presentation on metamaterials

39
Introduction Background The project Backup slides Metamaterial Superlenses Finite Size Effects A. McMurray Electromagnetic Materials Group, University of Exeter Supervisor: Dr Stavroula Foteinopoulou November 7, 2011 A. McMurray Metamaterial Superlenses

Upload: alex-mcmurray

Post on 24-Nov-2015

53 views

Category:

Documents


7 download

DESCRIPTION

Negative refractive index metamaterials

TRANSCRIPT

  • IntroductionBackgroundThe project

    Backup slides

    Metamaterial SuperlensesFinite Size Effects

    A. McMurray

    Electromagnetic Materials Group,University of Exeter

    Supervisor: Dr Stavroula Foteinopoulou

    November 7, 2011

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Outline

    IntroductionAims and MotivationWhat are Metamaterials?

    BackgroundEarly History plotModern developmentsThe superlens

    The projectMethodologySummary

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Aims and MotivationWhat are Metamaterials?

    Aims and MotivationWhat and why?

    I Ideal superlens is infinite in lateral extent (width).

    I In practice, any superlens must have a finite lateral extent.

    I This reduces attainable resolution

    I We intend to quantify the effect of the finite sizeupon resolution via analytical calculations.

    I Superlenses optical lithographynanoelectronics hard drives, chemicaldetectors.

    Anti-reflective moth-eye coating forsolar cells,

    University of Southampton.

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Aims and MotivationWhat are Metamaterials?

    Definitions

    I The refractive index, n, of a medium is the ratio of thespeed of light in vacuum to its speed in the medium:

    n =cv

    =

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Aims and MotivationWhat are Metamaterials?

    Definitions

    I Poyntings vector, S = 10 (E B)I Derived from Poyntings theorem:

    dWdt

    = ddt

    V

    12

    (0E2 +10

    B2)d S

    10

    (E B) dA

    I S points in the direction of energy propagation. (i.e. thedirection of wave propagation)

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Aims and MotivationWhat are Metamaterials?

    Definitions

    I The wavevector, k is defined as:

    |k| = 2pi

    k points in the direction normal to the surfaces of constantphase (i.e. the wavefronts) which is not always the sameas the direction of wave propagation.

    I k S < 0 backward waveI k S > 0 forward wave.

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Aims and MotivationWhat are Metamaterials?

    What are Metamaterials?

    I Metamaterial artificial material with properties not foundin nature.

    I We are interested in metamaterials with NegativeRefractive Index.

    I Also called NRI materials/ Negative Index Materials (NIM)

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Aims and MotivationWhat are Metamaterials?

    What are Metamaterials?I A NRI is achieved by having and be simultaneously

    negative. (i.e. both negative for the same frequency range)I When , < 0, n = ||.

    Figure: CG Images of water in a a) empty glass, b) glass of water(n = 1.3), c) glass of NRI water (n = 1.3)1

    1Dolling G. et al (2006), "Photorealistic images of objects in effective negative-index materials",

    Optics Express 14.

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Aims and MotivationWhat are Metamaterials?

    What are Metamaterials?

    I Meta-atoms: discrete cells,size < .

    I Periodic arrays used to createbulk NRI medium.

    I Their small size relative to means the light wave interactswith them collectively - not asindividual components Figure: An SRR/wire lattice. Each

    resonator is ~1cm.1

    1Shadrivov I., 2008, Nonlinear metamaterials: a new degree of freedom, SPIE

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Aims and MotivationWhat are Metamaterials?

    Invisibility cloak

    I In 2006, SRRs were used to construct an invisibility cloak1:

    I 2D region, GHz frequencies.

    1http://people.ee.duke.edu/~drsmith/gallery.html, Research Group of David R. Smith, Duke

    University

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Early History plotModern developmentsThe superlens

    Early HistoryI Victor Veselago, 1967 Left-Handed Materials(LHMs)I Simultaneously negative and I E,H and k form a left-handed vector set.

    E

    k

    H

    E

    kH

    RHM: k (E H*) = kS>0 LHM: k (E H*) = kS

  • IntroductionBackgroundThe project

    Backup slides

    Early History plotModern developmentsThe superlens

    Early historyI Although LHMs do not exist in nature, Veselago was able

    to predict many of their properties including:

    I Negative refractive indexI Negative group velocityI Reversed Doppler Effect

    (receding sources areblue-shifted)

    I Reversed Cherenkov radiation(backward Cherenkov radiationcone) Cherenkov Radiation,

    American Chemical Society

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Early History plotModern developmentsThe superlens

    Definitions

    I Propagating waves: A eikx ,extend to far field, conventionalmicroscopy

    I Evanescent waves: A ex ,confined to near field (~), carryno energy, carry minusculedetails of object, total internalreflection fluorescencemicroscopy.

    A

    x

    A

    x

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Early History plotModern developmentsThe superlens

    Most dielectrics

    Double Negative (DNG)

    Metamaterials

    Noble Metals(e.g. Ag, Au)

    in IR/vis. region

    Mu-negative (MNG)

    materials

    Propagating waves

    Propagating waves Evanescent Waves

    Evanescent Waves

    Quadrant IQuadrant II

    Quadrant III Quadrant IV

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Early History plotModern developmentsThe superlens

    Modern developments

    I Metamaterials largely abandoned for three decades.I 1996, J.B. Pendry: parallel wires via self-inductanceme mN (factor 104 increase)

    I p =

    ne20me

    I () = 1 2p2

    I < p < 0I Without shift, would be large and negative ~GHz large

    R from Fresnel (!)

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Early History plotModern developmentsThe superlens

    Modern developments

    I In 1999, Pendry also suggested that using SRRs one couldtune the value of for microwave frequencies.

    I Combine the two ideas a lattice of straight wires andSRRs -ve , at microwave frequencies.

    I Demonstrated by D.R. Smith in 2000 and a negative n wasdirectly confirmed in 2001 by R. A. Shelby.

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Early History plotModern developmentsThe superlens

    The ideal superlens

    O

    I

    A B

    P

    DC

    ds

    d

    di

    Amplitude of Evanescent Wave

    A0 2A I Ideal superlens has = = 1

    I Infinite in lateral extent.

    I All rays focused to image point,I.

    I All rays pass through point P.

    I Perfect lens formula: ds + di = d

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Early History plotModern developmentsThe superlens

    The ideal superlens

    O

    I

    A B

    P

    DC

    ds

    d

    di

    Amplitude of Evanescent Wave

    A0 2A I Propagating componentspreserve phase.

    I Evanescent componentspreserve amplitude.

    I Preservation of all components perfect image reconstruction.

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    MethodologySummary

    Aims and Motivation RecapWhat and why?

    I All practical superlenses must have a finite lateral extent.

    I Affects the possible resolution as smaller extent lesswave components are focused reduced image quality.

    I Also have losses in the medium lower quality.I We intend to quantify the effect of lateral size upon

    resolution via analytical calculations and perhaps alsoconsider losses.

    I This will allow for the optimisation of superlenses

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    MethodologySummary

    MethodologyHow do we do this?

    1. Decompose incident light wave, Ei(r) (Gaussianwaveform), into separate k-components, Fn(k), via Fouriertransforms.

    2. Calculate the transmission functions, tn(k)

    3. Calculate the resultant k-components, gn(k) = tn(k)Fn(k)

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    MethodologySummary

    MethodologyHow do we do this?

    4. Recombine the resultant k-components to obtain thetransmitted wave, Et(r) via inverse Fourier transforms.Resolution obtained from FWHM.

    5. Repeat for different configurations (e.g. different lateralsizes, included components etc.)

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    MethodologySummary

    Summary

    I Now possible to construct non-ideal superlenses.

    I Images are imperfect finite extent (ratio of ds to lateralextent), losses in the medium etc.

    I Quantify the effect of finite size upon resolution viaanalytical calculations.

    I Begin with only far-field components, non-dispersive (!),lossless media. Improve as the project develops

    I Results should allow superlens design to be optimised,leading to improvements in many devices

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    MethodologySummary

    End of talk

    I would like to thank my supervisor,Dr. Stavroula Foteinopoulou,

    and my colleague, Alun Daley,for their help and advice.

    Any questions?

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    Backup slides

    Negative refraction (mathematical reasoning)

    Negative refraction (graphical reasoning)

    Perfect Lens Equation geometrical proof

    Requirements for propagating waves

    How does the SRR work?

    Conservation of phase

    Modifications to Fresnels equations

    Hyperlens

    Why must NIMs be dispersive?

    Why dont evanescent waves carry energy?

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    Negative refraction (mathematical reasoning)

    I An EM-wave propagating in z direction will havecomponents:

    I E = E0eikzit x

    I H = H0eikzit y

    I From wave equation: k = nc =c

    I k and hence n must have positive imaginary parts to bephysical (otherwise amplitude exponentially increases)

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    Negative refraction (mathematical reasoning)I n2 = ||||ei(e+m)I n =

    ||||e i(e+m)2 +impiIm

    Re

    Root 1, m=0

    Root 2, m=1

    I So to get +ve imag. part of n, must have -ve real part.

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    Negative refraction (mathematical reasoning)

    I This is a simplification as wave may propagate in -zdirection

    I Therefore consider time-averaged Poynting vector1:S = 12Re(E H) zeIm(k)z

    I Therefore Im(k) must be positive for the solution to bephysical.

    I So as before the real part of n must be negative.

    1Ziolkowski R. & Heyman E., 2001, Wave propagation in media having negative permittivity and

    permeability, Physical Review E, 64, 056625

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    Negative refraction (graphical reasoning)

    k-components parallel to the interface are conserved.

    LHM

    Air

    Magnitude of parallel k component

    EFS of dielectric

    EFS of air

    kinc

    kref

    S

    A

    B

    y

    Dr. Stavroula Foteinopoulou

    I In refraction, frequencyconserved

    I incident k-vector lies onequifrequency surface(EFS) inair (radius c )

    I Refracted k-vector lies on EFSin dielectric (radius |kref | = |n|c )

    I kref could lie on A or B (kmust be conserved)

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    Negative refraction (graphical reasoning)

    LHM

    Air

    Magnitude of parallel k component

    EFS of dielectric

    EFS of air

    kinc

    kref

    S

    A

    B

    y

    Dr. Stavroula Foteinopoulou

    I LHM k S < 0I Energy flow (direction of S) must

    be in causal direction away fromsource (y-direction)

    I kref must lie on point A

    I direction of energy (and thuswave) propagation S is onopposite side of normal

    I Negative refraction

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    Perfect Lens Equation geometrical proof

    O

    I

    A B

    P

    DC

    ds

    d

    di

    AB = OB tan

    BP = ABtan

    BP = OB, independent of andthus the same for all rays emittedfrom O.

    OP = OB + PB so all rays passthrough point P

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    Perfect Lens Equation geometrical proof

    O

    I

    A B

    P

    DC

    ds

    d

    di

    PC = DCtan

    DC = IC tan

    PC = IE

    PC + BP = OB + IC

    d = ds + di

    The Perfect Lens Formula

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    Requirements for propagating wavesI From the EM Wave Equation: k2E 2c2 E = 0

    I k2 = 2c2

    I If , both have the same sign then k2 is +ve and k is real

    I If their signs differ then k is imaginary

    I E = E0eikxeit

    I So wave is evanescent ( ekx ) if signs differ (Quadrants IIand IV)

    I If the signs are the same it is a propagating wave ( eikx )(Quadrants I and III)

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    How does the SRR work?

    I Splits in rings force currents to oscillate in ringcirculating currents store magnetic energyinductor.

    I Large capacitance between smaller oppositelyoriented ring and outer one.

    I Analogous to L-C circuit.I Resonant frequency: 0 = 1LCI = 1 2

    220I < 0 for > 0

    I. Shadrivov, ANU

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    Conservation of phase

    O

    I

    A B

    P

    DC

    ds

    d

    di

    I Perfect lens formula: ds + di = dI ~OA = ~DI = ~AP = ~PDI k = ncI Optical path for ~OA and ~DI =

    (+|n|c ~OA) + (+|n|c ~DI) = 2|n|c ~OAI Optical path for

    ~AD = |n|c ~AD = 2|n|c ~OAI Total optical path = 0, phase

    conserved.

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    Fresnel modificationsI NIM: n =

    I r = n1 cosn2 cosn1 cos+n2 cos

    I Perfect lens (1st interface): n1 = 1, n2 = 1, = I r = 2 cos0

    I Exact expression1: r = z2 cosz1 cosz2 cos+z1 cos

    I z =

    , in air/vacuum , = 1, in NIM , = 1

    I 1st interface: r = 02 cos = 0 as expected.

    1Veselago V., 2006, Negative Refractive Index Materials, J. Comput. Theor. Nanosci. 3, 1-30

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    Future possibilites - Hyperlens

    I The hyperlens enhances the evanescent waves bycoupling them into propagating waves.

    I Near-field evanescent components far field

    I obtain sub- resolution without needing to form theimage in the near-field of the lens

    I Applications in microscopy, cellular imaging.

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    Future possibilites - Hyperlens

    Figure: a)Conventional lens. b) Near-field superlens. c) Far-fieldsuperlens. d) Hyperlens. The wavy curves are propagating waves.Smooth curves are evanescent waves.1

    1Zhang X. & Liu Z., 2008, Superlenses to overcome the diffraction limit, Nature Materials 7, 435-441

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    Why must NIMs be dispersive?

    I The energy density in non-dispersive media is given by:

    U =12

    ( Re(EE) + Re(HH))

    I U < 0 if , < 0 unphysicalI If the media is dispersive, i.e. = (), = (), then:

    U =12

    (()

    Re(EE) +

    ()

    Re(HH)

    )I U can be > 0 only if the NIM is dispersive.

    A. McMurray Metamaterial Superlenses

  • IntroductionBackgroundThe project

    Backup slides

    Backup slides

    Why dont evanescent waves carry energy?

    I In an evanescent wave the E and H components are 90 orpi2 out of phase

    I the time-average of the Poynting vector (i.e. consideringenergy transfer over a whole cycle) is zero.

    S =12

    Re(E H) = 0I No energy is transferred.

    A. McMurray Metamaterial Superlenses

    IntroductionAims and MotivationWhat are Metamaterials?

    BackgroundEarly History- plotModern developmentsThe superlens

    The projectMethodologySummary