecimencollectioninmorerecentyears,wecorrelatedthedateof all herbarium specimens collected for all 23 species againsttheyearofcollection(1896–2015)andforeachspecies individuallyfortheyears1946–2015.Weusedtheseyearrangescombinedwithacross species (1896–2015) and individual species (1946–2015) tomatch theanalysesofchange inflowering/seeddispersaltimeovertime(1896–2015)andchangeinfloweringwithtemperatureperspe-cies (1946–2015).Weusedall herbariumspecimens in the correla-tions, including those thatwerenot inflowerordispersing fruit, toreflectwhencollectionsweremadeovertheyears.Weranthesecor-relationsusingtheNationalHerbariumofCanada(CAN)databecausethiscollectionhasthemostextensiveandcomprehensivecollectionofNunavutherbariumspecimensandthecollectioniscompletelyda-tabased(TableS1).

ToassesstemperaturechangesinNunavut,wecorrelatedmonthlymeanandannualmeantemperaturesversusyear(1946–2015)forthe

F IGURE  2 Yearsinwhichcollectionsweremadeoffloweringanddispersingseedherbariumspecimens,photographs,andfieldobservationsfromtheNunavutmainlandandNunavutarchipelagoregions,Nunavutarchipelagoislandsandpeninsulas,andtheLakeHazenandIqaluitlocales.Theblackmarkersindicateyearsinwhichoneormorecollectionsweremade

Page 6: Prediction of Arctic plant phenological sensitivity to

1330  |     PANCHEN ANd GORELICK

11weatherstations.Sincetheremighthavebeenaregimeshiftoverthistimeperiodwithacoolingperiodfollowedbyawarmingperiod(AMAP, 2012b; McBean, 2004; Przybylak, 2003; Reid etal., 2015;Throopetal.,2010),wealsoconductedchangepointanalysesforeachof the11weather stations foreachof annual,June, andJulymean

temperaturesseparatelyusinganonlinearleastsquaresmodelwithapredictionformulaforthechangepointof(B0+(B1×Year)+(B2×(IfYear≥C,Then(Year−C)else0))).AllstatisticalanalysiswasconductedusingJMP12(SASInstitute,Cary,NC,USA).

3  | RESULTS

ThereisconsiderablevariationintherangeoffloweringDOYofeachspeciesover the120years (Table1,Figure3).Thespecieswith theleastvariationwasErysimum pallasii (Pursh)Fernald,witharangeof43days.ThespecieswiththegreatestvariationinfloweringDOYwasthesnowbedspeciesRanunculus nivalisL.,witharangeof88days.Theorderofflowering (Figure3) isconsistentwith recentobserva-tions(Panchen&Gorelick,2016),indicatingthatthecollectionflower-ingtimedataarerepresentativeofspecies’relativetimeoffloweringthrough the growing season.

June mean temperature had the strongest correlation withthe timing of flowering at all spatial scales, except EllesmereIslandwhereJulymeantemperaturehadthestrongestcorrelation(Table2).MaytoAugustmeantemperaturesalsohadasignificantcorrelationwiththetimingoffloweringatsomespatialscales.Julymeantemperaturehadthestrongestcorrelationwiththetimingofseeddispersalatallspatialscales,exceptNunavutmainlandwhere,although not significant, August had the strongest correlation(Table3).Asexpected,ingeneralthemodelshadbetterfitatfiner-grainedspatialscales.

Allbuttwoofthe23speciesshowedasignificantnegativere-lationshipbetweentimeoffloweringandJunemean temperature,that is, these species flower earlierwithwarmer Junemean tem-peratures(Figure4,TableS2).Themagnitudeofaspecies’floweringtime sensitivity toJunemean temperaturevaried acrossNunavut.Thefloweringphenologyofplants intheNunavutarchipelagowasgenerallymore sensitive toJunemean temperatures thanconspe-cific plants on the Nunavutmainland, and plants on Baffin IslandweregenerallymoresensitivethanconspecificsonEllesmereIsland.FloweringtimesatIqaluitweregenerallythemostsensitivetoJunemean temperature. Flowering time temperature sensitivity varied

F IGURE  3 Rangeoffloweringdayofyear(DOY)ofthe23speciesinthisstudyasrecordedontheherbariumspecimens,photographsandfieldobservations..Eachboxplotshowsthespecies’floweringDOYquartiles,thedottedlineisthespecies’meanfloweringDOY,andthesolidlineisthemeanfloweringDOYacrossspecies

TABLE  2 StandardleastsquaresmixedmodelresultsatdifferentspatialscaleswithfloweringDOYastheresponsevariable,speciesasarandomeffect,andMay,June,July,andAugustmeantemperaturesasfixedeffects,showingJunemeantemperaturegenerallyhadthestrongestcorrelationwiththetimeoffloweringandmodelshavebetterfitatfinerspatialscales

Overall model May (°C) June (°C) July (°C) August (°C)

Adj R2 N RMSE F p F p F p F p

Nunavut .30 3,022 12.45 6.97 .0083 154.47 <.0001 22.56 <.0001 57.75 <.0001

Nunavutmainland .23 529 11.74 0.09 .7642 6.88 .0090 0.70 .4027 0.11 .7443

Nunavutarchipelago .32 2,493 12.48 4.23 .0399 133.96 <.0001 32.21 <.0001 36.22 <.0001

BaffinIsland .38 781 12.28 6.82 .0092 62.93 <.0001 2.15 .1428 10.68 .0011

EllesmereIsland .29 799 10.91 0.68 .4090 4.90 .0272 59.77 <.0001 2.99 .0840

Iqaluit .61 351 9.42 0.08 .7776 40.37 <.0001 7.00 .0085 6.04 .0145

LakeHazen .39 308 8.56 3.15 .0772 10.44 .0014 1.28 .2583 1.42 .2351

Page 7: Prediction of Arctic plant phenological sensitivity to

     |  1331PANCHEN ANd GORELICK

dramatically ranging from −1.7days/°C (S. cernua L. on Nunavutmainland)to−9.6days/°C(D. lapponicaatIqaluit).Theannual/bien-nial Androsace septentrionalisandthelate-floweringChamerion lati-folium(L.)Holubweretheonlyspecieswhosefloweringtimeshowedno sensitivity to temperature. The seed dispersal time sensitivityto Julymean temperature of the 20 species from acrossNunavutwas−1.79days/°C(N=346,p<.0001).Thatis,seeddispersalwas1.79daysearlier forevery1°C rise inJulymean temperature.TheseeddispersaltimesensitivitytoJulymeantemperatureacrossspe-cies was −2.3, −3.65, and −1.64days/°C in Nunavut archipelago,Baffin Island, andEllesmere Island, respectively (N=288,123,87,respectively,p<.0001).

AcrossNunavut,plantsflowered0.9days/decadeearlieroverthepast120years(1896–2015;R2=.25,N = 3,353,p < .0001;Figure5a)but dispersed seed 2.1days/decade earlier over the 120years(R2=.27,N = 442,p < .0001;Figure5b).

Thecorrelationofcollectiondateforallherbariumspecimensversusyear(1896–2015)wasveryweak(R2 = .05 N=3,025,p<.0001).Therewasnosignificantcorrelationperspeciesbetweencollectiondateforallherbariumspecimensandyear(1946–2015)formostspecies(TableS3).Thissuggeststherewaslittletonochangeincollectiontimeframeovertheyearsandunlikelytohavecausedabiasinouranalysis.

Annual temperatures have risen significantly since1946 at nineofthe11weatherstations,albeitwithaveryweakcorrelationatHall

TABLE  3 StandardleastsquaresmixedmodelresultsatdifferentspatialscaleswithdispersingseedDOYastheresponsevariable,speciesasarandomeffect,andMay,June,July,andAugustmeantemperaturesasfixedeffects,showingJulymeantemperaturegenerallyhadthestrongestcorrelationwithtimeofseeddispersalandmodelshavebetterfitatfinerspatialscales

Overall model May (°C) June (°C) July (°C) August (°C)

Adj R2 N RMSE F p F p F p F p

Nunavut .23 346 11.42 0.04 .8391 0.61 .4342 41.33 <.0001 21.96 <.0001

Nunavutmainland .45 58 10.01 0.25 .6171 0.06 .8063 0.04 .8428 2.50 .1200

Nunavutarchipelago .26 288 11.29 0.51 .4760 0.14 .7099 48.20 <.0001 29.30 <.0001

BaffinIsland .24 123 11.29 0.19 .6652 1.32 .2537 14.69 .0002 0.14 .7071

EllesmereIsland .19 87 9.62 6.39 .0134 0.75 .3884 15.49 .0002 9.14 .0034

Iqaluit .63 65 8.99 27.35 <.0001 5.30 .0254 46.96 <.0001 0.09 .7648

LakeHazen .29 47 5.38 0.06 — 1.20 — 0.69 — 0.03 —

F IGURE  4 Species’floweringtimetemperaturesensitivity(β)atdifferentspatialscalesinNunavut,Canada.Significantsensitivityistotherightofthedashedverticalline(TableS2)

Page 8: Prediction of Arctic plant phenological sensitivity to

1332  |     PANCHEN ANd GORELICK

Beach(Nunavutarchipelago)andPondInlet(BaffinIsland),whilean-nual temperatures at Clyde (Baffin Island) and Iqaluit (Baffin Island)havenotrisensignificantly (Table4).BakerLake(Nunavutmainland)andCambridgeBay(VictoriaIsland)inthesouthandwestofNunavutexperiencedthemostdramaticannualtemperatureincreasesof0.30and0.35°C/decade,respectively. Incontrast,MayandAugustmeantemperatures have not risen significantly at any of the 11weatherstations.Junemeantemperatureshaverisensignificantlysince1946onlyatBakerLake,CambridgeBay,andPondInletand,althoughsig-nificant,veryweaklycorrelatedatCoralHarbour(Nunavutmainland;0.36,0.33,0.25,and0.24°C/decade,respectively).Followingasimilarpattern to the Junemean temperature, Julymean temperature hasrisen significantly since 1946 at Baker Lake, Cambridge Bay, CoralHarbour,Eureka (Ellesmere Island),Pond Inlet,and,althoughsignifi-cant,areveryweaklycorrelatedatClyde(0.28,0.30,0.37,0.26,0.37,and0.17°C/decade,respectively).ThemostdramaticJunemeantem-peratureincreasesareatBakerLakeandCambridgeBaywith0.36and0.33°C/decaderise,respectively,whilethemostdramaticJulymeantemperatureincreasesareatCoralHarbourandPondInlet,bothrising0.37°C/decade.

Since1946,aregimeshifthasbeenexperiencedatAlert,Eureka,Isachsen,andResolute (Nunavutarchipelago)weatherstations,withacoolingorsteadytemperatureperiodfollowedbyawarmingperiodwithchangepointsinthe1970sto1980sforannualmeantempera-tures, the late1960sandearly1970s forJunemean temperatures,and1990sto2000sforJulymeantemperatures(Figure6,TableS4).Baker Lake and Coral Harbour (Nunavut mainland) and CambridgeBay (Victoria Island)weather stations experienced an annual meantemperatureregimeshiftfromsteadytemperaturestowarmingtem-peratures in 1987, 1964, and 1989, respectively, but no significantregimeshiftforJuneorJulymeanmonthlytemperatures.Clyde,HallBeach,Iqaluit,andPondInletweatherstationsexperiencedanannual

meantemperatureregimeshiftfromcoolingorsteadytemperaturestowarmingtemperatures,butonlyPondInlethasseenaJuneandJulymeantemperatureregimeshiftfromcoolingtowarmingtemperaturesin1985and1977,respectively.LargeinterannualvariationinmonthlyandannualtemperaturesofseveraldegreesCelsiuswasobservedforallweatherstations(Figure6).

4  | DISCUSSION

Floweringtimesensitivity to June temperaturesvarieddramaticallyamong the 23 Nunavut Arctic plant species and intraspecificallyacross different parts of Nunavut. Intraspecifically, flowering timesensitivitywasgreaterintheArcticArchipelagothanontheNunavutmainlandandsimilarlyBaffinIslandplantsweremoresensitivethantheir conspecifics onEllesmere Island. The intraspecific variation intemperaturesensitivitycouldbeindicativeofadaptationtodifferentclimaticconditionsacrossNunavutandsmallertemperaturechangesin colder location having a relatively larger temperature sensitivityduetolowergrowingdegreedaysrequiredtofloweratcolderloca-tions (Panchen&Gorelick, 2016; Parmesan, 2007; Prevéy etal., InPress).Thediverseintraspecificfloweringtimesensitivitytotempera-tureindifferentpartsofNunavutandthevariationinwarmingtrendsin different parts of Nunavut (Tables4, S2 and Figure6) suggeststhattherecouldbegreaterchangesinsomepartsofNunavutthaninothers.Fromthewarmingtrendandtemperaturesensitivityanalysisconductedhere,thegreatestandmostimmediatechangesarelikelytobeseeninthesouthandwest,i.e.,NunavutmainlandandVictoriaIsland,withVictoriaIslandlikelytoseethegreatestchangesbecauseof the greater temperature sensitivity on the Nunavut archipelagothan the Nunavut mainland. The least changes could be seen onBaffinIsland;however,thiscouldbecounterbalancedbytheapparent

F IGURE  5 Standardleastsquaresrandominterceptmixedmodelwith(a)floweringDOY(dayofyear)and(b)dispersingseedDOYastheresponsevariable,speciesasarandomeffect,andyearasafixedeffectacross23species(a)and20species(b)inNunavutwhereβisthedays/decadechangeinfloweringorseeddispersaltimeandtrendlinesrepresentsthebestfitforeachspecies

Page 9: Prediction of Arctic plant phenological sensitivity to

     |  1333PANCHEN ANd GORELICK

TABLE 4 Correlationofmonthlymeanorannualmeantemperaturesversusyear(1946–2015)forthe11long-termweatherstationsinNunavut,Canada,whereβistherateofchangein

monthlytemperaturein°C/yr

Mea

n m

onth

ly te

mp

(°C)

Ale

rtBa

ker L

ake

Cam

brid

ge B

ayCl

yde

Cora

l Har

bour

R2p

βR2

R2p

βR2

R2p

β

Ann

ual

.185

.000

2.2

06.241

<.00

01.296

.322

<.00

01.354

.008

.4710

.047

.108

.005

5.2

12

January

.085

.0146

.363

.153

.000

8.6

58.184

<.00

01.5

57.0

05.5

720

−.119

.041

.0937

.378

February

.028

.1689

.256

.080

.017

8.467

.172

<.00

01.642

.016

.3041

−.242

.003

.653

0.1

07

March

.014

.3344

.153

.011

.378

3.1

60.040

.0963

.275

.005

.562

8−.103

.008

.4609

−.143

April

.030

.1548

.229

.022

.2198

.197

.060

.0415

.338

.000

.9122

−.015

.002

.7402

.053

May

.001

.756

8.039

.017

.275

0.1

62.0

08.4500

.110

.017

.2798

−.131

.001

.813

0.034

June

.008

.4480

.060

.122

.003

1.3

62.1

06.0059

.331

.007

.4902

.051

.071

.026

3.2

37

July

.005

.558

5−.041

.131

.002

1.2

77.144

.001

2.297

.072

.025

1.1

72.2

18<.

0001

.371

Aug

ust

.006

.5084

.049

.025

.1869

.112

.030

.153

0.1

32.109

.005

2.2

03.0

37.1104

.112

September

.174

.000

3.3

57.0

57.0463

.205

.082

.0164

.261

.086

.0139

.161

.071

.025

7.2

01

October

.110

.005

0.3

86.0

75.0

220

.351

.123

.0029

.506

.002

.7239

.044

.128

.0024

.477

November

.057

.0461

.313

.032

.138

3.246

.112

.0047

.458

.013

.3496

.017

.032

.1405

.029

December

.116

.0040

.449

.049

.0664

.369

.068

.028

8.396

.024

.2049

.246

.022

.223

5.2

66

Mea

n m

onth

ly

tem

p (°C

)

Eure

kaH

all B

each

Iqal

uit

Isac

hsen

Pond

Inle

tRe

solu

te

R2p

βR2

R2p

βR2

R2p

βR2

Ann

ual

.169

<.00

01.024

.097

.008

6.019

.017

.2834

.009

.209

<.00

01.0

26.064

.035

1.014

.188

<.00

01.0

26

January

.020

.2466

.022

.021

.2259

.024

.007

.4898

.018

.094

.010

0.0

38.0

11.3

880

−.016

.044

.080

3.029

February

.005

.556

7.0

12.0

00.9527

−.001

.010

.4112

−.023

.043

.086

2.0

28.0

03.6458

−.011

.028

.1646

.026

March

.006

.508

8.0

10.0

01.7664

.006

.003

.6490

−.011

.038

.105

8.024

.006

.525

1.0

11.0

33.1

320

.028

April

.047

.0709

.033

.030

.152

5.0

23.0

05.5

520

.010

.104

.0064

.045

.005

.558

0.009

.102

.0069

.044

May

.000

.8689

.002

.003

.633

2.0

07.0

01.8

365

−.003

.023

.2124

.013

.000

.9057

.002

.003

.6406

.006

June

.045

.0774

.018

.009

.4395

.007

.002

.7389

.003

.028

.166

1.0

13.159

.000

6.0

25.034

.1291

.016

July

.163

.000

5.0

26.049

.066

1.014

.012

.370

2.0

07.0

28.1640

.013

.340

<.00

01.0

37.054

.052

8.0

16

Aug

ust

.001

.758

0.0

03.0

33.1329

.009

.022

.2209

.007

.012

.3690

−.007

.089

.012

0.0

16.0

00.8

851

−.001

September

.098

.0084

.037

.105

.006

2.0

21.043

.085

3.0

11.140

.0014

.032

.031

.1429

.012

.108

.005

5.0

27

October

.069

.027

7.041

.144

.001

2.0

58.090

.011

5.0

36.074

.023

2.0

32.0

33.1340

.025

.135

.001

8.0

51

November

.083

.015

6.045

.075

.021

5.048

.028

.165

3.0

26.1

21.0

032

.054

.010

.4003

.019

.093

.0104

.045

December

.058

.0444

.043

.016

.2949

.022

.016

.300

2.0

28.0

62.0

376

.034

.010

.4038

.016

.045

.077

0.0

30

Grayshadingindicatesasignificantwarmingtrend(darkgrayindicates

R2 ≥.1andpalegrayindicates

R2 <.1).

Page 10: Prediction of Arctic plant phenological sensitivity to

1334  |     PANCHEN ANd GORELICK

greaterfloweringtimetemperaturesensitivityofBaffinIslandplants.As theArctic climatewarms, thevariation infloweringand fruitingtime sensitivity to temperature among species and intraspecificallyhas implicationsforArcticecologicalcommunities, includingalteredcommunity composition, competition, and pollinator interactions(Callaghan, 2005; CaraDonna, Iler, & Inouye, 2014; Ellebjerg etal.,2008; Euskirchen, Carman, & McGuire, 2014; Hegland, Nielsen,Lázaro,Bjerknes,&Totland,2009;Høye,Post,Schmidt,Trøjelsgaard,&Forchhammer,2013;McKinneyetal.,2012;Molau,Nordenhäll,&Eriksen,2005;Parmesan,2007;Rathcke&Lacey,1985).

Given that (1) flowering times and fruiting times aremost cor-relatedwithJuneandJulytemperatures,respectivelyand(2)compared

toJunetemperatures,Julytemperaturesarewarmingmoreandwarm-ingacrossawiderareaofNunavut,itisnotsurprisingthatseeddis-persaltimeshaveadvancedovertwiceasfastasfloweringtimesoverthepast120yearsinNunavut.Thisimpliesthatthedurationforseedstomatureisbecomingshorterandthereispotentialforgreatersex-ualreproductivesuccessandanextendedreproductiveseasonintheshortArcticgrowingseason(Alatalo&Totland,1997;Klady,Henry,&Lemay,2011;Molau,1993,1997;Müller,Cooper,&Alsos,2011;Postetal.,2008;Wookeyetal.,1993).TemperaturesinNunavutarerisingpredominantly at theendof thegrowing seasonandduringwinter,andhence,itmightbeexpectedthatfruitingtimesmayadvancemorethanfloweringtimes(Panchen&Gorelick,2015).

F IGURE  6  Junemeantemperaturessince1946withregimeshifttrendlineforthe11long-termweatherstationsinNunavut,Canada(TableS2).BakerLake,CambridgeBay,andCoralHarbourhaveexperiencedcontinuallyrisingtemperaturesinJunesince1946;Clyde,HallBeach,andIqaluithaveexperiencednosignificantwarminginJunesince1946;Alert,Eureka,Isachsen,andResolutehaveexperiencedaregimeshiftfromacoolingperiodtoawarmingperiodinJuneandPondInlethasexperiencedaregimeshiftfromasteadytemperaturetoawarmingperiodinJune

Page 11: Prediction of Arctic plant phenological sensitivity to

     |  1335PANCHEN ANd GORELICK

Asexpected,thesmallerthespatialscale,thebetterthemodelfit.However,evenatthelargestspatialscale, i.e.,acrossthe2.1millionkm2 ofNunavut, therewas a significant relationshipbetweenflow-eringtimeorseeddispersaltimeversusmonthlymeantemperatures.Thisissurprisinggiventhelargegeographicalarea,thelargedistancesbetween temperature data sources and different year-to-year vari-ations in the synopticweather systems acrossNunavut (Fletcher&Young,1970;Fraser,1983;Furgal&Prowse,2007).Giventhe largegeographicalareaincludedintheanalysis,theabsolutevaluesofthephenologicaltemperaturesensitivityshouldbetreatedwithcaution;itistherelativevaluesthatareimportanthere.Amongthespatialscalecomparisons, thefloweringtimetemperaturesensitivityofplantsatIqaluitappearstobethemostpronounced,but thisanalysis isonasmall spatial scaleandhenceperhaps temperature sensitivity isun-derestimatedat the largerspatial scalesdue togreatervariations inthefloweringtimes.Similarly,floweringphenologyofplantsatLakeHazen appears to bemore temperature sensitive than conspecificsfromacrossEllesmereIsland.Thestartandendyearusedintempera-ture climate change analysis, combined with a greater interannualtemperaturevariationthanthewarmingtrend,canplayastrongroleinthemagnitudeofthewarmingorphenologicaltrendsobserved(Baker,Hartley,Butchart,&Willis,2016;Panchen&Gorelick,2015).

Different species are known to have different flowering timetemperature sensitivity, and, thus, variation among species is tobeexpected (Calinger etal., 2013;Hart etal., 2014;Kimball,Davis,Weihrauch, Murray, & Rancourt, 2014; Ledneva, Miller-Rushing,Primack, & Imbres, 2004; Mazer etal., 2013; Miller-Rushing &Primack,2008;Panchenetal.,2012;Parmesan,2007).However,themagnitude of the variation is surprisingly high in contrast to otherstudies (Oberbaueretal.,2013;Wolkovichetal.,2012)butnotun-precedented(Olsson&Ågren,2002;Wagner&Simons,2009).Futureresearch could expand on this study to include a larger number ofspeciesinordertocomparefloweringtimesensitivitytotemperatureacrosslifehistorystrategies(Calingeretal.,2013;Molauetal.,2005;Post etal., 2008). Seeddispersaltimeof the20Arctic species alsoappears tobe sensitive to temperature, in contrast toexperimentalwarming studies (Bjorkman etal., 2015; Jones etal., 1997) but inalignmentwithfaster fruitmaturationatZackenberg,Greenlandex-perimental warming sites (Ellebjerg etal., 2008). Only two species,Androsace septentrionalis and Chamerion latifolium, showed no flow-eringtime sensitivity toJune temperatures in anypart ofNunavut. A. septentrionalisisanannual,ormoreoftenbiennialinNunavut,thatmustcompleteitslifecyclewithintheyearandwhosetimeofflow-eringis influencedprimarilybysnowmeltdate(Inouyeetal.,2003). A. septentrionalis also showedno significant trend to earlier flower-inginanalpinecommunity(CaraDonnaetal.,2014).Thelate-summerflowering C. latifolium also showed no sensitivity to July or Augustmean temperatures (data not shown), suggesting that its flower-ingtimemaybe triggeredby day-length.The two specieswith thegreatest variation in time of flowering, Saxifraga oppositifolia and Ranunculus nivalis,areeitherearly-floweringand/orsnowbedspecies,groupsofspeciesthathavebeenidentifiedbyalong-termphenologystudyinSwedentobemostlabileintermsoffloweringtime(Molau

etal.,2005).Arcticspecies’sequenceoffloweringisconsistentfromyeartoyearinNunavutfrom1896to2015andiscomparabletothecurrentday(Molauetal.,2005;Panchen&Gorelick,2016;Figure3a).Hence,herbariumspecimenscanbeused todetermine species’ se-quenceofflowering.

FloweringtimesweremostcorrelatedwithJunemeantempera-turesasmightbeexpectedgiventhatthemajorityofspeciesflowerin lateJuneandJulyand themonth(s)precedingflowering typicallyhavethestrongestcorrelationwithfloweringtime(Fitteretal.,1995;Panchen & Gorelick, 2015; Panchen etal., 2012). July and Augustmean temperatureswere also correlatedwithfloweringtime, albeitless significantly than June mean temperatures, and this is also tobeexpectedgiven thatfloweringcontinuesuntil theendofAugust(Table1).Photoperiodandsnowmelt-outdateareotherfactorsthatcanbecorrelatedwiththetimeofflowering(Bernier&Périlleux,2005;Inouyeetal.,2003;Rathcke&Lacey,1985).TheNunavutarchipelagoreceives24hrofdaylightperdaystartingatleast1monthbeforetheearliestflowersareobserved,whilemuchoftheNunavutmainlandex-periencesdarknessduringthegrowingseason.AlthoughthefloweringtimeofsomeArcticandalpinespeciesisfacultativelyphotoperiodic(Heide,Pedersen,&Dahl,1990;Hülberetal.,2010;Keller&Körner,2003),it,therefore,seemsunlikelythatphotoperiodplaysamajorroleinthetimeoffloweringonBaffin,Ellesmere,andotherNunavutarchi-pelagoIslandsbutcouldplayaroleontheNunavutmainland.Thereis evidence that the snowmelt-out date is correlatedwith time offloweringofArcticplants(Bjorkmanetal.,2015;Iler,Høye,Inouye,&Schmidt,2013b;Molau,1997;Stenströmetal.,1997).However,thereare exceptions, particularly in polar desertswhere there isminimalsnow accumulationoverwinter (Bienau etal., 2015; Ellebjerg etal.,2008;Molauetal.,2005;Panchen&Gorelick,2015;Thórhallsdóttir,1998).MuchoftheNunavutarchipelagoispolardesertandreceivesvery little snowaccumulation,while theNunavutmainland receivesconsiderablymoresnow(Przybylak,2003).Inaddition,snowmelt-outdate does not appear to differmuch betweenBaffin andEllesmereIslands (Panchen & Gorelick, 2016). Therefore, photoperiod and/orsnowmelt-outdatecouldaccount for someof the intraspecificdif-ferences in flowering time sensitivity to temperature between theNunavutmainlandandNunavutarchipelagobut less likelybetweenBaffinandEllesmereIslands.

Temperature changes observed since 1946 reflect the threesynoptic weather systems that dominate Nunavut. Baker Lake,CambridgeBay,andCoralHarbourarepredominantlyinfluencedbycontinentalsystems(Fletcher&Young,1970;Fraser,1983)(Figure6)andareexperiencingthegreatestrisesintemperature,bothannu-ally and in the months of June and July, and these temperatureshave been rising continually since 1946. Alert, Eureka, Isachsen,and Resolute are predominantly influenced byArcticOcean basinsystems(Edlund&Alt,1989;Fletcher&Young,1970;Fraser,1983)andexperiencedaregimeshiftfromacoolingperiodtoawarmingperiod(Reidetal.,2015;Throopetal.,2010).Clyde,Iqaluit,andHallBeach are influenced byAtlanticOcean systems and have experi-enced little or nowarming annually or in themonths of June andJulyandnoregimeshift.PondInletcanexperienceanyofthethree

Page 12: Prediction of Arctic plant phenological sensitivity to

1336  |     PANCHEN ANd GORELICK

systemsindifferentyearsormonthsandperhapsmightexplaintheregime shift from a steady temperature to awarming period. It ispossiblethattheregimeshiftscouldbeanartifactofchangeintem-peraturemeasuring equipment, frommanual readings in the earlydays to automated measurement in more recent years. However,if thiswere the case,wewould have expected to see the regimeshiftinapproximatelythesameyearforallmonthsandannuallyataweatherstationandpossiblyacrosstheweatherstationsgiventhatEnvironment Canadawould upgrade all of itsweather stations atapproximatelythesametimebuttheregimeshiftyearvariedwidelyacrossmonthsandstations(TableS4).

Inconclusion,floweringtimesofNunavutplantsaremoststronglycorrelatedwithJunemeantemperatureandseeddispersaltimesaremoststronglycorrelatedwithJulymeantemperature.Onaverageoverthepast120years,seeddispersaltimeshaveadvancetwiceasfastasfloweringtimesinNunavutandlikelyreflectgreaterincreasesinJulythanJunemean temperatures.Thediversity infloweringtime tem-peraturesensitivityamongspeciescouldresultinalteredcommunityecologyand thosechangescouldvary indifferentpartsofNunavutgiventhevariationintemperaturetrendsandintraspecificphenologi-caltemperaturesensitivityacrosstheterritory.

ACKNOWLEDGMENTS

We thank the staff of the National Herbarium of Canada (CAN),AgricultureCanadaVascularPlantHerbarium(DAO),HerbierLouis-Marie (QFA), and University of Toronto at Mississauga Herbarium(TRTE)fortheirwonderfulsupportduringourdatacollectionandJasonCarpenterandJenniferDoubtforsharingtheirphotographiccollec-tions.WethankBeaAltforherhelpfulinsightintoArcticclimateandsynoptics.WethankthePrimackLab,LibbyEllwood,JohannWagnerandtwoanonymousreviewersforreviewingthemanuscript.Thisre-searchwasfundedbyaNaturalSciencesandEngineeringResearchCouncilofCanada,CanadianGraduateScholarship(NSERCCGS),anNSERCDiscoveryGrant,andanOntarioGraduateScholarship(OGS).

CONFLICT OF INTEREST

Nonedeclared.

REFERENCES

Alatalo,J.M.,&Totland,O.(1997).Responsetosimulatedclimaticchangein an alpine and subarcticpollen-risk strategist,Silene acaulis. Global Change Biology,3,74–79.

AMAP(2012a)Climate change in the Arctic—A hot topic. SWIPA 2011: snow, water, ice and permafrost in the Arctic.ArcticMonitoringandAssessmentProgramme(AMAP),Oslo,Norway,17pp.

AMAP (2012b)Arctic climate issues 2011: Changes in Arctic snow, water, ice and permafrost. SWIPA 2011 overview report.ArcticMonitoringandAssessmentProgramme(AMAP),Oslo,Norway,97pp.

Atkinson,D.E.,&Gajewski,K.(2002).High-resolutionestimationofsum-mersurfaceairtemperatureintheCanadianArcticArchipelago.Journal of Climate,15,3601–3614.

Baker,D.J.,Hartley,A.J.,Butchart,S.H.M.,&Willis,S.G.(2016).Choiceofbaselineclimatedataimpactsprojectedspecies’responsestoclimatechange. Global Change Biology,22,2392–2404.

Bernier,G.,&Périlleux,C.(2005).Aphysiologicaloverviewofthegeneticsoffloweringtimecontrol.Plant Biotechnology Journal,3,3–16.

Bertin,R.I.(2015).ClimatechangeandfloweringphenologyinWorcestercounty, Massachusetts. International Journal of Plant Sciences, 176,107–119.

Bienau,M.J.,Kröncke,M.,Eiserhardt,W.L.,Otte,A.,Graae,B.J.,Hagen,D.,Milbau,A., ... Eckstein, R. (2015). Synchronousflowering despitedifferencesinsnowmelttimingamonghabitatsofEmpetrum hermaph-roditum. Acta Oecologica,69,129–136.

Bjorkman,A.D.,Elmendorf,S.C.,Beamish,A.L.,Vellend,M.,&Henry,G.H.R. (2015).Contrastingeffects ofwarming and increased snowfallonArctic tundraplantphenologyover thepast twodecades.Global Change Biology,21,4651–4661.

Cadieux, M.-C., Gauthier, G., Gagnon, C. A., Lévesque, E., Bêty, J., &Berteaux,D.(2008)Monitoring the environmental and ecological impacts of climate change on Bylot Island, Sirmilik National Park 2004–2008 final report.Quebec,QC,Canada.

Calinger,K.M.,Queenborough,S.,&Curtis,P.S.(2013).Herbariumspeci-mensrevealthefootprintofclimatechangeonfloweringtrendsacrossnorth-centralNorthAmerica.Ecology Letters,16,1037–1044.

Callaghan,T.V. (2005).Arctic tundraandpolardesertecosystems. InC.Symon,L.Arris&B.Heal (Eds.),Arctic climate impact assessment (pp.243–352).Cambridge,UK:CambridgeUniversityPress.

CanadianIceService(2002).Sea ice climatic Atlas: Northern Canadian waters 1971–2000.Ottawa,ON,Canada:CanadianIceService.

CaraDonna, P. J., Iler,A.M.,& Inouye,D.W. (2014). Shifts in floweringphenology reshape a subalpine plant community. Proceedings of the National Academy of Sciences of the United States of America, 111,4916–4921.

Davis,C.C.,Willis,C.G.,Connolly,B.,Kelly,C.,&Ellison,A.M. (2015).Herbariumrecordsarereliablesourcesofphenologicalchangedrivenbyclimateandprovidenovelinsightsintospecies’phenologicalcueingmechanisms.American Journal of Botany,102,1599–1609.

Diskin,E.,Proctor,H.,Jebb,M.,Sparks,T.,&Donnelly,A.(2012).Thephe-nology of Rubus fruticosus in Ireland: Herbarium specimens provideevidencefortheresponseofphenophasestotemperature,withimpli-cationsforclimatewarming.International Journal of Biometeorology,56,1103–1111.

Edlund,S.A.,&Alt,B.T. (1989).Regionalcongruenceofvegetationandsummer climate patterns in theQueen Elizabeth Islands,NorthwestTerritories,Canada.Arctic,42,3–23.

Ellebjerg,S.M.,Tamstorf,M.P., Illeris,L.,Michelsen,A.,&Hansen,B.U.(2008).Inter-annualvariabilityandcontrolsofplantphenologyandpro-ductivityatZackenberg.Advances in Ecological Research,40,249–273.

EnvironmentCanada(2016).National climate data and information archive. Retrieved from: http://climate.weather.gc.ca/index_e.html, AccessedMarch2016.

Euskirchen,E.S.,Carman,T.B.,&McGuire,A.D.(2014).ChangesinthestructureandfunctionofnorthernAlaskanecosystemswhenconsid-eringvariableleaf-outtimesacrossgroupingsofspeciesinadynamicvegetationmodel.Global Change Biology,20,963–978.

Fitter,A.H., Fitter, R. S. R., Harris, I.T. B., &Williamson,M.H. (1995).RelationshipsbetweenfirstfloweringdateandtemperatureinthefloraofalocalityincentralEngland.Functional Ecology,9,55–60.

Fletcher, R. J., & Young, G. S. (1970). Climate of Arctic Canada in maps. Edmonton,AB,Canada:BorealInstituteforNorthernStudies.

Fraser,D.B. (1983).Climate of the Northwestern Baffin Bay and Lancaster Sound. Ottawa, ON, Canada: Department of Indian Affairs andNorthernDevelopment.

Furgal,C.,&Prowse,T.D. (2007).NorthernCanada. InD.S.Lemmen,F.J.Warren&J.Lacroix (Eds.),From impacts to adaptation: Canada in a

Page 13: Prediction of Arctic plant phenological sensitivity to

     |  1337PANCHEN ANd GORELICK

changing climate(pp.57–118).Ottawa,ON,Canada:NaturalResourcesCanada.

Gallagher,R.V.,Leishman,M.R.,&Hughes,L.(2009).PhenologicaltrendsamongAustralianalpinespecies:Usingherbariumrecordsto identifyclimate-changeindicators.Australian Journal of Botany,57,1–9.

Gallinat,A.S.,Primack,R.B.,&Wagner,D.L.(2015).Autumn,theneglectedseason in climate change research.Trends in Ecology & Evolution,30,169–176.

Hart,R.,Salick,J.,Ranjitkar,S.,&Xu,J.(2014).HerbariumspecimensshowcontrastingphenologicalresponsestoHimalayanclimate.Proceedings of the National Academy of Sciences of the United States of America,111,10615–10619.

Hegland,S.J.,Nielsen,A.,Lázaro,A.,Bjerknes,A.-L.,&Totland,Ø.(2009).Howdoesclimatewarmingaffectplant-pollinatorinteractions?Ecology Letters,12,184–195.

Heide,O.M., Pedersen, K., &Dahl, E. (1990). Environmental control offlowering and morphology in the high-arctic Cerastium regelii, andthe taxonomic status of C. jenisejense. Nordic Journal of Botany, 10,141–147.

Holopainen, J., Helama, S., Lappalainen, H., & Gregow, H. (2013). Plantphenological records in northern Finland since the 18th century asretrieved from databases, archives and diaries for biometeorologicalresearch. International Journal of Biometeorology,57,423–435.

Høye,T.T.,Post,E.,Schmidt,N.M.,Trøjelsgaard,K.,&Forchhammer,M.C.(2013).ShorterfloweringseasonsanddecliningabundanceofflowervisitorsinawarmerArctic.Nature Climate Change,3,759–763.

Hülber,K.,Winkler,M.,&Grabherr,G. (2010). Intraseasonalclimateandhabitat-specific variability controls the flowering phenology of highalpineplantspecies.Functional Ecology,24,245–252.

Iler,A.M.,Hoye,T.T.,Inouye,D.W.,&Schmidt,N.M.(2013a).Long-termtrendsmask variation in the direction andmagnitude of short-termphenologicalshifts.American Journal of Botany,100,1398–1406.

Iler,A.M.,Høye,T.T.,Inouye,D.W.,&Schmidt,N.M.(2013b).Nonlinearfloweringresponsestoclimate:Arespeciesapproachingtheirlimitsofphenologicalchange?Philosophical Transactions of the Royal Society of London B: Biological Sciences,368,20120489.

Inouye,D.W., Saavedra,F.,&Lee-Yang,W. (2003).Environmental influ-ences on the phenology and abundance of flowering by Androsace septentrionalis (Primulaceae). American Journal of Botany, 90, 905–910.

Jones, M. H., Bay, C., & Nordenhall, U. (1997). Effects of experimentalwarmingonarcticwillows(Salixspp.):AcomparisonofresponsesfromtheCanadianHighArctic,AlaskanArctic,andSwedishSubarctic.Global Change Biology,3,55–60.

Keller,F.,&Körner,C. (2003).Theroleofphotoperiodisminalpineplantdevelopment.Arctic, Antarctic and Alpine Research,35,361–368.

Khorsand Rosa, R., Oberbauer, S. F., Starr, G., Parker La Puma, I., Pop,E., Ahlquist, L., & Baldwin, T. (2015). Plant phenological responsesto a long-term experimental extension of growing season and soilwarming in the tussock tundra ofAlaska.Global Change Biology,21, 4520–4532.

Kimball,K.D.,Davis,M.L.,Weihrauch,D.M.,Murray,G.L.D.,&Rancourt,K. (2014). Limited alpine climatic warming and modeled phenologyadvancementforthreealpinespeciesinthenortheastUnitedStates.American Journal of Botany,101,1437–1446.

Klady,R.A.,Henry,G.H.R.,&Lemay,V.(2011).ChangesinHighArctictun-draplantreproductioninresponsetolong-termexperimentalwarming.Global Change Biology,17,1611–1624.

Lavoie, C., & Lachance, D. (2006). A new herbarium-based method forreconstructing the phenology of plant species across large areas.American Journal of Botany,93,512–516.

Leathers,D.J.,Malin,M.L.,Kluver,D.B.,Henderson,G.R.,&Bogart,T.A.(2008).HydroclimaticvariabilityacrosstheSusquehannaRiverBasin,USA, since the17th century. International Journal of Climatology,28,1615–1626.

Ledneva, A., Miller-Rushing, A. J., Primack, R. B., & Imbres, C. (2004).Climate change as reflected in a naturalist’s diary, Middleborough,Massachusetts.Wilson Bulletin,116,224–231.

MacGillivray,F.,Hudson,I.L.,&Lowe,A.J.(2010).Herbariumcollectionsand photographic images: Alternative data sources for phenologicalresearch.InI.L.Hudson&M.R.Keatley(Eds.),Phenological research: Methods for environmental and climate change analysis (pp.425–461).Netherlands:SpringerNetherlands.

Maze,S.J.,Travers,S.E.,Cook,B.I.,Davies,T.J.,Bolmgren,K.,Kraft,N.J.B.,Salamin,N.,&Inouye,D.,W.(2013).Floweringdateoftaxonomicfam-iliespredictsphenologicalsensitivitytotemperature: Implicationsforforecastingtheeffectsofclimatechangeonunstudiedtaxa.American Journal of Botany,100,1381–1397.

McBean, G. (2004). Arctic climate: Past and present. In S. Hassol (Ed.),Impacts of a warming Arctic: Arctic climate impact assessment (pp.21–60).Cambridge,UK:CambridgeUniversityPress.

McKinney,A.M.,CaraDonna,P.J., Inouye,D.W.,Barr,W.A.,Bertelsen,C.D.,&Waser,N.M.(2012).Asynchronouschangesinphenologyofmigrating Broad-tailed Hummingbirds and their early-season nectarresources. Ecology,93,1987–1993.

Menzel,A., Sparks,T.H., Estrella,N., et al. (2006). Europeanphenologi-cal response toclimatechangematches thewarmingpattern.Global Change Biology,12,1969–1976.

Miller-Rushing,A.,&Primack,R.B.(2008).GlobalwarmingandfloweringtimesinThoreau’sConcord:Acommunityperspective.Ecology,89,332–341.

Miller-Rushing,A. J., Primack, R. B., Primack,D., &Mukunda, S. (2006).Photographs and herbarium specimens as tools to document phe-nologicalchanges inresponsetoglobalwarming.American Journal of Botany,93,1667–1674.

Molau,U.(1993).Relationshipsbetweenfloweringphenologyandlifehis-torystrategiesintundraplants.Arctic and Alpine Research,25,391–402.

Molau,U.(1997).Responsestonaturalclimaticvariationandexperimentalwarmingintwotundraplantspecieswithcontrastinglifeforms:Cassiope tetragona and Ranunculus nivalis. Global Change Biology,3,97–107.

Molau,U.,Nordenhäll,U.,&Eriksen,B.(2005).Onsetoffloweringandcli-matevariabilityinanalpinelandscape:A10-yearstudyfromSwedishLapland.American Journal of Botany,92,422–431.

Müller,E.,Cooper,E.J.,&Alsos,I.G.(2011).Germinabilityofarcticplantsis high in perceived optimal conditions but low in the field.Botany- Botanique,89,337–348.

Munson,S.M.,&Sher,A.A.(2015).Long-termshiftsinthephenologyofrareandendemicRockyMountainplants.American Journal of Botany,102,1268–1276.

Neil,K.L.,Landrum,L.,&Wu,J. (2010).Effectsofurbanizationonflow-eringphenologyinthemetropolitanPhoenixregionofUSA:Findingsfromherbariumrecords.Journal of Arid Environments,74,440–444.

Oberbauer,S.F.,Elmendorf,S.C.,Troxler,T.G.,etal.(2013).Phenologicalresponseoftundraplantstobackgroundclimatevariationtestedusingthe InternationalTundraExperiment.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,368,20120481.

Olsson, K., & Ågren, J. (2002). Latitudinal population differentiation inphenology, life history andflowermorphology in theperennial herbLythrum salicaria. Journal of Evolutionary Biology,15,983–996.

Panchen,Z.A.(2016).Arcticplantsproducevastlydifferentnumbersofflow-ersinthreecontrastingyearsatLakeHazen,QuttinirpaaqNationalPark,EllesmereIsland,Nunavut,Canada.Canadian Field- Naturalist,130,56–63.

Panchen,Z.A.,&Gorelick,R.(2015).FloweringandfruitingresponsestoclimatechangeoftwoArcticplantspecies,purplesaxifrage(Saxifraga oppositifolia)andmountainavens (Dryas integrifolia).Arctic Science,1,45–58.

Panchen,Z.A.,&Gorelick,R.(2016).CanadianArcticArchipelagoconspe-cificsflowerearlierintheHighArcticthanthemid-Arctic.International Journal of Plant Sciences,177,661–670.

Panchen,Z.A.,Primack,R.B.,Aniśko,T.,&Lyons,R.E.(2012).Herbariumspecimens,photographs,andfieldobservationsshowPhiladelphiaarea

Page 14: Prediction of Arctic plant phenological sensitivity to

1338  |     PANCHEN ANd GORELICK

plants are responding to climate change.American Journal of Botany,99,751–756.

Park,I.W.,&Schwartz,M.D.(2015).Long-termherbariumrecordsrevealtemperature-dependentchangesinfloweringphenologyinthesouth-easternUSA.International Journal of Biometeorology,59,347–355.

Parmesan,C.(2007).Influencesofspecies,latitudesandmethodologiesonestimatesofphenologicalresponsetoglobalwarming.Global Change Biology,13,1860–1872.

Post, E. S., Pedersen, C.,Wilmers, C. C., & Forchhammer,M. C. (2008).Phenological sequences reveal aggregate life history response toclimaticwarming.Ecology,89,363–370.

Prevéy,J.,Vellend,M.,Ruger,N.,Hollister,R.D.,Bjorkman,A.D.,Myers-Smith, I.H.,…Rixen,C. (InPress). Floweringtime andhistorical cli-matehelpexplainphenological responsesofarcticandalpineplantsto climate change. International Arctic Change 2014 Conference, pp.155–156.

Primack,D.,Imbres,C.,Primack,R.B.,Miller-Rushing,A.J.,&DelTredici,P. (2004).Herbarium specimensdemonstrate earlier floweringtimesin response to warming in Boston. American Journal of Botany, 91,1260–1264.

Przybylak,R.(2003).The climate of the Arctic.Boston,MA:KluwerAcademicPublishers.

Rathcke,B.,&Lacey,E.P.(1985).Phenologicalpatternsofterrestrialplants.Annual Review of Ecology and Systematics,16,179–214.

Reid,P.C.,Hari,R.E.,Beaugrand,G.,etal. (2015).Global impactsofthe1980sregimeshift.Global Change Biology,22,682–703.

Robbirt, K. M., Davy, A. J., Hutchings, M. J., & Roberts, D. L. (2010).Validation of biological collections as a source of phenological dataforuseinclimatechangestudies:AcasestudywiththeorchidOphrys sphegodes. Journal of Ecology,99,235–241.

Rumpff, L., Coates, F., &Morgan, J.W. (2010). Biological indicators ofclimatechange:Evidencefromlong-termfloweringrecordsofplantsalongtheVictoriancoast,Australia.Australian Journal of Botany,58,428–439.

Springate,D.A.,&Kover,P.X.(2014).Plantresponsestoelevatedtempera-tures:Afieldstudyonphenologicalsensitivityandfitnessresponsestosimulatedclimatewarming.Global Change Biology,20,456–465.

Stenström,M.,Gugerli,F.,&Henry,G.H.R.(1997).ResponseofSaxifraga oppositifolia L. to simulated climate change at three contrasting lati-tudes. Global Change Biology,3,44–54.

Thórhallsdóttir,T.E.(1998).FloweringphenologyinthecentralhighlandofIcelandandimplicationsforclimaticwarmingintheArctic.Oecologia,114,43–49.

Throop, J. L., Smith, S. L., & Lewkowicz,A. G. (2010). Observed recentchangesinclimateandpermafrosttemperaturesatfoursitesinnorth-ernCanada.GEO2010, 63rd Canadian Geotechnical Conference and 6th Canadian Permafrost Conference,pp.1265–1272.Calgary,AB,Canada.

Wagner, I.,&Simons,A.M. (2009).DivergenceamongArcticandalpinepopulationsoftheannual,Koenigia islandica:Morphology,life-history,andphenology.Ecography,32,114–122.

Welker,J.M.,Molau,U.,Parsons,A.N.,Robinson,C.H.,&Wookey,P.A.(1997).Responses ofDryas octopetala to ITEX environmental manipulations:Asynthesiswithcircumpolarcomparisons.Global Change Biology,3,61–73.

Wolkovich,E.M.,Cook,B. I.,Allen,J.M.,etal. (2012).Warmingexperi-ments underpredict plant phenological responses to climate change.Nature,485,494–497.

Wookey,P.A.,Parsons,A.N.,Welker,J.M.,Potter,J.A.,Callaghan,T.V.,Lee,J.A.,&Press,M.C.(1993).Comparativeresponsesofphenologyandreproductivedevelopmenttosimulatedenvironmentalchangeinsub-ArcticandHighArcticplants.Oikos,67,490–502.

SUPPORTING INFORMATION

AdditionalSupportingInformationmaybefoundonlineinthesupport-inginformationtabforthisarticle.

How to cite this article:PanchenZA,GorelickR.PredictionofArcticplantphenologicalsensitivitytoclimatechangefromhistorical records. Ecol Evol.2017;7:1325–1338.https://doi.org/10.1002/ece3.2702