preparation of ( fe,mn ) 3 o 4 nanoconstriction for magnetic memory application

27
Preparation of (Fe,Mn) 3 O 4 nanoconstriction for magnetic memory application Tanaka lab Takayoshi Kushizaki M1 colloquium 11/16/2011 ( 磁磁磁磁磁磁磁磁磁磁磁磁 (Fe,Mn) 3 O 4 磁磁磁磁磁磁磁磁磁 )

Upload: hannah-long

Post on 31-Dec-2015

25 views

Category:

Documents


0 download

DESCRIPTION

M1 colloquium 11/16/2011. Preparation of ( Fe,Mn ) 3 O 4 nanoconstriction for magnetic memory application. ( 磁気メモリ応用を目指した ( Fe,Mn ) 3 O 4 ナノ 狭窄構造 の作製 ). Tanaka lab Takayoshi Kushizaki. Introduction. For ubiquitous information technology. Highly integrated memory devices. - PowerPoint PPT Presentation

TRANSCRIPT

Preparation of (Fe,Mn)3O4 nanoconstriction for magnetic memory application

Tanaka lab Takayoshi Kushizaki

M1 colloquium 11/16/2011

( 磁気メモリ応用を目指した (Fe,Mn)3O4 ナノ狭窄構造の作製 )

We aim to realize large MR using (Fe,Mn)3O4

For ubiquitous information technology

Magnetic memory (MRAM)Highly integrated memory devices

Magnetoresistance (MR) effect plays the key role in the operation.

Introduction

Magnetoresistance effect ( 磁気抵抗効果 )

Resistance change induced by magnetic field (H)

%501001000

1000500

)( 1000

0

% ρ

ρρ

H

HHMRMR (%)

H (Oe)

High “0”

Law “1”

HH under y resistivit:ρ

Introduction

20

10

0

Fe/Al2O3/Fe

Spin polarization ( スピン偏極率 )

The degree to which the spin is aligned with a given direction

P=0.5

FF

FF

EDED

EDEDP

P=1P=0E

EF

E

EF

E

EF

Introduction

H

Ferromagnetinsulator

Ferromagnet

%1001

22

2

 

P

PMRJulliere equation

Basic structure: magnetic tunneling junction

Example : Tunneling magnetoresistance (TMR)  Introduction

(Fe,Mn)3O4: Mn-doped Fe3O4

High spin polarization (P = 0.6-1.0) High Curie temperature (Tc = 800K)Physical properties can be tuned via external fields

H, E, hn

Introduction

large MR at RT

J. Appl. Phys. 95, 5661 (2004)

Fe3O4-SiO2

Granular structureTMR structure

J. Appl. Phys. 41, 387 (2002)

Fe3O4

AlOX

CoFe

Pseudo-spin-valve

Ni80Fe20

CuFe3O4

Attempts towards large MR effect

J. Appl. Phys. 103, 07D702 (2008)

MR @RT   14%        5%         1%

The spin coherence is lost at the heterointerface. (ヘテロ界面・複合界面)

Introduction

Preparation of a ferromagnetic nanoconstriction

Ni

60 nm

Phys. Rev. B 75, 220409 (2007)

Realization of large MR using (Fe,Mn)3O4

( ナノ狭窄構造 )

Strategy

Ni

Appl. Phys. Lett. 97, 262501 (2010)                

50 nm Only one material!!

No heterointerface

Introduction

Parallel

Anti-parallel

Mechanism of “domain wall” MR

Constricted structure

Introduction

magnetic wall ( 磁壁 )

Wire structure without constriction

600

500

400

300

200

100

0

14012010080604020

=2 =5 =10 =50

d(nm)

Mag

neto

resi

stan

ce(%

)

Estimation of “domain wall” MR Phys. Rev. Lett. 83, 2425 (1999) J. Magn. Magn. Mater. 310, 2058 (2007)

dS

CS

SFMO nanoconstriction

SC

MRAM

onconstricti ofsection -cross:Sc

onconstrictinon ofsection -cross:S

length channel :d

With downscaling (d and SC), the MR is greatly enhanced!

Introduction

P = 0.9

electrode( 電極 )

substrate

Towards FMO nanoconstriction

However, it is difficult to pattern oxide nanostructure, especially, the narrowest part (< 100 nm).

In this work,we have attempted to fabricate the FMO nanowire as the first step.

Recipe for FMO nanoconstriction

1. FMO nanowire

2. Au/Ti electrode

3. FMO magnetic domain pad

Fabricate and evaluate

step by step

Controlling the height

Nanowires

Controlling the width

TargetPulsed laser

Pulsed Laser Deposition (PLD)

Fabrication of nanowires using sidewall deposition

Resist

Transferring the thickness of film deposited, which can be controlled in Å-scale, to the width of nanowire pattern

50 μmTop view (SEM)

100 nm

140 nm 40 nm

Cross-section

100 nm

40 nm

Size controllabilitywidth : 30 - 150 nmheight : 50 - 150 nm

length : 100 μm -14

Large area formation of FMO nanowires

TED: FMO wire + Al2O3

[1012]

[1210]

[1014] Al2O3

(220) FMO(311) FMO(440) FMO

×

Road to FMO nanoconstriction

1. Polycrytalline FMO nanowire (sub-100 nm scale)

2. Au/Ti electrode

Electrode gap: 4 μm

1 μm

Au/Ti electrode

Capture a single nanowire for the characterization

Au/Ti

Au/Ti

17

H

FMO polycrystalline NWs were successfully fabricated with my recipe!!

Capture a single nanowire for the characterization

MR measurement

Summary

Fabrication FMO polycrystalline nanowires Width: 30-150 nmHeight: 50-150 nmLength: over 100 μm

The final step: FMO magnetic domain pad

ongoing

CharacterizationConfirmed the ferromagnetic character of FMO nanowiresfrom MR measurements

100 μmPhoto lithography system  

64 unit/cm2

Electrode pattern

nanowires

Capture a single nanowire for the characterization

直観的解釈 ( スピン蓄積・ ΔR の起源 )

V-m

V+

m

磁化平行 磁化反平行

ΔVスピン蓄積とスピン緩和の結果生じる界面電圧

電子注入方向

スピン蓄積※ 電荷は蓄積しない

電流一定より、 ΔV が ΔR になる

FMO 狭窄構造で予想される磁気抵抗値

J. Appl. Phys. 103, 07D702 (2008)nm 80

9.0

F

P

d

FPMR F

2100

40 nm

2d=50 nm1 μm

10 nm

25cS

S

nm 160/20 KAW

nm 2233 32223

0

W

WD

理論 1 :磁壁の圧縮

理論 2 : ”スピン蓄積誘起”磁気抵抗

207%

10μm

CF4,O2plasma

パターン作製( ナノインプリント )

レジスト2

基板レジスト1

基板 : Al2O3(0001)

レジスト 1: 熱硬化レジスト (nanonex NXR-2030)レジスト 2:UV 硬化レジスト (nanonex NXR-3032)

基板面出す( エッチング )

作製プロセス①

CF4: 10sccm 50W 2min 2.0Pa

O2: 10sccm 50W 2min 1.0Pa

モールド

UV

高い端面平坦性大面積・一括

結晶化( ポストアニー

ル )FMO ナノワイヤーAr plasma

レジスト除去 形状を整える( イオンミリング )

サイドウォール蒸着

作製プロセス②

ターゲット :Fe2.5-Mn0.5-O

P base :~ 10-6PaPO2 : 10-4Pa基板温度 : 室温蒸着角度: 60°

P base :~ 10-6PaPO2 : 10-4Pa温度: 400℃時間: 5h

浸漬 :6h、 90℃(1-メチル -2ピロリドン )

ECR 3min

FMO

Mo

AFM tip

MoO3Mo

electrode

Pulsed laser

Deposition of Mo Oxidation of Mo(AFM lithography)

Lift off MoO3 Deposition of FMO Lift off Mo

FMO

Final step: AFM lithography

狭窄構造作製可能寸法

狭窄 ( ワイヤー )幅20 ~ 200 nm

パッド幅100 nm ~

狭窄長さ50 nm ~

予想される磁気抵抗特性

抵抗

外部磁場0

Phys. Rev. B 75, 220409 (2007)

狭窄有

狭窄無

LSMO 狭窄構造

8K