preparation of hybrid polymer based on polyurethane lithium salt and.pdf

8
Electrochimica Acta 136 (2014) 513–520 Contents lists available at ScienceDirect Electrochimica Acta j ourna l ho me page: www.elsevier.com/locate/electacta Preparation of hybrid polymer based on polyurethane lithium salt and polyvinylidene fluoride as electrolyte for lithium-ion batteries Yujin Xing a,b , Yuhui Wu b , Haiying Wang a , Gang Yang a,b,, Weili Li b,, Lixin Xu c , Xuefan Jiang a a Jiangsu Laboratory of Advanced Functional Material, Changshu Institute of Technology, Changshu 215500, China b School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China c College of Chemical Engineering and Materials, Zhejiang University of Technology, Hangzhou310014, China a r t i c l e i n f o Article history: Received 28 March 2014 Received in revised form 12 May 2014 Accepted 21 May 2014 Available online 2 June 2014 Keywords: Lithium-ion battery Hybrid microporous gel polymer electrolyte Thermal phase inversion Ionic conductivity Cycle performance a b s t r a c t In this paper, hybrid microporous gel polymer electrolytes (HMGPEs) based onpolyvinylidene fluo- ride (PVdF)/polyurethane lithium salt (PLS) are fabricated by thermal phase separation technique. PLS is synthesized via condensation copolymerization of polyethylene glycol 800 (PEG800) and diphenyl- methane-diisocyanate(MDI), and then neutralized with LiOH. The effect of PLS on the morphologies of the hybrid membrane, electrochemical properties and cycle performance of the assembled polymer lithium- ion rechargeable batteries are studied in detail. The morphologies of the hybrid polymer membranes are examined by scanning electron microscope (SEM). The intercalation of PVdF/PLS hybrid membranes is characterized by X-ray diffraction (XRD), differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA). The incorporation of PLS in PVdF matrix can enhance ionic conductivities and electrochem- ical stabilities for the prepared HMGPEs. The assembled lithium-ion batteries based on HMGPEs with weight ratio 80:20 of PVdF and PLS (PVdF/PLS-20) delivers the highest charge-discharge capacity (about 175mAh g 1 ), and the cell based on HMGPEs of with weight ratio 90:10 of PVdF and PLS(PVdF/PLS-10) shows the best stability in cycle performance. © 2014 Elsevier Ltd. All rights reserved. 1. Introduction Polymer electrolytes have received considerable attention for application in lithium-ion batteries (LIB), fuels cells, super capaci- tors, etc. [1,2]. Several polymer materials such as poly(vinylidene fluoride) (PVdF), polyacrylonitrile(PAN), polyvinyl chloride(PVC), poly(methyl methacrylate) (PMMA) and polyurethane(PU), have been used as the host polymers for preparation of polymer electrolytes[3–5]. PVdF is a well-known semi-crystalline thermo- plastic polymer with excellent film-forming ability and thermal stability [6]. PVdF with the fluorine atoms in the backbone structure has a high dielectric constant, which is useful in dissociating lithium salt and conducting lithium-ions in the polymer electrolyte. Due to the high resistance and good chemical stability, PVdF becomes a favorable polymer matrix for gel polymer electrolyte in lithium- ion batteries [3]. But the main problem is PVdF-based gel polymer electrolyte tends to the leakage of liquid electrolyte due to the phase separation between polymer matrix and the absorbed liquid Corresponding authors. Tel.: +86 512 52251895; fax: +86 512 52251842. E-mail addresses: [email protected], [email protected] (G. Yang). electrolyte. The defect limits the application of pure PVdF-based polymer electrolytein lithium batteries [7]. In recent years, there have been many efforts to develop polymer electrolytes with large absorption of electrolyte, high conduc- tivity and stable electrode/electrolyte interfacial properties with minimum resistance in ionic diffusion[8,9]. Compared with the traditional separator used, the battery assembled with HMGPEs has no free liquid electrolyte. The HMGPEs have higher poros- ity, better wettability and retention of the electrolyte. Because of the higher porosity of HMGPEs, the electrolyte uptake and ionic conductivity are improved. The preparation methods for polymer electrolytes include blending, polymerization, crosslink- ing, and nanofillersor ionomers to form composite polymer electrolyte[10–14]. Composite polymer gel electrolyte based on microporous polymer membrane has received great attention in polymer lithium-ion batteries due to its simple fabrication, high ionic conductivity and good compatibility with electrodes. C.H. Kim et al. [15] reported a new plasticized polymer electrolyte based on the ionomer, poly(methylmethacrylate-co-lithium maleate), pre- sented improved electrochemical properties. Y.S. Zhu et al. [16] synthesized a novel single-ion conducting polymer electrolyte (LiPAAOB) which ionic conductivity reached 2.3 × 10 6 S cm 1 at http://dx.doi.org/10.1016/j.electacta.2014.05.122 0013-4686/© 2014 Elsevier Ltd. All rights reserved.

Upload: aneeka-kamal

Post on 20-Nov-2015

16 views

Category:

Documents


1 download

TRANSCRIPT

  • Pp

    YLa

    b

    c

    a

    ARRAA

    KLHTIC

    1

    atflpbepshstfiep

    h0

    Electrochimica Acta 136 (2014) 513520

    Contents lists available at ScienceDirect

    Electrochimica Acta

    j ourna l ho me page: www.elsev ier .com/ locate /e lec tac ta

    reparation of hybrid polymer based on polyurethane lithium salt andolyvinylidene fluoride as electrolyte for lithium-ion batteries

    ujin Xinga,b, Yuhui Wub, Haiying Wanga, Gang Yanga,b,, Weili Lib,,ixin Xuc, Xuefan Jianga

    Jiangsu Laboratory of Advanced Functional Material, Changshu Institute of Technology, Changshu 215500, ChinaSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, ChinaCollege of Chemical Engineering and Materials, Zhejiang University of Technology, Hangzhou310014, China

    r t i c l e i n f o

    rticle history:eceived 28 March 2014eceived in revised form 12 May 2014ccepted 21 May 2014vailable online 2 June 2014

    eywords:ithium-ion batteryybrid microporous gel polymer electrolyte

    a b s t r a c t

    In this paper, hybrid microporous gel polymer electrolytes (HMGPEs) based onpolyvinylidene fluo-ride (PVdF)/polyurethane lithium salt (PLS) are fabricated by thermal phase separation technique. PLSis synthesized via condensation copolymerization of polyethylene glycol 800 (PEG800) and diphenyl-methane-diisocyanate(MDI), and then neutralized with LiOH. The effect of PLS on the morphologies of thehybrid membrane, electrochemical properties and cycle performance of the assembled polymer lithium-ion rechargeable batteries are studied in detail. The morphologies of the hybrid polymer membranes areexamined by scanning electron microscope (SEM). The intercalation of PVdF/PLS hybrid membranes ischaracterized by X-ray diffraction (XRD), differential scanning calorimeter (DSC) and thermal gravimetrichermal phase inversiononic conductivityycle performance

    analysis (TGA). The incorporation of PLS in PVdF matrix can enhance ionic conductivities and electrochem-ical stabilities for the prepared HMGPEs. The assembled lithium-ion batteries based on HMGPEs withweight ratio 80:20 of PVdF and PLS (PVdF/PLS-20) delivers the highest charge-discharge capacity (about175mAh g1), and the cell based on HMGPEs of with weight ratio 90:10 of PVdF and PLS(PVdF/PLS-10)shows the best stability in cycle performance.

    2014 Elsevier Ltd. All rights reserved.. Introduction

    Polymer electrolytes have received considerable attention forpplication in lithium-ion batteries (LIB), fuels cells, super capaci-ors, etc. [1,2]. Several polymer materials such as poly(vinylideneuoride) (PVdF), polyacrylonitrile(PAN), polyvinyl chloride(PVC),oly(methyl methacrylate) (PMMA) and polyurethane(PU), haveeen used as the host polymers for preparation of polymerlectrolytes[35]. PVdF is a well-known semi-crystalline thermo-lastic polymer with excellent film-forming ability and thermaltability [6]. PVdF with the fluorine atoms in the backbone structureas a high dielectric constant, which is useful in dissociating lithiumalt and conducting lithium-ions in the polymer electrolyte. Due tohe high resistance and good chemical stability, PVdF becomes aavorable polymer matrix for gel polymer electrolyte in lithium-

    on batteries [3]. But the main problem is PVdF-based gel polymerlectrolyte tends to the leakage of liquid electrolyte due to thehase separation between polymer matrix and the absorbed liquid

    Corresponding authors. Tel.: +86 512 52251895; fax: +86 512 52251842.E-mail addresses: [email protected], [email protected] (G. Yang).

    ttp://dx.doi.org/10.1016/j.electacta.2014.05.122013-4686/ 2014 Elsevier Ltd. All rights reserved.electrolyte. The defect limits the application of pure PVdF-basedpolymer electrolytein lithium batteries [7].

    In recent years, there have been many efforts to develop polymerelectrolytes with large absorption of electrolyte, high conduc-tivity and stable electrode/electrolyte interfacial properties withminimum resistance in ionic diffusion[8,9]. Compared with thetraditional separator used, the battery assembled with HMGPEshas no free liquid electrolyte. The HMGPEs have higher poros-ity, better wettability and retention of the electrolyte. Becauseof the higher porosity of HMGPEs, the electrolyte uptake andionic conductivity are improved. The preparation methods forpolymer electrolytes include blending, polymerization, crosslink-ing, and nanofillersor ionomers to form composite polymerelectrolyte[1014]. Composite polymer gel electrolyte based onmicroporous polymer membrane has received great attention inpolymer lithium-ion batteries due to its simple fabrication, highionic conductivity and good compatibility with electrodes. C.H. Kimet al. [15] reported a new plasticized polymer electrolyte based on

    the ionomer, poly(methylmethacrylate-co-lithium maleate), pre-sented improved electrochemical properties. Y.S. Zhu et al. [16]synthesized a novel single-ion conducting polymer electrolyte(LiPAAOB) which ionic conductivity reached 2.3 106 S cm1 at

    dx.doi.org/10.1016/j.electacta.2014.05.122http://www.sciencedirect.com/science/journal/00134686http://www.elsevier.com/locate/electactahttp://crossmark.crossref.org/dialog/?doi=10.1016/j.electacta.2014.05.122&domain=pdfmailto:[email protected]:[email protected]/10.1016/j.electacta.2014.05.122userHighlight

    userHighlight

    userHighlight

    ASUSHighlight

    ASUSHighlight

    ASUSHighlight

    ASUSHighlight

    ASUSHighlight

    ASUSHighlight

    ASUSHighlight

  • 5 ica A

    ap

    biIPmtltd

    2

    2

    7awd1a(Me

    2

    SmuTra1t

    2

    baiscwieatar

    2

    bmctpdu

    14 Y. Xing et al. / Electrochim

    mbient temperature. These results presented that the ionomer hasotential application in polymer lithium-ion batteries.Hybrid microporous gel polymer electrolytes (HMGPEs) will

    e expected better electrochemical performance by combiningonomer, such as polymer lithium slats (PLS), in the polymer matrix.n this paper, a novel PLS is synthesized and the performance ofVdF-based HMGPEs is investigated. The hybrid microporous poly-er membranes are prepared by thermal phase inversion, and

    hen the membranes are activated after the absorption of organiciquid electrolyte. The morphology, stability, conductivity and elec-rochemical properties of the as-prepared HMGPEs are studied inetail.

    . Experimental

    .1. Materials

    Poly(vinylidene fluoride) (PVdF, Mn, ca. 4 105; Mw, ca..96 105; Mw/Mn = 1.99, Shanghai Ofluorine Chemiacal), LiOHnd polyethylene glycol 800 (PEG 800) (Sinopharm Chemical)ere dried under vacuum at 80 C for 24 h. Diphenyl-methane-iisocyanate(MDI) was used as received (Wanhua Chemical)..0 M organic liquid electrolyte (1 M LiPF6 in ethylene carbon-te (EC)/propylene carbonate (PC)/dimethyl carbonate (DMC)1:1:1,v/v/v)) was supplied by Guotai-Huarong New Chemicalaterials Co., Ltd. N,N-dimethylforamide (DMF)(A.R.) and glyc-rin(A.R.) which were used as received.

    .2. Preparation of polyurethane lithium salt (PLS)

    The fabrication process of PLSis schematically illustrated incheme 1. Firstly, PEG800 and MDI were dissolved in DMF atole rate of 1:1.1, the mixture were kept stirring for 6h at 75 Cnder nitrogen atmosphere. A small amount of LiOH dissolved intoHF/methanol solution was doped into the mixture. The mixedeactants stirred 8 h at 75 C. Finally, the solution was poured into

    glass dish and the product was dried under normal pressure at80 C for 12 h and then under vacuum at 150 C for another 24 ho absolutely remove the solvent.

    .3. Preparation of PVdF-based hybrid microporous membrane

    PVdF/PLS based hybrid microporous membranes were preparedy thermal phase separation method. A proper amount of PVdFnd PLS (100:0, 95:5, 90:10, 80:20 by weight ratio) were dissolvedn a mixture solution of DMF and glycerin (8:1 by volume), andtirred for 12 h at room temperature. The polymer solution wasast onto a glass plate through a scraper, and the as-produced filmas dried at 80 C for 24 h under vacuum. The thickness of the film

    s adjustable by the scraper.During this process, DMF and glycerinvaporated in turn (the boiling point of DMF is lower than glycerin),nd the micropores in the membrane was formed. For convenience,he obtained hybrid microporous membranes were simply nameds PVdF/PLS-X while X is 5, 10, and 20 based on the starting weightatio of PLS to the blending polymers.

    .4. Characterization

    The surface morphologies of the hybrid microporous mem-ranes were examined by field emission scanning electronicroscope (FE-SEM, SIGMA, ZEISS). FTIR measurements werearried out on BRUKER VECTOR-22 spectrometer at room

    emperature. X-ray diffraction patterns of the hybrid micro-orous membranes were performed by using D/MAX-RA X-rayiffractometer (Rigaku). DSC measurements were carried out bysing Q100 (TA Instruments, USA) over the temperature of 30cta 136 (2014) 513520

    to 200 C at a scan rate of 10 Cmin1. The experimental speci-mens (8-10 mg) were dried at 60 C under vacuum for 24 h beforebeing measured. All the thermograms were base line corrected andcalibrated according to Indium metal. The crystallinity (c) wascalculated based on the following Equation (1):

    c =HfH

    f

    (1)

    Where the Hf and H* f represent the fusion enthalpy of hybridmicroporous membrane and pure PVdF with 100% crystallinity,respectively.

    2.5. Porosity and electrolyte uptake measurement

    The porosity (P) of the dried hybrid microporous membraneswere investigated by immersing the membranes into n-butanol for2 h and then calculated according to Equation (2):

    Porosity(%) = ma/ama/b + mb/p

    100 (2)

    where, a and b are the density of n-butanol and the dry hybridmicroporous membrane, respectively, ma and mb are the mass ofthe swollen membrane and the dried membrane, respectively.

    The ability of electrolyte uptake for different hybrid micro-porous membranes was determined by measuring weightincrement and calculated according to the following Equation (3):

    Uptake(%) = W W0W

    100 (3)

    whereW0 and W are the weights of dried membranes and swollenmembranes, respectively.

    2.6. Electrochemical measurement

    The electrochemical cell of SS/HMGPE/SS was assembled bysandwiching HMGPE between two stainless steel (SS) block-ing electrodes. The conductivity was measured recording to ACimpedance spectra by using PARST 2273 electrochemical worksta-tion at the frequency range of 100 KHz-100 mHz and the amplitudeof 5 mV. The HMGPE film was about 40 m in thickness and 0.64cm2 in the area. The lithium-ion transference number (tLi+) wasmeasured by using asymmetric cell of Li/HMGPE/Li according to DCpolarization combined with AC impedance method as described byBruce and Vincent [17,18]. It was calculated by Equation (4):

    tLi+ =Is(V RsI0)I0(V R0Is)

    (4)

    where I0 and Is are the initial and steady current, respectively; R0and Rs are the initial interfacial and steady-state resistance, respec-tively; V is the applied DC voltage.

    The electrochemical stability was measured by a linear sweepvoltammetry (LSV) using a stainless steel working electrode andlithium foil as the counter (Li/HMGPE/SS) at the scanning rate of5 mV s1 from the voltage of 2 to 6 V by PARST 2273 electrochemicalanalyzer.

    The charge-discharge tests of the Li/CMGPE/LiCoO2 were car-ried out byusing Land Battery Test System (Wuhan Land ElectronicCo. Ltd. China). A mixture composed of 80 wt.% LiCoO2 powder(DLG Battery Co. Ltd., China), 10 wt.% carbon black, and 10 wt.%poly(vinylidene fluoride) (PVdF) were mixed with N-methyl-2-pyrrolidone (NMP). The slurry was spread onto aluminum foilsubstrates and dried at 120 C for vacuum. The electrode was

    mounted as the positive electrode versus lithium metal as theanode in CR 2016 coin-type cells. The cell was assembled bysandwiching HMGPE between lithium anode and LiCoO2 cathode(LiCoO2/HMGPE/Li) in an argon-filled glove box. Charge-discharge

    ASUSHighlight

    ASUSHighlight

    ASUSSticky Notethi is how i might write my prep part

    ASUSHighlight

  • Y. Xing et al. / Electrochimica Acta 136 (2014) 513520 515

    OCN NCOCH2CH 2O HHO

    n

    +

    N2

    OCNNH C O

    O

    O C NHO

    NCOn

    LiOH

    HNNH C O

    O

    O C NHO

    NHn C

    C

    OLi

    O

    C

    O

    LiO

    Diphenyl-methane-diisocyanate(MDI) Polyethylene glycol 800 (PEG800)

    polyurethane lithium salt

    n(n+1)

    75

    Prepolymer

    Scheme 1. Preparation route for polyurethane lithium salt(PLS).

    a) pur

    tr

    3

    bdAibnoPp

    Pp1opt

    bands of PVdF are observed at 1390 and 883 cm assigned toCH2 scissoring and rocking vibration, respectively [19,20]. Afterthe composition of PVdF and PLS, the original bands of PVdF andPLS present minor shift. The peak at 2970 cm1 corresponds toFig. 1. SEM micrographs of hybrid microporous polymer films (

    esting was performed galvanostatically between 2.5 and 4.4 V atoom temperature.

    . Result and discussion

    Fig. 1 shows the SEM images of the hybrid microporous mem-ranes with various PLS contents of 0, 5, 10 and 20 wt.%. Theensity of PVdF/PLS membranes increases with the content ofPLS.s shown Fig. 1, there is no apparent interface or phase separationnthe hybrid membranes, which indicates the good compatibilityetween PLS and PVdF. The surface of the membranes shows a largeumber of micropores or cavities with the size of 2-4 m to entrapr store liquid electrolyte. Dendrite of PLS formed onto the wall ofVdF micro pores, constructs the ion conduct pathway through theolymer hosts sites.FTIR spectra of PLS, PVdF/PLS-5, PVdF/PLS-20, and pure

    VdF are shown in Fig. 2. The characteristic absorptioneaks 3430 cm1(st,N-H), 2970 cm1(st,C-H), 1760 cm1(st,C=O),

    630 cm1(ar,C-C), 1130 cm1 (st,C-O-C), and 807 cm1 (NH) arebserved from FTIR spectrum of PLS.No characteristic absorptioneak comes from isocyanate bond of monomer, which indicateshe complete polymerization of PLS. The characteristic absorptione PVDF, (b) PVDF/PLS-5, (c) PVDF/PLS-10 and (d) PVDF/PLS-20.

    1Fig. 2. FTIR spectrum of (a) polyurethane lithium salt (PLS), (b) PVDF/PLS-5, (c)PVDF/PLS-20, and (d) pure PVDF.

  • 516 Y. Xing et al. / Electrochimica Acta 136 (2014) 513520

    Fig. 3. XRD patterns of hybrid microporous polymer electrolytes with differentc

    stvwoh1bF1t

    hPoiwmebpo

    pr

    FT

    ontents of PLS.

    tretching vibrations of C-H bond of hybrid PVdF/PLS. The vibra-ion absorption at 1385 cm1 and 1186 cm1 are attributed to theibration of C-H bond and C-O bond, respectively. The electron-ithdrawing functional group (CF) in the backbone structuref PVdF forms hydrogen bonds with amino-group (NH) in theard segments of PLS. The minor shift absorption bands near385 cm1, 1100 cm1 and 850 cm1 in the PVdF/PLS based mem-rane attribute to the weak interaction between PVdF and PLS.or example, the C-H bond of PVdF/PLS-20 presented the band at385 cm1 is close to that of pure PLS, and PVdF/PLS-5 presentedhe band at 1390 cm1 is close to that of pure PVdF.

    Fig. 3 shows the XRD patterns for pure PVDF membrane and theybrid microporous polymer membranes with various contents ofLS. The pure PVDF membrane has a strong diffraction peak at 2f 20.7 and a weak diffraction peak at 14.4. While the diffractionntensity of the hybrid microporouspolymer membranes dopedith PLS significantly decreases or even disappears. Based on theethod proposed by Ratner et al. [21], ion conduct in the polymerlectrolytes mostly occurs in the amorphous region and is achievedy addition of low-molecular-weight plasticizer. The decreasingeak intensity of XRD is attributed to the decreased crystallinityf PVDF by doping material[22].

    The thermal stability and thermomechanics of the hybrid micro-

    orous membranes are studied by TGA and DSC measurements,espectively. Fig. 4 shows TGA plots for pure PLS, pure PVDF

    ig. 4. TGA curves of pure PVDF, PLS and PVDF/PLS hybrid microporous membranes.he inset image is the enlarged TGA curves.Fig. 5. DSC curves of hybrid microporous membranes with different contents of PLS.

    membrane and the hybrid microporous membranes, respectively.There is one weight loss for pure PVDF starting at 410 C and PLSstarting from 330 C. As shown the inset image in Fig. 4, the thermalbehaviors ofthe hybrid microporous membranes are dependentonthe content of dopant PLS. There are two step weight loss forthe hybrid microporous membranes, the one is at 380 C and theother is at 434 C corresponding to the decomposition of PLS andPVDF, respectively. The stability of PVDF remains after doped byPLS.

    Fig. 5 displays DSC curves for the hybrid membranes with vari-ous concentrations of PLS, and the calculated thermodynamic dataare listed in Table 1. All these hybrid microporous membranesshow a glass transition temperature (Tg) above 120 C which areattributed to the segmental motion of PLS. Along with the increasedPLS content, the glass transition temperatures are increased,120.2 C in PVDF/PLS-5, 120.4 C in PVDF/PLS-10, and 123.5 C inPVDF/PLS-20, respectively. The crystal melting point (Tm) of thehybrid membranes are near 153 C, which is attributed to the crys-tallization of PVDF. After doping by PLS, the melting enthalpies(Hf) of the hybrid membrane PVDF/PLS are much lower thanpure PVDF. PLS plays the role of decreasing the crystallinity ()of PVDF/PLS, 42.50% in PVdF/PLS-5, 40.77% in PVdF/PLS-10, and39.10% in PVdF/PLS-20.The reduction in crystallinity may resultfrom partial inhibition of PLS on crystal formation of PVdF seg-ment, just like the addition of inorganic fillers such as -Al2O3, TiO2,SiO2 or BaTiO3[2325]. Lower crystallinity for polymer membranesalways supply beneficial condition for higher ionic conductivity.Table 2 lists the porosity, the value of electrolyte uptaking(Sw), and ionic conductivity at room temperature for the preparedHMGPEs. The composited structure of dendrite PLS formed ontothe wall of microporous PVdF, reduces the porosity of the hybrid

    Table 1Thermodynamic properties of hybrid microporous membrane.

    Sample name Tg/C Tm/C Hm/kJ mol1 (%)*

    PVDF/PLS-5 120.2 152.8 44.51 42.50PVDF/PLS-10 120.4 153.2 42.70 40.77PVDF/PLS-20 123.5 153.2 40.95 39.10

    ASUSHighlight

    ASUSHighlight

  • Y. Xing et al. / Electrochimica Acta 136 (2014) 513520 517

    Table 2Physical properties and ionic conductivity ofthe hybrid microporous gel polymerelectrolytes.

    Sample name Porosity (%) Sw (%) Ionic conductivity (Scm1)

    Pure PVDF 50.47 145.56 1.09 103PVDF/PLS-5 44.87 167.59 1.76 103

    mPo4lrimaacd

    PTphaiGiPctafdcioidHmi

    Fea

    PVDF/PLS-10 45.70 171.62 2.5 103PVDF/PLS-20 44.36 175.72 4.49 103

    icroporous membranes. Compared with the value 50.47% of pureVdF, the porosity decrease after doping with PLS. The porositiesf PVdF/PLS-5, PVdF/PLS-10 and PVdF/PLS-20 are 44.87, 45.70, and4.36%, respectively. Because the functional groups of PVdF haveow compatibility to liquid electrolyte, appropriate doping of PLSeduces the crystallinity of PVdF matrix and increases the abil-ty of electrolyte uptaking of the hybrid membrane. The hybridicroporous membranes have lower porosity while show higherffinity to liquid electrolyte. The Sw of PVdF/PLS-5, PVdF/PLS-10nd PVdF/PLS-20 are 167.59, 171.62, and 175.72%, respectively,ompared with pure PVdF with the value of 145.56%. Ionic con-uctivities for HMGPEs are measured by AC impedance.Fig. 6 shows typical AC impedance spectra of GPE based on pure

    VdF and HMGPEs based on the hybrid membrane of PVdF/PLS.here is no semicircle at high frequency; only the resistive com-onents of GPE and HMGPEs are attributed to the extraordinaryigh amount of plasticizing electrolyte. It is possible to constructn effective local pathway in the liquid phase and gel phase foronic conduction[26]. The bulk resistance (Rb) of the HMGPEs (orPE) can be observed from the enlarged drawing in Fig. 6. Theonic conductivity at room temperature is 1.09 103 S cm1 (pureVdF-based GPE), 1.76 103 S cm1 (PVdF/PLS-5), 2.5 103 Sm1 (PVdF/PLS-10), 4.49 103 S cm1 (PVdF/PLS-20), respec-ively. The ionic conductivities at room temperature are increasedfter PVdF is composited with PLS. Because the dendrite of PLSormed onto the wall of PVdF mircropores constructs the ion con-uct pathway through the polymer hosts sites, the ion hoppingonduction of PVdF/PLS compositeis improved. The lithium-ionsn the system might be come from thedissociating lithium saltf liquid electrolyte and PLS in the HMGPEs because ofthe weaknteraction between PLS and the absorbed liquid electrolyte. The

    opant of PLS enhances the formation of amorphous areas in theMGPEs, and accelerates the wriggle of the polymer chain seg-ents to improve the ionic diffusion. There are three components

    n HMGPEs: (I) liquid electrolyte stored in the pores of the polymer

    ig. 6. AC impedance spectra of the hybrid microporous membranes with differ-nt contents of PLS.(SS/GPEs/SS cells, frequency range from 100 mHz to 100 kHz,mplitude 5 mV).Fig. 7. Conductivity v.s. temperature of hybrid microporous membranes with dif-ferent contents of PLS.

    membrane, (II) gel polymer electrolyte formed by swelling of liquidelectrolyte in the HMGPEs, and (III) hybrid polymer matrix [27]. InHMGPEs, lithium ions migrate through (I) and (II). Because there aremany pores in the porous membranes, liquid electrolyte is absorbedby the polymer membrane to form gelled polymer electrolyte. Thepores interconnected in the hybrid polymer matrix offer the chan-nels for the migration of ions and play the role to improve the ionicconductivity of HMGPEs.

    Temperature dependence of ionic conductivity for the HMGPEsin the temperature from 25 to 85 C is shown in Fig. 7. The curvesof log versus 1/T for the HMGPEs exhibit a linear relationship,suggesting that ionic conduction behavior of HMGPEs obeys Arrhe-nius equation: = 0exp[-Ea/(RT)], where 0is the pre-exponentialindex and T is the testing temperature. The activation energy Ea ofPVdF/PLS-5, PVdF/PLS-10, PVdF/PLS-20 and pure PVdF-based GPEare 10.24, 8.74, 4.74 and 12.31 kJ mol1, respectively. As shown inFig. 7, the conductivity of the HMGPEs is increased at relatively hightemperature. Because the higher temperature enhances the seg-mental motion of the polymer chain, the dissociating of lithium-saltand PLS promotes which results in the improvement of conductiv-ity.

    Lithium ion transference number (tLi+) is an important param-eter to estimate the performance of polymer electrolytes. Thelithium-ion transference number (tLi+) could be calculated by usingasymmetric cell of Li/HMGPE/Li based on the experiment resultsof DC polarization combined with AC impedance spectra. Fig. 8shows the DC polarization plot and Nyquist plots before and afterpolarization of the (a) pure PVdF-based GPE and HMGPEs. tLi+ofthe pure PVdF-based GPE is 0.161, and tLi+of PVdF/PLS is increasedsignificantly by addition of PLS. The calculated values of tLi+ forHMGPEs are 0.419 of PVdF/PLS-5, 0.457 of PVdF/PLS-10 and 0.489of PVdF/PLS-20, respectively. Because the doped PLS chains weakenthe bonding energy between fluorine atoms of PVdF chain andlithium-ions from lithium salt, the ability of lithium-ion transfer-ence is improved. On the other hand, PLS release extra lithiumcation carriers, because being fixed anions of PLS hard free move inelectrolyte.

    The electrochemical stability of HMGPEs by linear sweepvoltammetry shows in Fig. 9. The linear sweep voltammetry isapplied for SS/HMGPE/Li cell at room temperature.The current inthe anodic high-voltage range results from a decomposition pro-cess associated with the polymer electrolyte, and the onset voltagerelated to the increase of the current can be considered as theupper limit of the electrolyte stability range [28]. The onset volt-age v.s. the increased current of GPE based on pure-PVdFis around

    4.7 V. HMGPEs based on the hybrid PVdF/PLS membrane exhibitgood electrochemical stabilities. With incorporation of PLS intothe polymer matrix, the onset voltage v.s. the increased current of

    ASUSHighlight

    ASUSHighlight

  • 518 Y. Xing et al. / Electrochimica Acta 136 (2014) 513520

    F b) PVDF/PLS-5,(c) PVDF/PLS-10, (d)PVDF/PLS-20. The insets are Nyquist plots before anda

    HstiHa

    ippoimpar

    F(

    ig. 8. DC polarization plot of (a) GPE based on pure PVDF, and HMGPEs based on (fter polarization.

    MGPEs are increased up to 4.95 V.The enhanced electrochemicaltability of HMGPEs is attributed to the exceptional affinity of PLSo liquid electrolyte, and the electrolyte solution tightly trappednto the pores of hybrid microporous membrane. The as-preparedMGPEs are expected to be suitable for application as membranend electrolyte in polymer lithium-ion batteries.Interfacial stability of HMGPE with lithium metal electrode

    s an essential factor to demonstrate their performance in theolymer lithium-ion batteries. Fig. 10 illustrates the initial Nyquistlots and the variation of interfacial resistance with storage timef Li/HMGPEs/Li symmetric cells at ambient temperature. Thempedance spectra show a distorted semicircle in the low and

    iddle frequency. The interfacial resistance is composed of bulkolymer electrolyte resistance (Rb) at high frequency regionnd interfacial resistance (Ri) at low and medium frequencyegions [23]. In order to investigate the mechanism of interfacial

    ig. 9. Electrochemical stability by LSV of HMGPEs based on PVDF doped with PLSSS/GPE/Li cells, scan rate: 5 mV s1).

    Fig. 10. AC impedance behaviors of Li/HMGPEs/Li cells (frequency range 100 kHz to10 Hz, amplitude 10 mV): (a) Nyquist plots, and (b) variation of interfacial resistancewith storage time (1) pure PVDF, (2) PVDF/PLS-5, (3) PVDF/PLS-10, (4) PVDF/PLS-20.

  • ica Acta 136 (2014) 513520 519

    iftdatFprfvtHdtv5ilba

    ecTbpcc(iacca

    Fig. 11. Initial charge-discharge curves of lithium-ion polymer cell(LiCoO2/HMGPE/Li) assembled with pure PVDF, PVDF/PLS-5, PVDF/PLS-10,PVDF/PLS-20.

    Fp

    Y. Xing et al. / Electrochim

    nteraction, the inset image of Fig. 10b shows the equivalent circuitor pure PVdF-based GPE and PVdF/PLS-based HMGPEs. Ri includeshe resistance of charge transfer in the electronic double-layer (Re),ouble layer capacitance (Cdl), resistance of the passivation film (Rf)nd interfacial reaction resistance (Rct). As shown in Fig. 10b, Ri ini-ially increases at the beginning six days, and trends to stable value.or example, the initialRi value is 220.9, 162.5, 134.6 and 259.6 forure PVdF-based GPE, PVdF/PLS-5, PVdF/PLS-10 and PVdF/PLS-20,espectively. After six days, the Ri values of the samples increasesrom 127 to 147% compared to the initial Ri values. The increasedalue of Ri may be attributed to the growth of a passivation film onhe lithium electrode surface due to reaction of lithium metal withMGPE. The growth of passivation layer is associated with theecomposition of the electrolyte or the reaction between the elec-rolyte and the lithium metal electrode [2931]. After 25 days, thealues of Rifollows in the order PVdF/PLS-10 (157.6 )

  • 5 ica A

    4

    dhstoumhiithpcbThccew

    A

    1iT

    R

    [

    [[[

    [

    [

    [

    [[[

    [

    [[

    [[[

    [

    [27] P. Zhang, L.C. Yang, L.L. Li, J. Membr. Sci 379 (2011) 8085.20 Y. Xing et al. / Electrochim

    . Conclusion

    A novel polyurethane lithium salt (PLS) is synthesized via con-ensation polymerization and neutralization with LiOH. PVdF/PLSybrid microporous membranes are prepared by the thermal phaseeparation technique. The doping of PLS plays the role of decreasinghe crystallinity () of PVdF polymer host, and the membranef PVdF/PLS presents uniform morphology and high electrolyteptake. Because the dendrite of PLS formed onto the wall of PVdFircropores constructs the ionic pathway through the polymerosts sites, the ion hopping conduction of PVdF/PLS composites improved. The enhanced electrochemical stability of HMGPEss attributed to the exceptional affinity of PLS to liquid elec-rolyte, and the electrolyte solution tightly trapped into the pores ofybrid microporous membrane. The corresponding hybrid micro-orous gel polymer electrolytes (HMGPEs) shows appreciable ioniconductivity (103 order of magnitude), high electrochemical sta-ility and excellent battery performance at room temperature.he assembled cell based on HMGPE of PVdF/PLS-20 delivers theighest charge-discharge capacity (about 175mAh g1), and theell based on HMGPE of PVdF/PLS-10 shows the best stability inycle performance. Incorporation of appropriate PLS provides anfficient way to improve the properties of gel polymer electrolyte,hich ensures it to be applied in the polymer lithium-ion battery.

    cknowledgements

    The work was sponsored NSF of China (Grant No. 51172032,1174043). Author also thanks Jiangsu Overseas Research & Train-ng Program for University Prominent Young & Middle-agedeacher and Presidents.eferences

    [1] B. Scrosati, Applications of Electroactive Polymers, Chapman and Hall, London,1993.

    [[[[

    cta 136 (2014) 513520

    [2] J. Xi, X. Qiu, X. Tang, W. Zhu, L. Chen, J. Power Sources 157 (2006) 501506.[3] A.M. Stephan, Eur. Polym. J. 42 (2006) 2142.[4] P. Santhosh, T. Vasudevan, A. Gopalan, K.P. Lee, J. Power Sources 160 (2006)

    609620.[5] P. Santhosh, A. Gopalan, T. Vasudevan, K.P. Lee, J. Appl. Polym. Sci 101 (2006)

    611617.[6] F. Liu, N.A. Hashim, Y.T. Liu, M.R. Moghareh Abed, K. Li, J. Membr. Sci 375 (2011)

    127.[7] E.S. Choi, S.Y. Lee, J. Mater. Chem 21 (2011) 1474714754.[8] Z. Gadjourova, Y.G. Andreev, D.P. Tunstall, P.G. Bruce, Nature 412 (2001)

    520523.[9] C.X. Wang, T. Sakai, O. Watanabe, K. Hirahara, T. Nakanishi, J. Electrochem. Soc

    150 (2003) 11661170.10] X.J. Wang, J.J. Kang, Y.P. Wu, S.B. Fang, Electrochem. Commun 5 (2003)

    10251029.11] F. Croce, L. Settimi, B. Scrosati, Electrochem. Commun 8 (2006) 364368.12] L.Z. Fan, J. Maier, Electrochem. Commun 8 (2006) 17531756.13] M.T. Li, L. Yang, S.H. Fang, S. Dong, S.-I. Hirano, K. Tachibanac, Polym. Int 61

    (2012) 259264.14] G.B. Appetecchi, G.T. Kim, M. Montanino, M. Carewska, R. Marcilla, D. Mecer-

    reyes, I.D. Meatza, J. Power Sources 195 (2010) 36683675.15] C.H. Kim, K.H. Lee, W.S. Kim, J.K. Park, D.Y. Seung, J. Power Sources 94 (2001)

    163168.16] Y.S. Zhu, X.W. Gao, X.J. Wang, Y.Y. Liu, Y.P. Wu, Electrochem. Commun 22 (2012)

    2932.17] J. Evans, C.A. Vincent, P.G. Bruce, Polymer 28 (1987) 23242328.18] K.M. Abraham, Z. Jiang, B. Carroll, Chem. Mater 9 (1997) 19781988.19] N. Wu, Q. Cao, X.Y. Wang, S. Li, X.Y. Li, H.Y. Deng, J. Power Sources 196 (2011)

    97519756.20] M. Ulaganathana, C.M. Mathewb, S. Rajendran, Electrochim. Acta 93 (2013)

    230235.21] M.A. Ratner, D.F. Shriver, Chem. Rev 88 (1988) 109124.22] W. Xiao, X.H. Li, H.J. Guo, Z.X. Wang, Y.H. Zhang, X.P. Zhang, Electrochim. Acta

    85 (2012) 612621.23] F. Croce, G.B. Appetacchi, L. Persi, B. Scrosati, Nature 394 (1998) 456458.24] Y.J. Wang, D. Kim, Electrochim. Acta 52 (2007) 31813189.25] P. Raghavan, X.H. Zhao, J. Manuel, G.S. Chauhan, J.H. Ahn, H.S. Ryu, H.J. Ahn,

    K.W. Kim, C.W. Nah, Electrochim. Acta 55 (2010) 13471354.26] M. Matsumoto, T. Ichino, J.S. Rutt, S. Nishi, J. Electrochem. Soc 141 (1994)

    19891993.28] W.W. Cui, D.Y. Tang, Z.L. Gong, J. Power Sources 223 (2013) 206213.29] S. Ahmad, Ionics 15 (2009) 309321.30] F.B. Dias, L. Plomp, J.B.J. Veldhuis, J. Power Sources 88 (2000) 169191.31] K. Xu, Chem. Rev 104 (2004) 43034417.

    http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0005http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0005http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0005http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0005http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0005http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0005http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0005http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0005http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0005http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0005http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0005http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0010http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0015http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0015http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0015http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0015http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0015http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0015http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0015http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0015http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0015http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0015http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0020http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0025http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0030http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0035http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0035http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0035http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0035http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0035http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0035http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0035http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0035http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0035http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0035http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0035http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0035http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0040http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0040http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0040http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0040http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0040http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0040http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0040http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0040http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0040http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0040http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0040http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0040http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0040http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0040http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0045http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0050http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0050http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0050http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0050http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0050http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0050http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0050http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0050http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0050http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0050http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0050http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0050http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0050http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0050http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0050http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0055http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0055http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0055http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0055http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0055http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0055http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0055http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0055http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0055http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0055http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0055http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0055http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0055http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0060http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0060http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0060http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0060http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0060http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0060http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0060http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0060http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0060http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0060http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0060http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0065http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0070http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0075http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0080http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0085http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0085http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0085http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0085http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0085http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0085http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0085http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0085http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0085http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0085http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0085http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0085http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0090http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0090http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0090http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0090http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0090http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0090http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0090http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0090http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0090http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0090http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0090http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0090http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0090http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0095http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0100http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0100http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0100http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0100http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0100http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0100http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0100http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0100http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0100http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0100http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0100http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0100http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0100http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0105http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0105http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0105http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0105http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0105http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0105http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0105http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0105http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0105http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0105http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0105http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0110http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0115http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0115http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0115http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0115http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0115http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0115http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0115http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0115http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0115http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0115http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0115http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0115http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0115http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0115http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0120http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0120http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0120http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0120http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0120http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0120http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0120http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0120http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0120http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0120http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0120http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0125http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0130http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0135http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0135http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0135http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0135http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0135http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0135http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0135http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0135http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0135http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0135http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0135http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0135http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0135http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0135http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0140http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0140http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0140http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0140http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0140http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0140http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0140http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0140http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0140http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0140http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0140http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0140http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0140http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0140http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0145http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0145http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0145http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0145http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0145http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0145http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0145http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0145http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0150http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0150http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0150http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0150http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0150http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0150http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0150http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0150http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0150http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0150http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0150http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0150http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0150http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0150http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0155http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0155http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0155http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0155http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0155http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0155http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0155http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0155http://refhub.elsevier.com/S0013-4686(14)01124-4/sbref0155

    Preparation of hybrid polymer based on polyurethane lithium salt and polyvinylidene fluoride as electrolyte for lithium-io...1 Introduction2 Experimental2.1 Materials2.2 Preparation of polyurethane lithium salt (PLS)2.3 Preparation of PVdF-based hybrid microporous membrane2.4 Characterization2.5 Porosity and electrolyte uptake measurement2.6 Electrochemical measurement

    3 Result and discussion4 ConclusionAcknowledgementsReferences