presentatie freya blekman

32
Managing the data of the Large Hadron Collider (and other particle physics experiments) Prof. Dr. Freya Blekman Interuniversity Institute for High Energies Vrije Universiteit Brussel

Category:

Data & Analytics


0 download

DESCRIPTION

Managing the data of the Large Hadron Collider

TRANSCRIPT

Page 1: Presentatie Freya Blekman

Managing  the  data  of  the  Large  Hadron  Collider    

(and  other  particle  physics  experiments)  

 Prof.  Dr.  Freya  Blekman  

Interuniversity  Institute  for  High  Energies  Vrije  Universiteit  Brussel  

Page 2: Presentatie Freya Blekman
Page 3: Presentatie Freya Blekman
Page 4: Presentatie Freya Blekman

O

H C

Page 5: Presentatie Freya Blekman
Page 6: Presentatie Freya Blekman

νe

u d

e ≈  

Page 7: Presentatie Freya Blekman

The  “Standard  Model”  

§  Over  the  last  ~100  years:  The  combination  of    Quantum  Field  Theory  and  discovery  of  many  particles  has  led  to    

§  The  Standard  Model  of  Particle  Physics  §  With  a  new  “Periodic  Table”  of  fundamental  elements  

Matter  p

articles

  Force  particles  

One  of  the  greatest  achievements  of  20th  Century  Science      

Page 8: Presentatie Freya Blekman

The  Standard  Model!      

Page 9: Presentatie Freya Blekman

The  Large  Hadron  Collider  

General  Purpose,  pp,  heavy  ions  

CMS

ATLAS  

General  Purpose:  pp,  heavy  ions  

Page 10: Presentatie Freya Blekman

Compact  Muon  Solenoid  (CMS)  

Silicon

Pixels

c c c

µ+

e+

γ, πo

K-, π-,p,…

ν

Muon detectors

Hadron calorimeter

Crystal Electromagnetic

calorimeter

4 Tesla

Solenoid

All Silicon Strip

Tracker

Ko→ π+π-, …etc

Page 11: Presentatie Freya Blekman

Quite  a  camera  §  CMS  is  like  a  camera  with  90  Million  pixels  §  But  no  ordinary  camera  §  It  can  take  up  to  40  million  pictures  per  second  §  The  pictures  are  3  dimensional  §  And  at  15  million  kilograms,  it’s  not  very  portable  

§  LHC  data  challenge:  The  problem  is  that  we  cannot  store  all  the  pictures  we  can  take  so  we  have  to  choose  the  good  ones  fast!    

Page 12: Presentatie Freya Blekman

Experimental  Challenges  –  Big  Data  in  Particle  Physics  

§  Collisions  are  frequent      §  Beams  cross  ~  16.5  million  times  per  second  at  

present  §  About  20-­‐30  pairs  of  protons  collide  each  

crossing  §  Interesting  collisions  are  rare  -­‐      

§  less  than  1  per  10  billion  for  some  of  the  most  interesting  ones  

§  We  record  only  about  400  events  per  second.    

§  We  must  pick  the  good  ones  and  decide  fast!  

§  Decision  (‘trigger’)  levels  §  A  first  analysis  is  done  in  a  few  millionths  of  a  

second  and  temporarily  holds  100,000  pictures  of  the  16,500,000  

§  A  final  analysis  takes  ~  0.1  second  and  we  use  ~10000  computers    

§  We  still  end  up  with  lots  of  data  –  1  GB  per  second!  

Symmetry  magazine’s  summary  infographic  of  LHC  data  volumes  

Page 13: Presentatie Freya Blekman

CERN  

Page 14: Presentatie Freya Blekman

Data  distribution  §  Grid  connects  >100,000  processors  in  34  countries  

22  Petabytes  in  2011  

Page 15: Presentatie Freya Blekman

CMS  data  in    Belgium  §  In  Flanders:  CMS  T2  hosted  at  VUB  §  Alternative  T2  at  UCL  

§  Access  to  all  CMS  members  all  over  the  world  §  And  main  working  node  for  all  Flemish  (+  ULB/UMons)  particle  physicists  

§  Brussels  Computing  cluster  (Tier  2  computer  center):     Consist  of  modular  PCs      440  TB  storage  space  (and  growing)  for  Belgian  users  

  2.2  PB  storage  space  for  CMS     19  TeraFLOPS  (FLoating-­‐point  Operations  Per  Second)     Funding  agencies:  FRS-­‐FNRS  (ULB,  UMons)  FWO-­‐BigScience  –  Vlaams  Supercomputing  Centrum  (VUB)    

Page 16: Presentatie Freya Blekman

Other  CMS  data  

DBTA Workshop on Big Data, Cloud Data Management and NoSQL Big Data Management at CERN: The CMS Example

Other CMS Documents"

x    4000  people      …  for  many  decades

J.A. Coarasa (CERN) 25!

Page 17: Presentatie Freya Blekman

Other  CMS  data  

DBTA Workshop on Big Data, Cloud Data Management and NoSQL Big Data Management at CERN: The CMS Example

Other CMS Documents: Size"

A printed pile of all CMS documents that are already in a managed system

= 1.0 x (Empire State building)

Plus we have almost the same amount spread all over the place (PCs, afs, dfs,

various  websites  …)

J.A. Coarasa (CERN) 26!

Page 18: Presentatie Freya Blekman

LHC  open  data?  §  LHC  and  CERN  have  very  strict  policies  regarding  publication  of  their  results  §  ALL  journal  publications  (including  those  in  Nature/Science)  are  made  public  

§  Publishing  in  open  access  journals  the  norm  

§  However,  most  of  our  data  is  only  accessible  to  those  in  the  collaboration  

§  Exception:  there  are  datasets  available  for  education  use  §  http://physicsmasterclasses.org/index.php  

Secondary  school  student  accessing  public  CMS  data  at  Vrije  Universiteit  Brussel  

Page 19: Presentatie Freya Blekman

Open  data  in  (astro)  particle  physics  §  The  IceCube  experiment  is  another  particle  physics  experiment  studying  elementary  particles  of  astrophysical  origin  

§  Based  at  the  South  Pole,  IceCube  includes  Belgian  scientists  from  VUB/ULB/UGent/Umons  

§  IceCube  data  is  analysed  with  the  same  cluster  in  Brussels  as  mentioned  before  

Page 20: Presentatie Freya Blekman

Extreme  High  energy  neutrinos  §  One  of  the  most  exciting  IceCube  results  involves  the  observation  of  outrageously  high-­‐energy  neutrinos  from  cosmic  origin  

§  Evidence  for  High-­‐Energy  Extraterrestrial  Neutrinos  at  the  IceCube  Detector,  IceCube  Collaboration,  Science  342,  1242856  (2013).  DOI:  10.1126/science.1242856    

§  After  publication,  the  IceCube  collaboration  has  made  this  data  available  to  the  scientific  community  

§  http://icecube.wisc.edu/science/data  

 

Page 21: Presentatie Freya Blekman

§  Working  through  40  million  collisions  per  second  provides  a  daunting  challenge  processing  huge  amounts  of  data  

§  Journal  publications  of  LHC  experiments  all  public  

§  Other  experiments  such  as  IceCube  also  make  some  of  their  datasets  public  after  publication  

 

Outlook  and  Conclusion  

Page 22: Presentatie Freya Blekman

pp physics at the LHC corresponds to conditions around here

HI physics at the LHC corresponds to conditions around here

Page 23: Presentatie Freya Blekman

Where  the  largest  and  smallest  things  meet  

Page 24: Presentatie Freya Blekman

The  Dark  Side  §  We  now  know  that  only  ~5%  of  the  energy  in  the  universe  is  ordinary  matter  (remember  E=mc2).    

§  25%  is  dark  matter    §  SUSY  theories  can  happily  predict  this  amount  

§  There  are  other  possibilities  but  SUSY  is  a  favorite  §  Provides  great  dark  matter  candidates      (e.g.  Neutralino  or  Gravitino)  

§  Leads  to  remarkable  unification  of  field  strengths  §  And  it  fixes  the  Higgs  mass  problem  

Page 25: Presentatie Freya Blekman

How  would  we  see  the  Higgs  Boson  ?  Simulation  –  to  predict  and  design  detector  –  and  to  compare  to  what  we  actually  see  

NB:  These  old  plots  correspond  to  ~50  times  more  sensitivity  than  we  have  now  (20x  more  data,  2x  the  energy)!  

Page 26: Presentatie Freya Blekman

§  all  channels  together:                      comb.  significance:  4.9  σ  

§  expected  significance    for  SM  Higgs:  5.9  σ    

 

Characterization  of  excess  near  125  GeV  

26

Page 27: Presentatie Freya Blekman

[GeV]4lm

Eve

nts

/ 3 G

eV

0

2

4

6

8

10

12

[GeV]4lm

Eve

nts

/ 3 G

eV

0

2

4

6

8

10

12 Data

Z+X

*,ZZaZ

=126 GeVHm

µ, 2e2µ7 TeV 4e, 4µ, 2e2µ8 TeV 4e, 4

CMS Preliminary -1 = 8 TeV, L = 5.26 fbs ; -1 = 7 TeV, L = 5.05 fbs

[GeV]4lm80 100 120 140 160 180

Page 28: Presentatie Freya Blekman

Standard  Model  Higgs  Decays  

§  The  SM  Higgs  is  unstable  §  Decays  “instantly”  in  a  number  of  ways  with  very  well  known  probabilities  

(called  Branching  Fractions  or  Ratios  that  sum  up  to  1).  §  Branching  ratios  change  with  mass  as  seen  here  §  Some  decay  modes  are  more  easily  seen  than  others     Firstly  if  they  end  with  electrons,  muons,    or  photons  

Page 29: Presentatie Freya Blekman

Supersymmetry  

Page 30: Presentatie Freya Blekman
Page 31: Presentatie Freya Blekman
Page 32: Presentatie Freya Blekman

What  made  us  so  sure  about  the  Higgs?  

§  The  Brout-­‐Englert-­‐Higgs  theory  has  predictable  consequences  §  It  predicts  very  heavy  force  particles  that  carry  the  weak  nuclear  force  known  as  the  W+,  W-­‐  and  Zo    

§  The  W+,  W-­‐    should  both  have  a  mass  of  80.4  GeV       Note  that  the  proton  has  a  mass  of  1  GeV  so  these  are  very  heavy  fundamental  particles!  

§  The  Zo  should  have  a  mass  of  91.1  GeV    §  We  find  these  predicted  particles  &  measure  their  masses  §  For  instance,  the  Zo  should  decay  to  two  muons.  We  can  measure  their  momenta  and  reconstruct  the  Zo  mass.  

§  If  we  do  this  for  many  Zo  particles,  a  distribution  of  the  mass  values  we  get  should  have  a  very  predictable  shape.