present status and future challenges of ccs in japan · present status and future challenges of ccs...

26
Present Status and Future Challenges of CCS in Japan Takuro Okajima Chief Administrator, Global Environmental Partnership Office, Ministry of Economy, Trade and Industry, Japan Nov. 17, 2016

Upload: vukhue

Post on 05-Jun-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

Present Status andFuture Challenges of CCS in Japan

Takuro OkajimaChief Administrator,

Global Environmental Partnership Office, Ministry of Economy, Trade and Industry, Japan

Nov. 17, 2016

1

1. Introduction・ Japan’s Policy for Climate Change & CCS・ Overview of Tomakomai CCS Project

2. Main Features of Tomakomai CCS Proect・ CCS History in Japan, from Nagaoka to Tomakomai・ 2-stage Chemical Capture System・ Decision of Injection Well Locations・ Drilling & Completion Design・ Reservoir Evaluation・ Deployment of Monitoring Systems・ Applicable Lows & Regulations・ Stakeholder Engagement

3. Future Task

Contents

2

Japan’s Climate Change Policy in a post COP21 World

1. Domestic mitigation measures toward the INDC1. Domestic mitigation measures toward the INDC

2. Promotion of Innovation2. Promotion of Innovation

3. Contribution to emission reductions in developing country 3. Contribution to emission reductions in developing country 

Japan’s GHG emission reduction target draft by 2030 (INDC) Reduction of 26.0% by fiscal year FY 2030 compared to FY 2013

(25.4% reduction compared to FY 2005) ensuring consistency with its energy mix, set as a feasible reduction    target by bottom‐up calculation with concrete policies and measures.

* Policy on CCS…Basic Energy Plan(2014)Promote R&Ds of CCS for the practical use of CCS technology around 2020.

Energy & Environment Innovation Strategy Innovation for Cool Earth Forum (ICEF)

Linkage between the Technology Mechanism & Financial Mechanism Joint Crediting Mechanism(JCM) & other international Contributions

AA

Projects / FY 2015 2016 2017 2018 2019 2020~

A

Con-struction

CO2 Injection0.1 ~ 0.2 Mt/year

Post Injection Monitoring

R&Ds(2) CO2 Capture Technologies

TomakomaiDemo Pj.

Practical use of 

CCS tech.

Drilling Exploration wells

CCS Site Survey

Geological Survey

Overview of CCS Projects in Japan

A(1) Safety Evaluation Technologies

Verifying Safety Evaluation Technologies

Cost Reduction

Identifying CO2 Storage Site

Achieving Operation Abilities

Confirming  CCS safety

Aiming for the practical use of CCS technology around 2020, METI isconducting Tomakomai Demonstration Project, R&D of elementaltechnologies for CCS, and surveys for potential CO2 storage sites.

Aiming for the practical use of CCS technology around 2020, METI isconducting Tomakomai Demonstration Project, R&D of elementaltechnologies for CCS, and surveys for potential CO2 storage sites.

3

Pipeline c.a.1.4km

4

CCS Demonstration Project in Tomakomai

TOKYO

Tomakomai

Seaward→

Reservoir : Sandstone layers of Moebetsu Fm.1,000~1,200m under the seabed

Reservoir : T1 Member of Takinoue Fm.2,400~3,000m under the seabed

PSA offgas containing CO2

PSA system in hydrogen production unit

Capturing 100,000 t/year or more of CO2

Activated amine process

Compressors

Injection wells

*PSA (Pressure Swing Adsorption )

The first large scale CCS project in Japan commissioned by METI to JCCS Ltd. Technical safety & reliability of full CCS system is demonstrated at large scale. 100,000 t/year of CO2 from oil refinery is captured & injected into sub-seabed.

The first large scale CCS project in Japan commissioned by METI to JCCS Ltd. Technical safety & reliability of full CCS system is demonstrated at large scale. 100,000 t/year of CO2 from oil refinery is captured & injected into sub-seabed.

PSA Off Gas・25,000 Nm3/h・0.04MPaG・CO2 = 51.6 %

H2 = 38.8 %,CH4 = 6.6 %CO = 2.3 %H2O = 0.7 %

*CSLF Recognition Project (Oct. 2016 - )

産業技術環境局 環境調和産業・技術室03-3501-9271Capture Facility (Bird’s Eye View)

5

From CO2source

CO2

産業技術環境局 環境調和産業・技術室03-3501-9271Schedule & Progress of Tomakomai CCS Project

Construction & test-operation of facilities, injection wells & monitoring system completed by FY 2015 with no delay & lower cost than expected.

CO2 capture, injection & monitoring are being conducted from April 2016. After injection, stored CO2 will be monitored for 2 years from 2019.

Construction & test-operation of facilities, injection wells & monitoring system completed by FY 2015 with no delay & lower cost than expected.

CO2 capture, injection & monitoring are being conducted from April 2016. After injection, stored CO2 will be monitored for 2 years from 2019.

Onshore

FacilitiesM

onitoringSystem

InjectionW

ells

FY 2012 2013 2014 2015 2016-2018 2019 - 2020

Engineering, Procurement, and Construction

Engineering, Procurement, and Construction

Post InjectionMonitoring

Site works

Drilling

Baselinemonitoring

Test‐operation

Injection

Monitoring

Operation

7

Test Injection to Moebetsu Fm. In April, May 2016

For reservoir evaluation, step rate injection test was conducted. Test injection completed without any reservoir trouble. For reservoir evaluation, step rate injection test was conducted. Test injection completed without any reservoir trouble.

CCS History in Japan

NagaokaProject<Onshore>

Tomakomai Project< Sub‐Seabed >

1990 2000 2010 2020

PracticalUse of CCS

KubikiCO2EOR10,000 t

SarukawaCO2EOR10,000 t

TOKYO

NAGAOKA

TOMAKOMAI

SARUKAWA

KUBIKI

Nagaoka CCS Project (by RITE)Nagaoka CCS Project (by RITE)

Cap rock

SalineAquifer

1,100m

Vaporization unit

Injection Well

Storage Tank

・Jul.2003 – Jan.2005・Saline Aquifer・10,400 tons CO2

・CO2 from the market・3 observation wells

・Confirmed CO2 Storage bycross hole seismic tomography・CO2 Storage Simulation with

Geochemical Reactions,・Stored CO2 was not affected

by 2 big quakes in 2004 & 2007.(which were unrelated to CCS)

・Larger scale・Total system・Optimization・Tech. standard⇒Tomakomai

CCS Project

For NextAchievementsAchievements

Operation

SiteSurvey

5.8 years post injection

CO2 plume

Preparation for Large scale Demonstration Project

・Recommendation to launch 20 large-scale CCS demo project by2020・After G8, Decision of

CCS project in Japan was made in Jul.2008.

・First private CCS firm in Japanestablished in 2008・Stockholders comprising 35

Japanese leading companies representing various industries:oil & gas, power, engineering, steel manufacturing, etc.・Conducting Tomakomai Project

・First comprehensive guideline forlarge scale CCS project in Japan・Geological requirements・Capture, transportation, injection・Monitoring deployment for

environmental assessment・Commissioners from universities,

firms of plant, oil&gas, power…

2008 2009 2010 2011 2012 ‐ 2015 2016 ‐

Japan CCS

G8@Japan Guideline

G8@Hokkaido, JapanG8@Hokkaido, JapanJapan CCS Ltd. (2008~)Japan CCS Ltd. (2008~) Guideline for CCS ProjectGuideline for CCS Project

Site Survey & Facility Design for Demo Pj Preparation for CCS

Japanese Stockholders

CO2 Injection 

Policy

Project

Energy Basic Plan(2014)

Site Decision(2011)

10

Site Selection (2008~2011)

・Non structure・Saline Aquifer・Onshore・Survey well drilling→Low Permeability

・Depleted Gas Reservoir・CO2 from IGCC・Offshore & Pipeline・Quitted due to The Great

East Japan Earthquake in 2011

・Structure &Non structure type・Saline Aquifer・CO2 From Refinery・Onshore & ERD

Decision of Site atTechnical Committee

Site Selection Process

Test well Drilling

Adopted by Committee

TomakomaiTomakomai

Kita-KyushuKita-Kyushu Nakoso-Iwaki OkiNakoso-Iwaki Oki

Seismic Survey

Geological Study・Existing Site Data・Seismic Survey・Survey Well

Facility Design・Capture・Transportation・Injection System・Monitoring items

Public Acceptance

Reservoir Study・Geological modeling・Reservoir Characterization

11

2-stage Chemical Capture System

・Off gas from refinery contains 50% CO2・Requirement of CCS Committee in 2011⇒Low energy consumption (< 1.5 GJ/ton)・Requirement of Act on Prevention of

Marine Pollution and Maritime Disaster⇒High CO2 concentration (>98%)

Requirements for Capture ProcessRequirements for Capture Process Conventional Chemical Capture by AmineConventional Chemical Capture by Amine

③Stripping Tower

②LPFT

①Absorption Tower

Tomakomai CCS Project 2-stage Capture by AmineTomakomai CCS Project 2-stage Capture by Amine

2. CO2 is stripped from Amine by ・Depressurization ・Thermal energy of water vapor of CO2 stripper.

②Low-pressure Flash Tower

(LPFT)

CO2 :51.6 %H2 :38.8 %

Off gas

①CO2 AbsorptionTower

1. CO2 is absorbed byAmine at low temp.

3. CO2 lean Amine is sentto absorption tower

1. CO2 is absorbed byAmine at low temp.

・High purity CO2( >99%)

③CO2 StrippingTower

CO2-lean gas

CH4 :6.6 %CO :2.3 %

Heat … 1.2 GJ/ton(1/3-1/2 of conventional one)

3. Great part of Amine from LPFTLPFT is sent to absorption tower

Propriety Activated MDEA was provided by BASF

5. CO2 lean Amine is sentto absorption tower.

Heat

4. Only Small part of Amine is sent to stripper & heated.

⇒Heat energy can be reduced.

CO2CO2-lean gas

Emissiongas

CO2 AbsorptionTower

2. CO2 is strippedFrom amine bybeing heated .

CO2 Stripping Tower

12

Decision of Injection Well Locations

○Picking out 3 well trajectories ・Uncertainty in depth of reservoir structure ・By study on sedimentary environment

○Short term forecasting by simulation・Storage capacity・Injectivity⇒Decision of well

Trajectory

○Long term forecasting by simulation・Reservoir pressure & CO2 distribution・Long time sealing capacity of cap rock・Geochemical reactions⇒ Confirmation of

safety storage

Stochastic Modelingfrom Seismic Survey

Survey Well DrillingLogging & Coring⇒100 realizations

30.00

31.00

32.00

33.00

34.00

35.00

36.00

37.00

38.00

39.00

40.00

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

BHP

Gas m

ass rate to

n/year Cum

 gas to

n

圧入開始からの経過年数

Gas_mass Cum_Gas Mass BHP

Permeability Map

P10 Model

4km

4. Decision of well locations4. Decision of well locations

Permeability Map

P50 Model

Permeability Map

P90 Model Trajectory candidates

1. Reservoir Modeling1. Reservoir Modeling 2. Well Trajectory candidates2. Well Trajectory candidates

3. Long Term Forecasting3. Long Term Forecasting

Injection Well for Moebetsu Fm.

Injection Well for Takinoue Fm.

Cap rock

Moebetsu Fm(Sandstone)

Cap rock

Takinoue Fm(Volcanic Rock)

3km

Seaward→

13

Drilling & Completion DesignChallengesChallenges

○ Highly deviated well⇒Danger of drill pipe stuck

○ Unconsolidated Reservoir⇒Danger of collapse, sand trouble

○ CO2 Injection⇒Countermeasures for corrosion

AnalysesAnalyses

○ Particle size distribution by survey well core

Extended Reach DrillingExtended Reach Drilling

○ Overbalance pressure controlto avoid Bore hole Collapse

○ Lubricant, Synthetic mud & Casingdrive system to avoid stacking

○ Spotting High viscosity mudfor effective bore hole cleaning

Sand ControlSand Control・Wire rap screen ◎Avoid sand trouble◎Keep good injectivity◎Low operation risk・Gravel pack・Stand alone・Expandable sand screen

○ CO2 corrosion resistant steelcontaining Cr for Casing & Tubing

○ CO2 resistant Cementing

Selection of MaterialsSelection of Materials

○ Wellbore Stability Analysis・Uniaxial compression test・Rock strength evaluation from Logs・Perforation stability analysis

Wire rap screen

○ Corrosion test in high press, Stress Test…

Corrosion TestParticle size distribution analysis

14

Injection well for Moebetsu Formation

KOPdepth

Verticaldepth

Horizontalreach

Maximuminclination

Totaldepth

240m 1,188m 3,058m 83° 3,650m

Perforated liner covered by screensat injection  interval

Perforated liner Screen

PT sensorCO2 resistant cement

CO2 corrosion resistantsteel (Chrome)

Drilling :12th March 2015 ‐ 22nd June 2015

CO2 resistant cement

Tubing‐Retrievable Safety Valve(TRSV)

TRSV

Quaternary

Moebetsu Fm(Mudstone)

Mukawa Fm

464mMD458mVD

1,525mMD864mVD

2,395mMD970mVD

Moebetsu Fm(Sandstone)

TD 3,650mMD1,188mVD

15

Reservoir Evaluation

Verification of simulator(GEM / TOUGHREACT)Time-lapse monitoring・PT measurement・Logging・Fluid Sampling

Short term CO2 behavior forecasting⇒ Storage capacity, Injectivity analysis

Long term safety of CO2 storage⇒ Sealing capacity, CO2 plume size,

CO2 solubility, Geochemical Reaction

ObjectivesObjectives Seismic surveySeismic survey

Pressure Transient AnalysisPressure Transient Analysis

Geochemical AnalysisGeochemical Analysis

⇒ Now under Evaluation

PTA from FOT○ Evaluate permeability & skin factor○ Analyze time-lapse Injectivity Index○ Estimate injection zone & reservoir

shapeBrine Injection Test

in 2014Brine Injection Test

in 2014CO2 Injection Test

in 2016CO2 Injection Test

in 2016

Annual seismic survey⇒confirm CO2 plume

⇒ Now under Evaluation

Forecasting of Moebetsu Fm (study in 2015)○ Coupled Reservoir-Geochemical simulation○ BHP will notably have decreased by 2023.○ CO2 plume will be less than 1km in diameter

1,000 years later.○ 60% CO2 will be stored by mineral trapping

10,000 years later.

Reservoir Model Updating & ForecastingReservoir Model Updating & ForecastingCO2 saturation map@10,000 years later

Cap rock

Reservoir

Injection wellCO2 Plume

1 km

16

CO2 Flow Simulation for Moebetsu Formation

Completion of Injection

After 200 yearsWell head location

Well head locationGas Saturation Well head location

Well head location

Molality(CO2)

An example of CO2 saturation and molality maps after 600,000 tonnes CO2 injectionAn example of CO2 saturation and molality maps after 600,000 tonnes CO2 injection

CO2 plume is less than 1km in diameter

OBS(Ocean Bottom Seismometer)

OBS(Ocean Bottom Seismometer)

産業技術環境局 環境調和産業・技術室03-3501-9271Deployment of Monitoring Systems

1. To distinguish CCS influence from natural earthquakes2. To monitor CO2 behavior & model updating

There are little experience in use of micro-seismic system⇒ Follow Guideline(2009)

Establish site specific monitoring system

Difficulties & CountermeasureDifficulties & Countermeasure

ObjectivesObjectives Quake frequency

17

OBC(Ocean bottom Cable)

OBC(Ocean bottom Cable)

産業技術環境局 環境調和産業・技術室03-3501-9271Publication of Monitoring Data

18

Raw data from systemsRaw data from systems

Publication for PAPublication for PA

Processing SchemeProcessing Scheme

Events DetectionEvents Detection TomakomaiCity officeInjection(Apr.2016-)Baseline observation

19

Earthquake Information Announced by the Japan Meteorological Agency

Time & date 14:21:28(JST) 16 June, 2016

Epicenter Lat. 41°56.9′NLon. 140°59.2′E

Depth 11 km

Magnitude 5.3 

Seismic Intensity at near epicenter and Tomakomai

Lower 6 and 2on Japanese seismic scale

approx. Ⅷ and approx. Ⅱ‐Ⅲon Mercalli intensity scale

X

Y

Z

Observation record of Onshore Seismometer     

Pressure (M

pa)

Tempe

rature

(deg.C)

Injection well for Moebetsu Fm. Average Pressure: 9.56MPa (at 930m in depth)

Injection well for Moebetsu Fm. Average Temperature: 38.0 (at 930m in depth)

Distance of approx.90km

This earthquake had no influence on temperature and pressure of the cap rock strata.

Monitoring Area

Borehole Pressure

Borehole Temperature

TomakomaiThree components

30sec.

An example of Natural Earthquake after CO2 injection

Gaseous CO2CO2>99%

Remaining gasfor fuel

Injection well for Moebetsu Fm.М

From CO2source

CO2 Capturelow pressure compression 

Low‐pressure boiler

PSA off gas

Compressor for PSA off gas

High‐pressure boiler

Injection well for Takinoue Fm.

Max. 9.3 MPa

Max. 22.8 MPa

Amine reboiler

Steam turbine for power generation

CO2

CO2CO2

Gas Business Act

High Pressure Gas Safety Act

Industrial safety and Health Act

Electricity Business Act

Act for the Prevention of Marine Pollution and Maritime Disasters

Note: Fire Service Act is applied to the facilities related Amine and Bunker A.

Process Flow and Applicable Laws

Conventional industrial laws are applicable for the facilities.Conventional industrial laws are applicable for the facilities.

high pressure compression 

Applicable LawsApplicable Laws

20

Marine environment shall be surveyed based on “Act on Prevention of Marine Pollution and Maritime Disaster” by which geological storage of CO2 under the seabed is regulated.

Marine environment shall be surveyed based on “Act on Prevention of Marine Pollution and Maritime Disaster” by which geological storage of CO2 under the seabed is regulated.

Modified from Tomakomai Port Plan

Side-Scan Sonar Water Sampler

Dredge Unit

ROV

Marine Environmental Survey

Survey area

Bottom Sampler

HistoryHistory

・Marine Environmental Survey (4times/year)・Seismic Survey (Every year)

Plan for MonitoringPlan for Monitoring

Application Scheme for PermissionApplication Scheme for Permission

METI MOE

Commission

Plan, Report

Application

PermissionInquiry Opinion

Marine Environmental SurveySurvey point Injection point

Marine Environmental SurveySurvey point Injection point1972.11 : London Protcol Adoption

1980.11 : Act on Prevention of Marine Pollutionand Maritime Disaster, in Japan

2006.11 : Amendment of the 1996 London Protocol Annex I on CO2 storage

2007.11 : Japan amended the domestic law

2 km

産業技術環境局 環境調和産業・技術室03-3501-9271Stakeholder Engagement & Public Outreach

22

④ Kids Science Rooms③ Env. Exhibitions

⑤ CCS Forum 4 times (2013 - )

・PO from early stage (2008 ~)・Correct information・Interactional & direct

communication・Contribution for local business

・Low recognition of CCS in Japan・Conservative nationality for safety in Japan・CCS project near the city・Various local stakeholders

・Communities・Fishermans・Businesses

② Site Visits1570 persons(in FY2015)

DifficultiesDifficulties Basic Strategy of POBasic Strategy of PO

① Panel ExhibitionsMore than 20 times

Future Task

Accomplish Tomakomai CCS Project safely Further Cost reduction on Capture, Storage & Monitoring Establish the effective risk management system Identifying CO2 storage sites & evaluating its potentials

Introducing financial mechanisms to drive private projects Legislation for safety operation Enhancing Public Acceptance

Establishment of CCS practical Technology in JapanEstablishment of CCS practical Technology in Japan

Condition for CCS deploymentCondition for CCS deployment

Dendrimer

Projects aiming for practical use of CCSR&D on Solid Sorbent for chemical captureR&D on Solid Sorbent for chemical capture R&D on Molecular Gate Membrane (MGM)R&D on Molecular Gate Membrane (MGM)

R&D on CO2 storage technologiesR&D on CO2 storage technologies Site Survey ProjectSite Survey Project

Specify at least 3 sites by 2021 by seismic &drilling exploration for CCS deployment in Japan.Specify at least 3 sites by 2021 by seismic &drilling exploration for CCS deployment in Japan.

Establish the effective & practical monitoringsystem for environmental effect of stored CO2Establish the effective & practical monitoringsystem for environmental effect of stored CO2

Novel amine solid sorbents is expected to save energy & cost compared to iquid amine.Novel amine solid sorbents is expected to save energy & cost compared to iquid amine.

Membrane is applicable to high pressured gas &expected as a cost effective capture technology.Membrane is applicable to high pressured gas &expected as a cost effective capture technology.

2D SeismicSurvey

3D SeismicSurvey

Survey wellDrilling

SpecifyStorage

Sites

FY 2014 - 2020 2020 -

CO2 H2CO2H2

Conventionalmembrane

Molecular GateMembrane

Only CO2 molecules pass through MGM.

Monitoring technology by the use of optical fiber

25

Q & A↓

[email protected]

Japan CCS booth

Valid until Mar.31.2017

Companies & Organization # 3