preshower 15/03/2005 p.kokkas preshower september run data analysis p. kokkas

22
Preshower 15/03/2005 P.Kokka s Preshower September Run Data Analysis P. Kokkas

Upload: ralf-parker

Post on 17-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Preshower September Run

Data Analysis

P. Kokkas

Page 2: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Outline Pedestal subtraction. Common mode evaluation (“Histograming Method”) Analysis of Electron Data

Evaluation of total charge – Most probable energy Most probable energy as function of beam energy.

Analysis of Muon Data Charge in one strip Evaluation of total charge in X and Y sensors MC evaluation of energy deposition in X and Y sensors MC over data for muons

Evaluation of electron signal in MeV Comparison MC with Data for electrons

Conclusions

Page 3: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Pedestal Subtraction

Run Numbers Runs Used for this analysis

Pedestals_LG_nobeam 22, 25, 26

Pedestals_HG_nobeam 27, 28, 32

Pedestalsnobeam_LG 139 *Pedestalsnobeam_HG 140 *Pedestalswith120GeVelectrons_LG 131

Pedestalswith120GeVelectrons_HG 132

In the next table we see all pedestal runs. For this analysis weused pedestals from runs 139 and 140.

Pedestal = (s0 + s1 + s2)/3

Page 4: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Common mode evaluation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Separate evaluation of common mode for strips 0-15 and 16-31“Histograming Method or Median Method”

Common Mode0-15

Common Mode16-31

Correction Strips

0-15

Correction Strips

16-31

Page 5: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Signal after pedestal-common mode subtraction

Signal After Pedestal subtraction

Signal afterCommon mode subtraction

ADC channels

Page 6: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Signal with – without common mode correction

SignalPedestal correction

SignalPedestal + CM

SignalPedestal correction

SignalPedestal + CM

X sensor Y Sensor

Page 7: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Analysis of Electron Data Total charge = Sum of charges from all strips.

Q=-0.085*s0+0.909*s1+0.176*s2

Total charge 5σ cut = Sum of charges from all strips after cutting 5σ

(pedestal σ ) on the charge of every strip.

Total Charge Distributions fitted on a Landau distribution with a convoluted Gaussian.

p(0) : Width (scale) parameter of Landau density. p(1) : Most Probable parameter of Landau density. p(2) : Total Area (integral – normalization constant). p(3) : Width of convoluted Gaussian function.

Page 8: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Electrons 120 GeV Total Charge

Total ChargeX Sensor

Total ChargeY Sensor

Total Charge X5σ cut

Total Charge Y5σ cut

Page 9: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Electrons Total Charge all Energies

Electrons Energy X Sensor

(ADC channels)

Y Sensor

(ADC channels)

120 GeV 328.6±3.8 841.3±6.4

80 GeV 272.2±4.9 718.6±8.4

50 GeV 215.3±4.6 532.4±6.5

35 GeV 174.4±4.6 439.4±5.0

20 GeV 126.7±4.2 310.5±4.8

Page 10: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Total Charge Most Probable Energy (Electrons all Energies)

electrons

y = 290,98Ln(x) - 568,99

R2 = 0,9823

y = 105,08Ln(x) - 174,31

R2 = 0,9891

y = 303,02Ln(x) - 621,38

R2 = 0,9882

y = 113,21Ln(x) - 221,09

R2 = 0,9908

100,0

200,0

300,0

400,0

500,0

600,0

700,0

800,0

900,0

10 20 30 40 50 60 70 80 90 100 110 120 130

E (Gev)

MP

E (

AD

C c

ha

nn

els

)

Y sensor:●CM: fit method●CM: median method

X sensor:●CM: fit method●CM: median method

Page 11: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Analysis of Muon Data Plots:

Total charge for one strip only (Sensor X, strip 17) after pedestal and common mode subtraction.

Total charge collected for X and Y sensors. MC run for muons at 150 GeV and evaluation of the total energy

deposition in X and Y. Comparison of DATA and MC

Page 12: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Muons :Total charge for one strip only (Sensor X, strip 17)

Sensor XStrip 17

After pedestalsubtraction

Sensor XStrip 17

After pedestalsubtraction

Sensor XStrip 17

After common modesubtraction

Sensor XStrip 17

After common modesubtraction

ADC channels ADC channels

ADC channels ADC channels

Page 13: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Muons: Total charge for Sensor X and Y

Detector XTotal Charge

After Clustering

Detector XTotal ChargeEvents with

Multiplicity 1

DATAX Sensor

DATAY Sensor

Page 14: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Muons : MC Energy Deposition on X and Y

MCX Sensor

MCY Sensor

Page 15: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Muons : MC over DATA

Detector X

(1 mip)

Detector Y

(1 mip)

MC

(MeV)

0.086 0.087

DATA

(ADC channels)

49.77±0.29 44.09±0.28

Minimum Ionizing Particle in MC and in Data

Page 16: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Muons : MC over DATA

MC

DATA DATA

MC

Page 17: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Evaluation of electron signal in MeV

Having the 1 mip (in MeV and in ADC channels) from muon data we will try to evaluate electron signal in MeV.

First we need to go from HG to LG.

PACE 3 (P.Aspel presentation 28th July 2003):

1 mip in LG => 3.35 mV

1 mip in HG => 22.2 mV

In the next transparency we evaluate the Most Probable Energy of the electron signal distributions in MeV.

=> Ratio HG/LG =6.627

Important!!

Page 18: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Electrons signal in MeV

DATAX

(ADC channels)

DATAY

(ADC channels)

DATAX

(MeV)

DATAY

(MeV)

MCX

(MeV)

MCY

(MeV)

Muons 150 GeV (1 mip)

49.77(HG)7.510(LG)

44.09(HG)6.653(LG)

0.086 0.087

Electrons 120 GeV 328.6 841.3 3.762 11.002

Electrons 80 GeV 272.2 718.6 3.117 9.397

Electrons 50 GeV 215.3 532.4 2.465 6.962

Electrons 35 GeV 174.4 439.4 1.997 5.746

Electrons 20 GeV 126.7 310.5 1.451 4.060

Page 19: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

MC for Electrons Run MC for electrons and evaluate energy deposition for energies:

Electrons 120 GeV Electrons 80 GeV Electrons 50 GeV Electrons 35 GeV Electrons 20 GeV

Fit distributions as we did for data. For example next transparency shows fit at 120 GeV.

Page 20: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Electrons MC Energy Deposition on X and Y at 120 GeV

E[MeV] E[MeV]

Page 21: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Data over MC

DATAX

(MeV)

DATAY

(MeV)

MCX

(MeV)

MCY

(MeV)

Muons 150 GeV 0.086 0.087

Electrons 120 GeV 3.762 11.002 2.259 7.663

Electrons 80 GeV 3.117 9.397 2.118 7.194

Electrons 50 GeV 2.465 6.962 2.049 6.261

Electrons 35 GeV 1.997 5.746 1.901 5.187

Electrons 20 GeV 1.451 4.060 1.679 4.216

Preliminary !!!!!

Page 22: Preshower 15/03/2005 P.Kokkas Preshower September Run Data Analysis P. Kokkas

Preshower 15/03/2005 P.Kokkas

Conclusions Electron Analysis

From the plot of MPE versus Beam energy we conclude a good response of sensors as function of the electron energy.

For the Common Mode evaluation “Fit Method” and “Median Method” give the same results!

Muon Analysis Evaluation of 1 mip is possible More work from our side on MC.

Evaluation of electron signal in MeV From muon data analysis the evaluation of electron signal in MeV is

possible. The ratio HG/LG is very important! More work from our side on MC.