presentation1

21
NANOPARTICLES EMBEDDED BIOMATERIALS IN WOUND TREATMENT: A REVIEW R.Pujitha Lakshmi K.Sivaranjani

Upload: pujitha-raja

Post on 17-Aug-2015

20 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Presentation1

NANOPARTICLES EMBEDDED BIOMATERIALS IN WOUND TREATMENT: A REVIEW

R.Pujitha Lakshmi

K.Sivaranjani

Page 2: Presentation1

INTRODUCTION•In spite of so many medical advancements, wound healing still remains a challenging clinical problem for which efficient wound management is necessary.•Researchers are developing wound dressing materials using biomaterials like collagen, chitosan, fibrin, gelatin.•In order to improve the efficiency of them, they started incorporating medically important NPs.• Since, the skin provides a route of delivery for local and systemic drugs, it is being efficiently used to deliver therapeutic products like medically important NPs for treating skin diseases, antimicrobial activity in wounds and burns, cancer treatment.•Hence, NPs embedded biomaterials can be delivered through the SKIN for an efficient wound healing.

Page 3: Presentation1

The classic model of wound healing is divided into three or four sequential, yet overlapping phases:

(1) Haemostasis,(2) Inflammation, (3) Proliferation and (4) Remodelling.

Page 4: Presentation1

•Fibrin is the first scaffold that the skin encounters after an injury.•Fibrin gels formed from purified plasma proteins have properties similar to a blood clot and it is biodegradable.•Since fibrin can bind to numerous proteins, similar to a blood clot, it can be used as an haemostatic glue to stop bleeding, replace sutures and also in wound healing. •Can be injected injected in situ for wound healing applications and it is biodegradable.

FIBRIN

Page 5: Presentation1

COLLAGEN

•The most abundant animal protein.•Plays a vital role in pre and postoperative surgical procedure. It can form fibers of great tensile strength and stability via cross linking and self aggregation. •Collagen from various sources (porcine, rat, leather wastes, piscine)-wound dressing material.•Biodegradable, biocompatible, non toxic, thermally stable.•Used to cover burn wounds and treat ulcers.•Collagen supports the growth of supporting new tissue by adhering to the walls of the wound and absorbing the wound fluids .

Page 6: Presentation1

GELATIN•Derivative of collagen.•Biodegradable, biocompatible, has excellent physical, chemical and mechanical properties and commercially available at low cost. •Possesses good elongation and deformation properties which provide easier opening of spaces for cell penetration to a deeper level of scaffold.•Hence it can be used as a biodegradable scaffold as efficient substitute in case skin loss.

Page 7: Presentation1

ALGINATE

•A naturally occurring anionic and hydrophilic polysaccharide•possesses excellent biocompatibility, biodegradability, mechanical strength, cell affinity, gelling properties, non-antigenicity, chelating ability.•Readily processable in the form of hydrogels, microspheres, sponges, foams and fibers which can be used as wound dressing materials•Enhance wound healing by stimulating monocytes to produce elevated levels of cytokines. •Possess high levels of bioactivity due to endotoxins.•Used to treat large volume exudation.

Page 8: Presentation1

CHITOSAN•Natural polymer derived from chitin.(major source : crab shell)•Biodegradable, biocompatible, antibacterial and non toxic linear chain of polysaccharides.•Hydrophilic and haemostatic in nature and hence, used as a hydrogel for wound healing applications.•Pure chitosan hydrogel is fragile but when used in combination with other biomaterials or compounds for an improved strength.

Page 9: Presentation1

SILVER

•Bactericidal agent-Effective against both Gram positive and Gram negative bacteria (High effectiveness against Gram negative)•Silver ions bind to thiol groups and vital enzymes, thereby inhibiting the bacterial growth.•Size (<10nm) and shape play a major role.•Higher conc. of silver can even destroy the test cells.•Triangular shaped NPs have shown better results than spherical or rod shaped NPs.

Page 10: Presentation1

SILVER NPs EMBEDDED BIOMATERIALS

•Collagen based silver NPs – Spherical shape, positive zeta potential, antibacterial activity (against E.coli and S.aureus), non toxicity against tested cells.[Antibacterial activity is due to the electrostatic interaction between negatively charged membranes of bacteria and positive potential of particles (Silva et al, 2014)] .

•β-Chitin/nanosilver hydrogel proved to be effective against E.coli and S.aureus, had blood clotting ability, good water uptake, stable in PBS buffer. (Kumar et al, 2010)

Page 11: Presentation1

GOLD NPs

Have properties like biocompatibility, ROS (reactive Oxygen Species) scavenging, promote cell proliferation and can be used in targeted drug delivery.

GOLD NPs EMBEDDED BIOMATERIALS

•The cross linking of collagen with gold NPs which allowed the easy incorporation of biomolecules like growth factors, peptides, cell adhesion molecules by their immobilization at the Gold surface without additional altering of collagen structure.The properties of both collagen and gold NPs demonstrated properties like biocompatibility, antibacterial, biodegradability (Luciano et al, 1999).

Page 12: Presentation1

•A gelatin-chitosan combination with gold NPs was found to be safe, haemostatic and also did a good work in wound healing (Rezania i al, 1999).

•Polyelectrolyte multilayer coated gold nanorods in combination with collagen can alter the polymerization and mechanical properties of ECM component by elucidating differences in collagen remodeling and cellular phenotype.

The collagen gel constructs served as model tissues in which cells can interact with ECM and the NPs in 3 dimensions (Christopher et al, 2009).

Page 13: Presentation1

ZINC NPs•Zinc NPs are also widely used in cosmetics , besides playing a major role in cellular and enzymatic activities, wound healing , especially burns.•It possesses antiseptic, antibacterial and anti-inflammatory properties.•A size of <100nm and an appropriate concentration would show no adverse effect.

ZINC NPs EMBEDDED BIOMATERIALS:•Chitosan/Zinc NPs when evaluated in vitro demonstrated some disadvantages such as less flexibility, poor mechanical strength, lack of porosity, and a tendency for dressings to adhere onto the wound surface; less antibacterial activity.

Page 14: Presentation1

•But there were advantages as well: Provided cooling sensation, enhanced swelling, blood clotting and antibacterial activity against specific microbes (Kumar et al, 2012)

•β-chitin hydrogel/zinc oxide NPs composite bandage was fabricated and evaluated as an alternative to existing bandages. •The resultant bandage exhibited controlled swelling and degradation. . It also had antibacterial activity against both Gram positive and Gram negative bacteria. In vivo evaluation showed that the composite had faster wound healing and higher collagen deposition when compared to control (Lakshmanan et al, 2013).

Page 15: Presentation1

GRAPHENE OXIDE•Graphene oxide possesses important properties of biomedical use : Antibacterial activity, conc. Dependent toxicity, promotes proliferation of cells, non toxic to test cells, excellent mechanical strength, good thermal and electrical conductivity and excellent biocompatibility. •But, it cannot uptake water after a certain limit, degrades on excess fluid absorption.

GRAPHENE OXIDE EMBEDDED NPs

Graphene oxide incorporated collagen-fibrin biofilm treated wounds faster than collagen and fibrin composite. Based on histopathological, physical and biological results, it proved to be an efficient wound dressing material (Sastry et al, 2014).

Page 16: Presentation1

TITANIUM DIOXIDE NPsTitanium dioxide NPs have limited biological applications. They have good mechanical properties, antibacterial effect against Gram positive and Gram negative bacteria, proliferation of cell growth, prevents bacterial adhesion, support for bone and stem cell formation, enhancing blood clotting.

TITANIUM DIOXIDE EMBEDDED NPs•Chitosan/titanium dioxide NPs showed powerful antibacterial activity and non toxic towards NIH3T3 and L929 fibroblasts. The tested scaffold showed that the wound closure rate is effective in nanocomposite treated wounds compared with that treated with chitosan, positive control and negative control groups (Archana et al, 2013).•In another similar study, Titanium dioxide NPs were incorporated into

chitosan-pectin because of its properties like biocompatibility, antimicrobial activity, water swellable nature, good healing efficiency and tensile strength (Archana et al, 2013).

Page 17: Presentation1

CONCLUSION•A study on NPs embedded biomaterials proves that a composite of both biomaterial and nanoparticle had benefits of both individual components.•Graphene oxide NPs are not studied much till date and require more attention.

A composite of Collagen/Graphene oxide along with another biomaterial can be tested and is expected to have good results.

Page 18: Presentation1

REFERENCES[1] X. Huang , Y. Zhang , X. Zhang , L. Xu , X. Chen , S. Wei , Mater. Sci. Eng. C 2013 , 33 , 4816 [2] J. Grzybowski , M. K. Janiak , E. Oidak , K. Lasocki , J. Wrembel- Wargocka , A. Cheda , [3]M. Antos-Bielska , Z. Pojda , Int. J. Pharm.1999 , 184 , 179B. S. Atiyeh, J. Ioannovich, C. A. Al-Amm And K. A. El-Musa, Curr. Pharm. Biotechnol. 3, 179 (2002)[4] Brett D (2008). A Review Of Collagen And Collagen Based Wound Dressings. Wounds 20(12): 347-53.[5]Rudnick A (2006). Advances In Tissue Engineering And Use Of Type 1 Bovine Collagen Particles In Wound Bed Preparation. J Wound Care 15: 402-04[6]Enoch S, Harding K (2003). Wound Bed Preparation: The Science Behind The Removal Of Barriers To Healing. Wounds 15: 213-29.[7] C. Gong , Q. Wu , Y. Wang , D. Zhang , F. Luo , X. Zhao , Y. Wei , Z. Qian , Biomaterials 2013 , 34 , 6377[8] C. Radhakumary , M. Antonty , K. Sreenivasan , Carbohydr. Polym.2011 , 83 , 705[9] NPs And Microparticles For Skin Drug Delivery Tarl W. Prow , Jeffrey E. Grice , Lynlee L. Lin , Rokhaya Faye , Margaret Butler , Wolfgang Becker , Elisabeth M.T. Wurm , Corinne Yoong , Thomas A. Robertson , H. Peter Soyer , Michael S. Roberts , 2011 [10] Mritunjai Singh, Shinjini Singh, S. Prasada, I. S.Gambhir, Nanotechnology In Medicine And Antibacterial Effect Of Silver NPs, Digest Journal Of Nanomaterials And Biostructures Vol. 3, No.3, September 2008, P. 115 – 122[11]Oberdo¨Rster G, Oberdo¨Rsters E, Oberdo¨Rster J (2005a) Nanotoxicology: An Emerging Discipline Evolving From Studies Of Ultrafine Particles. Environ Health Perspect 113:823–839].[12] P. K. Stoimenov, R. L. Klinger, G. L. Marchin, K. J. Klabunde, Langmuir 18, 6679 (2002).[13] I. Sondi, B. Salopek-Sondi, J. Colloids Interface Sci. 275 177 (2004).[14] A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Nevecna, R. Zboril, J. Phys. Chem. B 110, 16248 (2006).[15] J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, M. J.Yacaman, Nanotechnology 16, 2346 (2005)C. Baker, A. Pradhan, L. Pakstis, D. J. Pochan, S. I. Shah, J. Nanosci. Technol. 5 244 (2005)[16]O. C. Farokhzad, J. Cheng, B. A. Teply, I. Sherifi, S. Jon, P. W. Kantoff, J. P. Richie, R.Langer, Proc. Natl Acad. Sci. Usa 103, 6315 (2006).[17] K. Nomiya, A. Yoshizawa, K. Tsukagoshi, N. C.Kasuga, S. Hirakawa, J. Watanabe, J. Inorg. Biochem. 98 46 (2004).[18]A. Gupta, S. Silver, Nat. Biotechnol. 16 888 (1998).][19] S. Y. Liau, D. C. Read, W. J. Pugh, J. R Furr, A. D Russell , Lett. Appl. Microbiol. 25 279 (1997)[20] H.J. Klasen, Burns 26, 131 (2000)[21] Y. Matsumura, K. Yoshikata, S. Kunisaki, T. Tsuchido, Appl. Environ. Microbiol. 69 4278 (2003). [22] S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao and D. Dash, Nanotechnology 18 225103 9pp (2007)[23] Nanotechnology In Medicine And Antibacterial Effect Of Silver NPs, Mritunjai Singh, Shinjini Singh, S. Prasada, I. S.Gambhir, Digest Journal Of Nanomaterials And Biostructures Vol. 3, No.3, September 2008, P. 115 – 122[24] J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, M. J.Yacaman, Nanotechnology 16, 2346 (2005)[25]S. Pal, Y.K. Tak, J.M. Song, Appl. Environ. Microb. 73] 1712 (2007)[26]Chopra I. The Increasing Use Of Silver-Based Products As Antimicrobial Agents: A Useful Development Or A Cause For Concern? J Antimicrob Chemother 2007;59:587–90.[27]M. J. Cozad, S. L. Bachman And S. A. Grant, J. Biomed. Mater. Res. A 99, 426 (2011).[28] Everts, M.; Saini, V.; Leddon, J. L.; Kok, R. J.; Stoff-Khalili, M.; Preuss, M. A.; Millican, C. L.; Perkins, G.; Brown, J. M.; Bagaria, H.; Nikles, D. E.; Johnson, D. T.; Zharov, V. P.; Curiel, D. T. Nano Lett. 2006, 6, 587–591[29] Everts, M.; Saini, V.; Leddon, J. L.; Kok, R. J.; Stoff-Khalili, M.; Preuss, M. A.; Millican, C. L.; Perkins, G.; Brown, J. M.; Bagaria, H.; Nikles, D. E.; Johnson, D. T.; Zharov, V. P.; Curiel, D. T. Nano Lett. 2006, 6, 587–591[30] Hu, Z.; Lai, W.; Shan, Y.; Nanocomposite of Chitosan and Silver Oxide and Its Antibacterial Property; Journal of Applied Polymer Science; 108; 2008; 52–56.•[31] Chia, L. K.; Cheng, L. W.; Horng, H. K.; Weng, S. H.; Kuo, C.; Wang, L. L. Ceram. Int. 2010, 36, 693−698.•[32] Jalal, R.; Goharshadia, E. K.; Abareshia, M.; Moosavic, M.; Yousefid, A. Mater. Chem. Phys. 2010, 121, 198−201.•[33] Becheri, A.; Durr, M.; Nostro, P. L.; Baglioni, P. J. Nanopart. Res. 2008, 10, 679−689.•[34] Alessio, B.; Maximilian, D.; Pierandrea, L. N.; Piero, B. J.Nanopart. Res. 2008, 10, 679−689.•[35] Kwon, Y. J.; Kim, K. H.; Lim, C. S.; Shim, K. B. J. Ceram. Proc. Res. 2002, 3, 146−149.[36] Sawai, J. Microb. Method. 2003, 54, 177−182.].•[37] Nair, S. V.; Abhilash, S.; Divya, R. V. V.; Deepthy, M.; Seema, N.; Manzoor, K. J. Mater. Sci.: Mater. Med. 2009, 20, 235−241.[38] Abhilash, S.; Parwathy, C.; Deepthy, M.; Sreerekha, R.; Nair, S. V.; Manzoor, K. Nanoscale 2011, 3, 3657−3669.•[39] Sudheesh, K. P. T; Abhilash, S.; Manzoor, K.; Nair, S. V.; Tamura, H.; Jayakumar, R. Carbohydr. Polym. 2010, 80, 761−767•[40]Graphene oxide incorporated collagen–fibrinbiofilm as a wound dressing material, R. Deepachitra, V. Ramnath and T. P. Sastry, RSC Adv., 2014, 4, 62717.

Page 19: Presentation1

[41] S. Kang, M. Herzberg, D.F. Rodrigues, M. Elimelech, Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24 (2008) 6409–6413[42] S. Kang, M. Pinault, L.D. Pfefferle, M. Elimelech, Single-walled carbon nanotubes exhibit strong antimicrobial activity, Langmuir 23 (2007) 8670–8673.[43] O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria, ACS Nano 4 (2010) 5731–5736.[44] [83] W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, C. Fan, Graphene-based antibacterial paper, ACS Nano 4 (2010) 4317–4323.[45] [84] H. Tazawa, M. Tatemichi, T. Sawa, I. Gilibert, N. Ma, Y. Hiraku, L.A. Donehower, H. Ohgaki, S. Kawanishi, H. Ohshima, Oxidative and nitrative stress caused by subcutaneous implantation of a foreign body accelerates sarcoma development in Trp53+/− mice, Carcinogenesis 28 (2006) 191–198.[46] S. S. Roy , M. S. Arnold , Adv. Funct. Mater. 2013 , 23 , 3638[47] M. Yoonessi , Y. Shi , D. A. Scheiman , M. L. Colon , D. M. Tigelaar , R. A. Weiss , M. A. Meador , ACS Nano 2012 , 9 , 7644 .[48] A. A. Balandin , S. Ghosh , W. Bao , I. Calizo , D. Teweldebrhan , F. Miao , C. N. Lau , Nano Lett. 2008 , 8 , 902 [49] A. M. Pintoa , I. C. Gonçalves , F. D. Magalhães , Colloid Surf. B 2013 , 111 , 188.[50] K. W. Putz , O. C. Compton , M. J. Palmeri , S. T. Nguyen ,L. C. Brinson , Adv. Funct. Mater. 2010 , 20 , 3322 .[51] O. C. Compton , S. W. Cranford , K. W. Putz , Z. An , L. C. Brinson , M. J. Buehler , S. T. Nguyen , ACS Nano 2012 , 6 , 2008 .[52] J. R. Pottsa , D. R. Dreyerb , C. W. Bielawski , R. S. Ruoff , Polymer. 2011 , 52 , 5 .[53] H. P. Cong , P. Wang , S. H. Yu , Small 2014 , 10, 448.].[54] S. Das , F. Irin , L. Ma , S. K. Bhattacharia , R. C. Hedden , M. J. Green , ACS Appl. Mater. Interfaces 2013 , 5 , 8633 .[55] H. P. Cong , P. Wang , S. H. Yu , Chem. Mater. 2013 , 25 , 3357 .[56] W. Li , J. Wang , J. Ren , X. Qu , Adv. Mater. 2013 , 25 , 6737 .[57] J. Lu , Y. S. He , C. Cheng , Y. Wang , L. Qiu , D. Li , D. Zou , Adv. Funct Mater. 2013 , 23 , 3494 ][58] Tayade RJ, Surolia PK, Kulkarni RG, Jasr RV. Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci Tech Adv Mater. 2007;8:45[59] C. Tang, N. Chen, Q. Zhang, K.K. Wang, Q. Fu, X. Zhang, Polymer Degradation and Stability 94 (2009) 124–131[60]Renu Sankar • Ravishankar Dhivya • Kanchi Subramanian Shivashangari • Vilwanathan Ravikumar., Wound healing activity of Origanum vulgare engineered titanium dioxide NPs in Wistar Albino rats, J Mater Sci: Mater Med, 2014[61]Brown, L. F., Lanir, N., McDonagh, J., Tognazzi, K., Dvorak, A. M. & Dvorak, H. F. 1993 Fibroblast migration in fibrin gel matrices. Am. J. Pathol. 142, 273–283[62] Laurens, N., Koolwijk, P. & de Maat, M. P. 2006 Fibrin structure and wound healing. J. Thromb. Haemost. 4, 932–939. (doi:10.1111/j.1538- 7836.2006.01861.x[63]Weisel, J. W., Nagaswami, C. & Makowski, L. 1987 Twisting of fibrin fibers limits their radial growth. Proc. Natl Acad. Sci. USA 84, 8991–8995. (doi:10.1073/pnas.84.24.8991)[64]Weisel, J. W. & Cederholm-Williams, S. A. 1997 Fibrinogen and fibrin: characterization, processing and medical applications. In Handbook of biodegradable polymers (eds A. J. Domb, J. Kost & D. M. Wiseman), pp. 347–365.Amsterdam, The Netherlands: Harwood[65] Olsen, D., Yang, C., Bodo, M., Chang, R., Leigh, S., Baez, J., Carmichael, D., Perala, M., Hamalainen, E.R., Jarvinen, M., Polarek, J.,“Recombinant collagen and gelatin for drug delivery”,Adv. Drug Deliv. Rev.Vol. 55, no.12, pp.1547, 2003[66]Wan, Y., Zuo, G., Liu, C., Li, X., He, F., Ren, K., Luo, H.,“Preparation and characterization of nano-platelet-like hydroxyapatite/gelatinnanocomposites”, Polym. Adv. Technol.,Vol.22, no.12,pp. 2659–2664,2011.[67] Lien, S.M., Ko, L.Y., Huang, T.J. “Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissueengineering”,Acta Biomater., Vol. 5, pp. 670–679, 2009.[68] Mao, J.S., Zhao, L.G., Yin, Y.J., Yao, K.D. “Structure and properties of bilayer chitosan–gelatin scaffolds”, Biomaterials,Vol. 24, pp. 1067–1074, 2003.[69] Nguyen, T., Lee, B., “Fabrication and characterization of cross-linked gelatin electrospun nanofibers”, J. Biomed. Sci. Eng., Vol. 3, pp. 1117-1124, 2010[70] Tabata, Y., Ikada, Y., “Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with differentbiodegradabilities”, Biomaterials, 20, pp. 2169–2175, 1999.[71] Ratanavaraporn, J., Damrongsakkul, S., Sanchvanakit, N., Banaprasert, T., Kanokpanont, S.,“Comparison of gelatin and collagen scaffoldsfor fibroblast cell culture”,Journal of Metals, Materials and Minerals,Vol.16, no.1, pp. 31-36, 2006[72] Taokaew, S., Seetabhawang, S., Siripong, P., Phisalaphong, M., “Biosynthesis and characterization of Nanocellulose-Gelatinfilms”,Materials,Vol. 6, pp.782-794, 2013[73] Zhang YZ, Ouyang HW, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Res Part B: Appl Biomater 2005;72B:156–65[74]Alginate-Based Biomaterials for Regenerative Medicine Applications Jinchen Sun and Huaping TanMaterials 2013, 6, 1285-1309; doi:10.3390/ma6041285[75]Balakrishnan, B.; Mohanty, M.; Umashankar, P.R.; Jayakrishnan, A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 2005, 26, 6335–6342[76] Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632 [77]Bagheri-Khoulenjani S, Taghizadeh SM et al (2009) An investigation on the short-term biodegradability of chitosan with various molecular weights and degrees of deacetylation.Carbohydr Polym 78:773–778

Page 20: Presentation1

[78] Varum KM, Myhr MM et al (1997) In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res 299:99–101[79] VandeVord PJ, Matthew HWT et al (2002) Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res 59:585–590 6. Sashiwa H, Aiba SI (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29:887–908][80]. Pan˜os I, Acosta N et al (2008) New drug delivery systems based on chitosan. Curr Drug Discov Technol 5:333–341[81] Varshosaz J (2007) The promise of chitosan microspheres in drug delivery systems. ExpertOpin Drug Deliv 4:263–273[82]. Madihally SV, Matthew HWT (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142][83]. Yang J, Tian F et al (2008) Effect of chitosan molecular weight and deacetylation degree on hemostasis. J Biomed Mater Res B Appl Biomater 84B:131–137[84]. Minagawa T, Okamura Y et al (2007) Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydr Polym 67:640–644][85] Calvo P, Remunan-Lo´pez C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosanpolyethylene oxide NPs as protein carriers. J Appl Polym Sci 63:125–132[86] Maeda, M.; Tani, S.; Sano, A.; Fujioka, K. J Control Release 1999, 62, 313–324[87] . Asz_odi, A.; Legate, K. R.; Nakchbandi, I.; F€assler, R. Annu Rev Cell Dev Biol 2006, 22, 591–621[88] Yannas, I.; Burke, J.; Orgill, D.; Skrabut, E. Science 1982, 215,174–176[89] Piez, K. A. In Extracellular Matrix Biochemistry; Piez, K. A.; Reddi, A. H., Eds.; Elsevier: New York, 1984, pp 1– 40[90]. Cooper, D. M. The physiology of wound repair. Chronic wound care. Krasner, D., ed. King of Prussia, PA; Health Management Publications, Inc.; 1990:Chap. 7[91]. Palmieri, B. Heterologous collagen in wound healing: a clinical study. Int. J. Tissue React. 14:21-25; 1992.49. Zitelli, J. A. Wound healing for the clinician. Adv. Derma. tol. 21243-268; 1987.50. Burke, J. F.: Yannas, I. V.; Quinby, W. C.: et al. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann. Surg. 194:4 13; I98 I[92] Vinicius S Cardoso1,2, Patrick V Quelemes1, Adriany Amorin1, Fernando Lucas Primo3, Graciely Gomides Gobo3,Antonio C Tedesco3, Ana C Mafud4, Yvonne P Mascarenhas4, José Raimundo Corrêa5, Selma AS Kuckelhaus6, Carla Eiras7, José Roberto SA Leite1, Durcilene Silva1 and José Ribeiro dos Santos Júnior8, Collagen-based silver NPs for biological applications: synthesis and characterization, Journal of Nanobiotechnology 2014, 12:36[93] Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu X: Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver NPs: comparison between general linear model-predicted and observed toxicity. Sci Total Environ 2014, 468–469:968–976[94]. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH: Antimicrobial effects of silver NPs. Nanomedicine 2007, 3:95–101[95]P.T. Sudheesh Kumar , S. Abhilash , K. Manzoor , S.V. Nair , H. Tamura , R. Jayakumar, Preparation and characterization of novel b-chitin/nanosilver composite scaffolds for wound dressing applications, Carbohydrate Polymers 80 (2010) 761–767].[96]N. Duraipandy, Rachita Lakra, Kunnavakkam Vinjimur Srivatsan, Usha Ramamoorthy, Purna Sai Korrapati and Manikantan Syamala Kiran, Plumbagin caged silver nanoparticle stabilized collagen scaffold for wound dressing, J. Mater. Chem. B, 2015, 3, 1415[97]Luciano Castaneda, Judith Valle, Nina Yang, Suzanne Pluskat, and Katarzyna Slowinska, Collagen Cross-Linking with Au NPsBiomacromolecules 2008, 9, 3383–3388[98]Rezania A., Healy KE (1999) Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblastlike cells. Biotechnol Prog 15:19–32[99] Christopher G. Wilson a, Patrick N. Sisco b, Francis A. Gadala-Maria c, Catherine J. Murphy b, Edie C. Goldsmith, Polyelectrolyte-coated gold nanorods and their interactions with type I collagenBiomaterials 30 (2009) 5639–5648[100] P. T. Sudheesh Kumar, Vinoth-Kumar Lakshmanan, T.V. Anilkumar, C. Ramya, P. Reshmi A.G. Unnikrishnan, Shantikumar V. Nair, and R. Jayakumar, Flexible and Microporous Chitosan Hydrogel/Nano ZnO Composite Bandages for Wound Dressing: In Vitro and In Vivo Evaluation, ACS Appl. Mater. Interfaces, 2012, Volume:4 Issue:5, pp:2618-2629[101] P T SK1, Lakshmanan VK, Raj M, Biswas R, Hiroshi T, Nair SV, Jayakumar R. Pharm Res, Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage, 2013 Feb;30(2):523-37[102] Yongqiang Hea,b, Nana Zhangb, Qiaojuan Gonga, Haixia Qiub,, Wei Wangb, Yu Liub, Jianping Gaob, Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning, Carbohydrate Polymers 88 (2012) 1100– 1108[103] R. Deepachitra, V. Ramnath and T. P. Sastry, Graphene oxide incorporated collagen–fibrin biofilm as a wound dressing material, RSC Adv., 2014, 4, 62717[104] D. Archanaa, Brijesh K. Singha, Joydeep Duttab, P.K. Dutta, In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material, Carbohydrate Polymers 95 (2013) 530– 539[105] D. Archanaa, Joydeep Duttab, P.K. Dutta, Evaluation of chitosan nano dressing for wound healing: Characterization, in vitro and in vivo studies, International Journal of Biological Macromolecules 57 (2013) 193– 203

Page 21: Presentation1

THANK YOU