presentation on enabling precision genomics

49
Enabling Precision Genomics Department of Medicine Grand Rounds University of Cincinnati College of Medicine December 2, 2015

Upload: letuong

Post on 31-Dec-2016

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Presentation on Enabling Precision Genomics

Enabling Precision Genomics

Department of Medicine Grand Rounds University of Cincinnati College of Medicine

December 2, 2015

Page 2: Presentation on Enabling Precision Genomics

Precision Medicine

Page 3: Presentation on Enabling Precision Genomics

Imagine Being able to diagnose your baby’s treatable metabolic disease before they are born Selecting the best medication and dose to treat your child’s newly diagnosed cancer or their depression without a diagnostic and treatment odyssey Being able to prevent your child from developing obesity and diabetes Curing your child’s sickle cell anemia or cystic fibrosis before it destroys their life

Page 4: Presentation on Enabling Precision Genomics

35-50% of inpatient admissions

> 50% of charges

40% of CCHMC grants include genomics

44 Divisions are included

Genomic disease at CCHMC

Page 5: Presentation on Enabling Precision Genomics

100% 0% Genomic Contribution

Down Syndrome Type 1 Diabetes

Schizophrenia Graves Disease

Epilepsy ADHD

Polycystic Ovary Syndrome Celiac Disease

Obesity Bipolar Disorder

Alzheimer Disease Psoriasis

Autism Breast Cancer

Rheumatoid Arthritis Lupus

Depression Heart Disease

Prostate Cancer Ovarian Cancer

Stroke Osteoarthritis Hypertension

Asthma Type 2 Diabetes

Page 6: Presentation on Enabling Precision Genomics

“In 2010, the total “hidden” cost of ADHD to the economy was estimated to be between $143 billion and $266 billion, or roughly $1,260 to $2,360 per household” --NEA today

“The estimated annual health care costs of obesity-related illness are a staggering $190.2 billion or nearly 21% of annual medical spending in the United States.” --ScienceDaily.com

“New Research Finds Annual Cost of Autism Has More Than Tripled to $126 Billion in the U.S.” --Autism Speaks

Page 7: Presentation on Enabling Precision Genomics

What does precision genomics require? •  Patients and data

- Volume - Veracity - Variety

•  Strong and diverse expertise base •  Translation and implementation science capacity •  Access to distributed research networks

Page 8: Presentation on Enabling Precision Genomics

What does precision genomics require? •  Patients and data

- Volume - Veracity - Variety

•  Strong and diverse expertise base •  Translation and implementation science capacity •  Access to distributed research networks

•  Self-awareness of capability, capacity, opportunity •  Organizational and operational cohesion •  High level of transparency •  Trust-based culture

Page 9: Presentation on Enabling Precision Genomics

The leaders will be able to:

•  Rapidly deliver organized data •  Rapidly translate to actionable knowledge •  Rapidly disseminate individualized care •  Have the organizational structures needed for

success

Page 10: Presentation on Enabling Precision Genomics

The best model for precision genomics is? •  Traditional model: Focused –  Investigator-driven – Scale, complexity, and expertise challenges

•  Current model: Centralized – Agency or institute-driven –  Incentivization and innovation challenges

•  Emerging model: Peer-driven – Team science – Organizational and social challenges

Page 11: Presentation on Enabling Precision Genomics

Vibrant social fabrics provide cohesive strength …and align with the future of genomic medicine

Page 12: Presentation on Enabling Precision Genomics

Key Cincinnati Children’s Systems: •  Healthcare learning systems •  Clinical and Translational Science Award •  Molecular disease networks •  Center for Pediatric Genomics •  Genomic Research and Innovation Network

Page 13: Presentation on Enabling Precision Genomics

Healthcare Learning Systems •  Enhanced disease registries •  Patient-focused •  Participatory •  Common data models and practice •  QI, Safety, Research, Operations •  Network-based clinical research - SafetyNet - ImproveCareNow (Inflammatory Bowel Disease) - PEDSNet (many pediatric disorders)

Page 14: Presentation on Enabling Precision Genomics

Clinical and Translational Science Award •  NIH NCATS network •  Infrastructure for enabling best clinical &

translational science •  62 participating sites •  Cincinnati: model for cooperative research -  Engage -  Empower -  Educate

Page 15: Presentation on Enabling Precision Genomics

Molecular Disease Networks •  eMERGE III •  Bench to Bassinet Program •  Newborn Screening Translational Research

Network

Page 16: Presentation on Enabling Precision Genomics

eMERGE III •  Electronic Medical Records and Genomics •  Computable Phenotypes •  Genomic screening of targeted disorders -  Appendicitis -  Methylphenidate and ADHD -  Malignant hyperthermia -  Pain-related disorders

•  20,000 samples for panel sequencing •  Return of results

Page 17: Presentation on Enabling Precision Genomics

Gladstone

UCSF

UCSD

Cardiac Genetics

Cardiac Development

BCH

Utah

Yale

Harvard

Utah

Mt Sinai

Page 18: Presentation on Enabling Precision Genomics

$146M

9000 genomes 140 TB of data

23000 subjects

Page 19: Presentation on Enabling Precision Genomics

Pennington et al, JAMIA, 2014

Page 20: Presentation on Enabling Precision Genomics
Page 21: Presentation on Enabling Precision Genomics
Page 22: Presentation on Enabling Precision Genomics

Query: Subjects with heterotaxy No evidence of structural heart disease in either parent Pathogenic variants in genes KCNA1, CFC1, FOXH1, GDF1

Page 23: Presentation on Enabling Precision Genomics

Bench to Bassinet Outcomes •  de novo mutations in H3K4 methylation – Zaidi et al Nature, 2013

•  Increased rare de novo CNV burden – PCGC et al, Circ Res, 2014

•  Re-use of accrued data

Page 24: Presentation on Enabling Precision Genomics

NewbornScreening

DiagnosisandReferral

PediatricSpecialtyCare,MedicalHome

Transi>ontoAdulthood

AdultSpecialtyCare,MedicalHome

Short-Term

Follow-Up

Long-TermFollow-Up

Screen

ing

Page 25: Presentation on Enabling Precision Genomics

NBSTRN •  NICHD •  Longitudinal Pediatric Data Resource •  National consensus committees

–  52 disorders: metabolic, LSDs, SMA –  1800 common data elements –  9000 disorder-specific elements

•  Collection, management, query, exploration –  1800 subjects –  Metabolic à genomic (NSIGHT)

Page 26: Presentation on Enabling Precision Genomics

Center for Pediatric Genomics A community of genomics practice

•  Incubate the best science •  Build a genomics community of diverse

stakeholders •  Increase institutional genomic literacy •  Coalesce data, technology, and capability

Page 27: Presentation on Enabling Precision Genomics

Patients 1

Impact on care

5

Sequencing

Biomedical informatics

2

3

Discovery 4

•  Shared resources •  Well-defined processes •  Knowledge transfer •  Team science •  Eye on the patient •  …across the AHC

Opportunity

How can we expand upon our success?

Page 28: Presentation on Enabling Precision Genomics

Incubate the Best Science •  Supported projects: complete an “arc” – Patient and genomic discovery – Validation of pathogenic candidates – Return of results and clinical intervention

•  Methods and technology •  Centralized facilitation

Patients 1

Impact on care

5

Sequencing

Biomedical informatics

2

3

Discovery 4

Page 29: Presentation on Enabling Precision Genomics

Denise Adams Tanya Froehlich Richard Ittenbach Alexander Miethke Charles Stevenson Lilliam Ambroggio Tsuyoshi Fukuda John Lynn Jeffries Lili Miles Rolf Stottman Armand Antommaria James Geller Anil Jegga Halima Moncrieffe Kristen Suhrie Bruce Aronow Jens Goebel Rulang Jiang Louis Muglia Saulius Sumanas Mohammad Azam Kenneth Goldschneider Sonata Jodele Melanie Myers Kristen Sund Alasdair Barr Chris Gordon Michael Jordan Kasiani Myers Sammy Tabbah Artem Barski Hansel Greiner Theodosia Kalfa Bahram Namjou Susan Thompson Drew Barzman Lee Grimes Vladimir Kalinichenko Anjaparavanda Naren Greg Tiao Amber Begtrup Alexei Grom Kenneth Kaufman Derek Neilson Nikolai Timchenko Patricia Bender Christina Gross Mehdi Keddache Yizhao Ni Tracy Ting Jorge Bezerra Ralph Gruppo Thomas Kimball Maureen O'Brien Alex Towbin Kevin Bove Gaurav Gulati Sara Knapke John Perentesis Bruce Trapnell William Brinkman Anita Gupta Kakajan Komurov Alexey Porollo Pulak Tripathi Samantha Brugmann Eric Hall Leah Kottyan Steve Potter Andrew Trout Hermine Brunner David Haslam John Kroner Scott Powers Alexander Valencia John Bucuvalas Yoshihiro Hayashi Ashish Kumar Cindy Prows John van Aalst Kathy Campbell Andrew Hershey Brad Kurowski Nancy Ratner Sander Vinks Leigh Ann Chamberlin Gurjit Hershey Donna Lamberts Ashton Roach Jerry Vockley Iouri Chepelev David Hildeman Yu Lan Jeff Robbins Shari Wade Lionel Chow Kasper Hoebe Adam Lane Richard Ruddy Michael Wagner John Clancy Lindsey Hoffman Sara Lazaro Palacios Meilan Rutter Mika Warren Natalia Connolly Katherine Holland James Leach Howard Saal Carrie Weaver Andrew Dauber Jennifer Holle Nancy Leslie Senthilkumar Sadhasivam Kathryn Weaver Stella Davies David Hooper Hailong Li Mariana Saint Matt Weirauch Benjamin Davis Rob Hopkin Ping-I (Daniel) Lin Nathan Salamonis Brian Weiss Lee Denson Paul Horn Todd Lindgren Ralph Salloum James Wells Allen DeSana Peggy Hostetter Andrew Lindsley Elizabeth Schorry Scott Wexelblatt Mariko DeWire Yueh-Chiang Hu Daniel Lovell Samir Shah Peter White Belinda Dickie Taosheng Huang Richard Lu Shiva Kumar Shanmukhappa Hector Wong Peter Dickie Gang Huang Long Jason Lu Rachel Sheridan Brenda Wong Larry Dolan Taosheng Huang Carolyn Lutzko Umasundari Sivaprasad Robert Wood Keri Drake Robert Hufnagel Francesco Mangano Teresam Smolarek Chunyue Yin Rachid Drissi Jennifer Huggins Keith Marsolo Christine Spaeth Kejian Zhang Lisa Dyers Trent Hummel Lisa Martin Andy Spooner Ge Zhang Todd Florin John Hutton Jarek Meller Daniel Starczynowski Yi Zheng Maryam Fouladi Vivian Hwa Tesfaye Mersha Lori Stark Erin Zoller

Page 30: Presentation on Enabling Precision Genomics

Gastroenterology

CAGE

Pulmonary Biology

Bone Marrow Transplant

Hospital Medicine

Critical Care

Anesthesia

Infectious Diseases

Pulmonary Medicine

Allergy & Immunology

General Pediatrics

Genetics

Hematology & Cancer Biology

Biostatistics

Oncology

Biomedical Informatics

Psychiatry

AsthmaDevelopmental

Biology

Immunobiology

Development and Behavior

Pharmacology

Physical Medicine & Rehabiitation

Rheumatology

Nephrology

Endocrinology

Radiology

Neurology

Plastic Surgery

Neurosurgery

Pathology

Behavioral Medicine

Surgery Cardiology

Emergency Medicine

Neonatology

Cardiovascular Biology

Page 31: Presentation on Enabling Precision Genomics

CpG Funded Applications (Funding on Feb. 15th) Ken Kaufman Rheumatology AGER hereditary pulmonary alveolar proteinosis

Jim Wells Dev Biology Corrected beta cells in diabetes Steve Potter Dev Biology Hepatoblastoma and congenital kidney

disease

Sonata Jodele Bone Marrow Tranplantation

Predisposition for thrombotic microangiopathy

Rolf Stottmann Human Genetics Congenital craniofacial malformations

Hansel Greiner Neurology Focal cortical dysplasia Senthil Sadhasivam

Anesthesia EMR machine learning, postoperative pain and opioids tonsillectomy

Taosheng Huang

Human Genetics SLC25A46 in autosomal recessive optic atrophy and axonal neuropathy

Kasiani Myers Bone Marrow Inherited bone marrow failure

Chunyue Yin Gastroenterology Progressive familial intrahepatic cholestasis patients

Derek Neilson Human Genetics A painful syndrome: Ehlers Danlos Hypermobility Type

Page 32: Presentation on Enabling Precision Genomics

Genetic Analysis of Human Craniofacial Malformations

6 months Cleft lip and cleft palate

Mouse model

Repaired (16 months)

Page 33: Presentation on Enabling Precision Genomics

Next-Generation Sequencing

Genetic Analysis of Human Craniofacial Malformations

Family identified CCHMC services

•  Identify basic principles •  Design innovative

treatments

•  New treatments •  Counseling of

risks •  Analyze findings •  Generate hypotheses •  Experimental models

Page 34: Presentation on Enabling Precision Genomics

Therapeutic repair of severe diabetes by altering cellular genetics

Page 35: Presentation on Enabling Precision Genomics

Building a genomics community

•  Saturating communication •  Alignment with existing programs •  Phenotype Phorum - Clinician success stories - Responder/non-responder opportunities

•  Project workgroup •  Analyst awareness •  Expertise profiling/matching

Page 36: Presentation on Enabling Precision Genomics

Increasing Genomic Literacy Foundational genomics •  Clinicians •  Clinical staff •  Basic researchers •  Translational

researchers •  Patients/families Advanced genomics •  Integration with formal

educational programs

Clinical

Research

Patients

Impact on care

Sequencing

Biomedical

informatics

Discovery

1 2

3

4

5

Page 37: Presentation on Enabling Precision Genomics

Coalesce data, technology, and expertise •  Sequence metadata model •  Unified sequence intake/processing •  Annotated variant knowledgebase •  Integration with RIT structure & analytical

capabilities •  Research and clinical genomics •  Layering on additional -omics

Page 38: Presentation on Enabling Precision Genomics

Clinical Systems Data

Biomaterials Assay Data

Investigator Data

Page 39: Presentation on Enabling Precision Genomics
Page 40: Presentation on Enabling Precision Genomics

The Genomics Research & Innovation Network

Page 41: Presentation on Enabling Precision Genomics

Key Outcomes:

•  Provide a common, shared community of practice for collaborative genomic studies

•  Create a broad knowledgebase of annotated genomic and clinical data for variant interpretation

•  Establish a “big data” environment to benefit discovery, translational science, and trainee development

•  Facilitate cohort expansion – especially valuable in the study of rare disease

•  Enhance team science by matching disparate disease and analysis experts around genomic challenges

Genomic Research and Innovation Network

Page 42: Presentation on Enabling Precision Genomics

Phenotype data from •  Electronic Health

Records •  Clinical trials •  Data registries

Genomic Data

Other data (other –omics, imaging, physiologic measurements (EKG, EEG)

CHOP

CCHMC

BCH

Data Trust

Page 43: Presentation on Enabling Precision Genomics

GRIN Data Trust Structure

Grants

Philanthropy

Patient/ Disease

Foundations

Commercial/ Research

Collaborations

Institutional/PI control over sharing of data, samples

PI

BCH CCHMC CHOP

PI PI PI PI PI

Page 44: Presentation on Enabling Precision Genomics

Phase I: GRIN Pilot Projects

•  Three projects, each involving investigators from the three founding GRIN institutions –  Obesity –  Epilepsy –  Growth disorders

•  Scientific results are NOT the only success metric

• Pilot goals: - Demonstrate the value of GRIN services - Learn how collaboration on this scale is possible - Inform development of the GRIN infrastructure

Page 45: Presentation on Enabling Precision Genomics

Opportunities •  Distributed analysis of complex diseases •  Patient-level stratification •  Literate communities •  Precision care delivery and support

Challenges •  Literacy •  Communication •  Behavioral economics

Page 46: Presentation on Enabling Precision Genomics

Network-based research eMERGE •  Armand Antommaria •  Beth Cobb •  Eric Hall •  John Harley (PI) •  Ken Kaufman •  Leah Kottyan •  Sara Lazaro •  Nancy Leslie •  Todd Lingren •  Keith Marsolo •  Melanie Myers •  Bahram Namjou-Khales •  Yizhao Ni •  Bill Nichols •  Cindy Prows •  Senthilkumar Sadhasivam •  Scott Wexelblatt •  Pete White

Bench to Bassinet •  Rachel Akers •  Jim Cnota •  Stacy France •  Nathan Hawk •  Stephen Hope •  Bridget Kellner •  Eileen King (co-PI) •  Mojtaba Kohram •  Michal Kouril •  Michael Kuhlmann •  Guillaume Labilloy •  Chunyan Liu •  Lauren Lykowski •  Lisa Martin •  Diana McClendon •  Nick Ollberding •  Andy Rupert •  Ting Sa •  Michael Wagner •  Alison Wheeler •  Pete White (co-PI)

NBSTRN •  Bruce Bowdish •  Amy Brower •  Irina Butler •  Chris Day •  Nick Felicelli •  Rachel Fleming •  Steve Grimaldi •  Michael Kuhlmann •  Guillaume Labilloy •  Jen Loutrel •  Andy Rupert •  Prakash Valayutham •  Michael Wagner (co-PI) •  Mike Watson •  Pete White (co-PI)

Page 47: Presentation on Enabling Precision Genomics

Our Community Leadership

Peggy Hostetter (co-sponsor) Jennifer Dauer (co-sponsor) Tracy Glauser Arnie Strauss John Harley (co-chair) Pete White (co-chair) CCHMC Board of Trustees

Steering Committee

Armand Antommaria Daniel Choo Rafi Kopan Nancy Leslie Lou Muglia Bill Nichols John Perentesis Cindy Prows Niki Robinson Sarah Savage Harinder Singh Tom Stroeh Kristen Sund Jessica Woo

Scientific Project Leads Hansel Greiner Taosheng Huang Sonata Jodele Ken Kaufman Kasiani Myers Derek Neilson Steve Potter Senthil Sadhasivam Rolf Stottmann Jim Wells Chunyue Yin

Community and Learning

Jane Garvey Missy Kasota Jim Saporito Beth Sims Ryan Varney Jill Williams

Informatics Maliheh Aghanasiri Bruce Aronow Eric Bardes Artem Barski Jing Chen Phil Dexheimer Nick Felicelli David Fletcher Anil Jegga Mojtaba Kohram Guillaume Labilloy Sara Lazaro Keith Marsolo Andrew Rupert Mayur Sarangdhar Scott Tabar David Van Horn Michael Wagner

Page 48: Presentation on Enabling Precision Genomics

The GRIN Team Steering Team

Alan Beggs Tracy Glauser Ken Mandl Joe Majzoub Nancy Spinner Joe St. Geme Arnie Strauss Pete White Bryan Wolf

Sustainability

Irene Abrams Gus Cervini Matt Cook Linda Miller Chris Kirby David Margulies Niki Robinson Bryan Wolf Alan Yen

Program Leads Sawona Biswas Sarah Savage Kristen Sund

Informatics

Paul Avillach David Bernick Jon Bickel Michal Kouril Jeremy Leipzig Keith Marsolo Adam Resnick Deanne Taylor Pete White Tim Yu

Regulatory Jeremy Corsmo Joan Gates Matthew Hodgson Chris Kirby Susan Kornetsky Dianne McCarthy Peter Naderer Amy Schwarzhoff Gelvina Stevenson Wendy Wolf

Pilot Teams

Ingo Helbig Tracy Glauser Anna Poduri Vidhu Thacker Struan Grant John Harley Andrew Dauber Adda Grinberg Joel Hirschhorn

Page 49: Presentation on Enabling Precision Genomics