prestasjonsbestemmende faktorer i svømming
Embed Size (px)
TRANSCRIPT

Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Outline
Prestasjonsbestemmende faktorer i svømming
1. Forskningsstrategi
2. Hvem vi er og hvem vi samarbeider med
3. Prestasjonsbestemmende faktorer i svømming
4. Teknologiske mulighetera. Løpsanalyser (videokameraer med automatisk bevegelsesgjenkjenning)b. Hastighet, belastning/kraft og «power», og (motstand) med et bærbart vinsj system (og et landbasert
styrke system)c. Hjertefrekvens (optiske hjertefrekvensmålere)
5. Nytt forskningsprosjekt: Kartlegging av mental trening og mentale ferdigheter i norsk svømming
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Forskningsstrategi – 3 hovedområder (IFP/IIM/IIS/ILF)
1. Prestasjonsbestemmende faktorer i svømming – Bjørn Harald Olstad og «Tomohiro Gonjo»
Prestasjonen i svømming vil avhenge av mange ulike faktorer, blant annet • Fysiske kapasiteter (styrke, utholdenhet og bevegelighet)
• Mentale faktorer (spenningsregulering, konsentrasjon, selvtillit)• Tekniske ferdigheter (svømmeteknikk)• Taktiske valg (under konkurranseløpet)
• Kroppssammensetning og antropometri
Hvordan flere av disse endrer seg med alder, kjønn og treningstilstand
Hvordan disse faktorene henger sammen og påvirker hverandre – et holistisk perspektiv
Hvilke faktorer er viktigst i forskjellige distanser og svømmearter
2. Svømmingens påvirkning på fysiologien til svømmere – May Grydeland, Trine Stensrud, Julie StangHvordan skjelett, lunger og hjerte påvirkes av opphold og trening i vann
3. Svømmeopplæring – «Bjørn Harald Olstad, May Grydeland»Svømmeopplæring er et viktig anliggende for samfunnet. Alle bør kunne svømme, det har med drukningssikkerhet å gjøre, men også folkehelse, aktiviteten passer alle aldre og funksjonsnivå.
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Prestasjonsbestemmende faktorer – Holistisk perspektiv
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Vilas-Boas, J.P. (2014). 'Building up' in swimming science. In B. Mason (Ed.), Proceedings of the XIIth International Symposium for Biomechanics and Medicine in Swimming (pp. 1-11). Canberra, Australia: Australian Institute of Sport.

NIH Swimming research team
Internasjonal
Brystsvømmingsgruppe
FRA, POR, CZE
Switzerland
Brazil
Lithuania
Japan
UK
Bjørn Harald Olstad Tomohiro Gonjo
Ola Eriksrud
May Grydeland Trine Stensrud
Julie Sørbø Stang
Institutt for
idrettsmedisi
nske fag
Institutt for
idrett og
samfunnsvite
nskap
Institutt for
lærerutdanning og
friluftslivs-studier
Svømmeopplæring for
barn 6-12 år - ALFAC
FRA-POR-GER-LIT-
BEL-POL…
Germany
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Above water cameras
Underwater cameras placed behind windows
Bjørn Harald Olstad
Inertial Measurement Units
Surface electromyography
Optical heart rate
Force platform
Body composition (DXA, InBody)
Lung function and volume
Anthropometrics
Technological possibilities

https://www.researchgate.net/profile/Bjorn-Olstad/research
https://www.researchgate.net/profile/Tomohiro-Gonjo/research

Race analysis technology
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Above water cameras
Underwater cameras placed behind windows

Race analysis technology
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Parameters analyzed during race analysis
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Cossor, J. (2015). Analyzing Elite Swimming Performances. In S. Riewald & S. Rodeo (Eds.), Science of Swimming Faster (p. 256). Champaign, IL: Human Kinetics.

How to utilize race analysis
Segment contribution
• The importance of each segment to the finishing time
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

The contribution of each segment to the finishing time
Start 6.89 ± 0.21 11.23 ± 0.23
Clean swimming 23.95 ± 0.43 39.00 ± 0.39Turns 27.29 ± 0.25 44.46 ± 0.54Finish 3.26 ± 0.11 5.31 ± 0.12
Break time start + turns 23.56 ± 1.16 38.39 ± 2.09
Men 100-m SC breaststroke Men 50-m SC butterfly Women 50-m SC front crawl
Tot. sec Contribution %
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Henrik Wathne, Rebecca Karlsson, Gard Øvergaard, Tomohiro Gonjo, Bjørn Harald Olstad
7.28 ± 0.32 26.48 ± 0.51
9.04 ± 0.29 32.89 ± 0.368.33 ± 0.30 30.31 ± 0.36
2.82 ± 0.12 10.27 ± 0.197.26 ± 0.96 26.45 ± 3.24
Tot. sec Contribution % Tot. sec Contribution %
6.28 ± 0.29 24.82 ± 0.518.48 ± 0.36 33.56 ± 0.61
7.92 ± 0.37 31.31 ± 0.352.61 ± 0.15 10.31 ± 0.19
8.70 ± 1.37 34.61 ± 6.55

The contribution of each segment to the finishing time
Start 6.89 ± 0.21 11.23 ± 0.23
Clean swimming 23.95 ± 0.43 39.00 ± 0.39Turns 27.29 ± 0.25 44.46 ± 0.54Finish 3.26 ± 0.11 5.31 ± 0.12
Break time start + turns 23.56 ± 1.16 38.39 ± 2.09
Tot. sec Contribution %
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
7.28 ± 0.32 26.48 ± 0.51
9.04 ± 0.29 32.89 ± 0.368.33 ± 0.30 30.31 ± 0.36
2.82 ± 0.12 10.27 ± 0.197.26 ± 0.96 26.45 ± 3.24
Tot. sec Contribution % Tot. sec Contribution %
6.28 ± 0.29 24.82 ± 0.51
8.48 ± 0.36 33.56 ± 0.617.92 ± 0.37 31.31 ± 0.35
2.61 ± 0.15 10.31 ± 0.198.70 ± 1.37 34.61 ± 6.55
Henrik Wathne, Rebecca Karlsson, Gard Øvergaard, Tomohiro Gonjo, Bjørn Harald Olstad
Men 100-m SC breaststroke Men 50-m SC butterfly Women 50-m SC front crawl

The contribution of each segment to the finishing time
Start 6.89 ± 0.21 11.23 ± 0.23
Clean swimming 23.95 ± 0.43 39.00 ± 0.39Turns 27.29 ± 0.25 44.46 ± 0.54Finish 3.26 ± 0.11 5.31 ± 0.12
Break time start + turns 23.56 ± 1.16 38.39 ± 2.09
Tot. sec Contribution %
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
7.28 ± 0.32 26.48 ± 0.51
9.04 ± 0.29 32.89 ± 0.368.33 ± 0.30 30.31 ± 0.36
2.82 ± 0.12 10.27 ± 0.197.26 ± 0.96 26.45 ± 3.24
Tot. sec Contribution % Tot. sec Contribution %
6.28 ± 0.29 24.82 ± 0.51
8.48 ± 0.36 33.56 ± 0.617.92 ± 0.37 31.31 ± 0.35
2.61 ± 0.15 10.31 ± 0.19
8.70 ± 1.37 34.61 ± 6.55
Henrik Wathne, Rebecca Karlsson, Gard Øvergaard, Tomohiro Gonjo, Bjørn Harald Olstad
Men 100-m SC breaststroke Men 50-m SC butterfly Women 50-m SC front crawl

How to utilize race analysis
Segment contribution
• The importance of each segment to the finishing time
Component contribution
• Identifying which components determine the performance
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Components determining the performanceMen's 50 m butterfly short-course (start and turn performance)
Mean underwater kick velocity has a large impact on the 15 m start and 10 m turn-out time
• Start: -0.689, p<0.05 and Turn: -0.951, p<0.01
• Regardless of initial velocity (entry/push-off) or the velocity deceleration during underwater kicking
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Components determining the performanceMen's 50 m butterfly short-course (start and turn performance)
Mean underwater kick velocity has a large impact on the 15 m start and 10 m turn-out time
• Start: -0.689, p<0.05 and Turn: -0.951, p<0.01
• Regardless of the initial velocity (entry/push-off) or the velocity deceleration during underwater kicking
First kick velocity is essential for the mean underwater kick velocity during the start
• First kick velocity 0.838, p<0.01 and Last kick velocity 0.508, p>0.05
• Fast swimmers controlled their swimming direction and Body Angle (BA) to maximize the horizontal component of the swimming velocity
• Fast swimmers tried not to change their BA (shoulder/hip) much after the entry to minimize the drag
• A slight posture change would cause a severe deceleration
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Components determining the performanceMen's 50 m butterfly short-course (start and turn performance)
Mean underwater kick velocity has a large impact on the 15 m start and 10 m turn-out time• Start: -0.689, p<0.05 and Turn: -0.951, p<0.01
• Regardless of the initial velocity (entry/push-off) or the velocity deceleration during underwater kicking
First kick velocity is essential for the mean underwater kick velocity during the start
• First kick velocity 0.838, p<0.01 and Last kick velocity 0.508, p>0.05• Fast swimmers controlled their swimming direction and Body Angle (BA) to maximize the horizontal component of
the swimming velocity• Fast swimmers tried not to change their BA (shoulder/hip) much after the entry to minimize the drag
• A slight posture change would cause a severe deceleration
Last kick velocity is important for the mean underwater kick velocity during the turn• First kick velocity 0.550, p>0.05 and Last kick velocity 0.677, p<0.05• The change in BA from the entry or pushoff to the first kick was approximately 21 and 8.5˚ in the
start and turn segment
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Components determining the performanceMen's 50 m butterfly short-course (start and turn performance)
Mean underwater kick velocity has a large impact on the 15 m start and 10 m turn-out time
• Start: -0.689, p<0.05 and Turn: -0.951, p<0.01
• Regardless of the initial velocity (entry/push-off) or the velocity deceleration during underwater kicking
First kick velocity is essential for the mean underwater kick velocity during the start
• First kick velocity 0.838, p<0.01 and Last kick velocity 0.508, p>0.05
• Fast swimmers controlled their swimming direction and Body Angle (BA) to maximize the horizontal component of the swimming velocity
• Fast swimmers tried not to change their BA (shoulder/hip) much after the entry to minimize the drag
• Hydrodynamic resistance is critical after the entry, and a slight posture change would cause a severe deceleration
Last kick velocity is important for the mean underwater kick velocity during the turn
• First kick velocity 0.550, p>0.05 and Last kick velocity 0.677, p<0.05
• The change in BA from the entry or pushoff to the first kick was approximately 21 and 8.5˚ in the start and turn segment
Forward velocity at the last kick before the breakout was not different between the segments
Time underwater was similar between start and turn• A larger number of kicks with higher kick frequency in the start than the turn segment
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Men's 1500-m turn and
swimming performance
WC Hangzhou 2018
WC Gwangju 2019
Turn performance could be the
distinguishing factor in World-
championship 1500 m freestyle
races (5-m inn and out)
Turn performance affected final
ranking in 6 (short-course) and
in 3 (long-course) out of 8 World
championships finalists.
Components determining the performance

Differences between elite and sub-elite swimmersin a 100 m breaststroke
Elite swimmers are characterized by larger clean-swimming and glide velocity
• Particularly beginning of the glide segment
• Most of the clean-swimming except for the beginning of this segment
No differences in the pull-out and at the beginning of the clean-swimming phases
• Techniques to produce fast clean-swimming speed does not necessarily guarantee fast underwater pullout and transition stroke velocity
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming


Arm – leg coordination during the underwater pull-out sequence in the 50, 100 and 200 m breaststroke start
Swimmers did not change the complex inter-limb coordination between the competitive events
• Modified the least complex movement, gliding, to adapt to the swimming speed of the respective events
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Bjørn H. Olstad, Tomohiro Gonjo, Ana Conceição, Jan Šťastný, Ludovic Seifert

Arm – leg coordination during the underwater pull-out sequence in the 50, 100 and 200 m breaststroke start
Swimmers did not change the complex inter-limb coordination between the competitive events
• Modified the least complex movement, gliding, to adapt to the swimming speed of the respective events
Gliding was a major part of the underwater sequence (duration between 47-53%, distance covered 61-67%)
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Bjørn H. Olstad, Tomohiro Gonjo, Ana Conceição, Jan Šťastný, Ludovic Seifert

Arm – leg coordination during the underwater pull-out sequence in the 50, 100 and 200 m breaststroke start
Swimmers did not change the complex inter-limb coordination between the competitive events
• Modified the least complex movement, gliding, to adapt to the swimming speed of the respective events
Gliding was a major part of the underwater sequence (duration between 47-53%, distance covered 61-67%)
Timing of the dolphin kick showed no difference between the events
• High inter-individual variability suggests to individually manage the time separating the end of the dolphin kick and the beginning of the arm pull-out
• The first gliding phase of the underwater sequence possess the most hydrodynamic body position, meaning that it is beneficial to initiate and complete the dolphin kick with this position to maximize the velocity generated by the kick
• It is unclear whether the 0.4 s gap is indeed an optimal timing
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Bjørn H. Olstad, Tomohiro Gonjo, Ana Conceição, Jan Šťastný, Ludovic Seifert

How to utilize race analysis
Segment contribution
• The importance of each segment to the finishing time
Component contribution
• Identifying which components determine the performance
Race modelling
• Compare yourself to the "gold standard" / others / yourself
• Identify individual strengths and weaknesses
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Race modelling
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Green within 0.00-0.09 s, Yellow within 0.10-0.19 s, Red over 0.20 s slower than the best performance
Henrik Wathne, Bjørn Harald Olstad
From 60.55 sec to 58.69 sec (0.98 seconds only from pivot times)

Race modelling
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Notable differences from
the pull-out to the
beginning of the clean-
swimming
When the data points of
these parts of each
swimmer’s trial were
replaced with the fastest
data among the two
swimmers, the theoretical
finishing times for both
swimmers became under
60 s

Time Start Start Start Start Start Start Start Start Start Start Start
15m start Block Time(BT) Flight time Entry Time Flight Distance Entry velocity Underwater time Underwater distance Breakout time Breakout distance Peak velocity Min velocity
1 8.17 0.64 0.30 0.94 2.69 3.97 3.76 7.49 4.70 10.18 4.65 0.37
2 7.73 0.73 0.40 1.13 3.23 4.52 5.12 9.90 6.25 13.13 4.52 0.11
3 8.37 0.67 0.35 1.03 2.88 4.30 4.26 8.05 5.29 10.93 4.37 0.15
Identify individual strengths and weaknesses
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Finishing Time Time Time Time Time Time Time % of race % of race % of race % of race % of race % of race Lap time 1 Lap time 2 DropOFF(s) Clean swim(s) Clean swim(s)
0-50m 15m start Clean swim Turns 5m finish Breakouts Start+Turns 15m start Clean swim Turn Finish Breakouts Start+Turns 0-25m 25-50m Lap2 vs Lap1 15-20m 35-45m
1 31.84 8.17 10.66 9.64 3.37 9.15 17.81 25.64 33.45 30.26 10.59 28.77 55.90 14.79 17.05 2.26 3.47 7.19
2 32.39 7.73 11.43 9.78 3.45 11.79 17.51 23.87 35.28 30.20 10.64 36.42 54.07 14.61 17.78 3.17 3.68 7.75
3 32.85 8.37 10.91 10.16 3.41 10.30 18.53 25.46 33.19 30.93 10.37 31.40 56.39 15.15 17.70 2.55 3.54 7.37
4 33.60 8.56 11.11 10.36 3.57 11.01 18.92 25.48 33.07 30.83 10.61 32.77 56.31 15.54 18.06 2.52 3.71 7.40
5 33.71 8.79 11.12 10.39 3.42 11.18 19.17 26.06 32.97 30.81 10.14 33.16 56.88 15.73 17.98 2.25 3.60 7.52
6 33.86 8.50 11.57 10.29 3.51 12.65 18.78 25.09 34.15 30.38 10.36 37.37 55.47 15.72 18.14 2.42 3.70 7.86
7 33.95 8.34 11.57 10.28 3.76 10.32 18.62 24.55 34.07 30.27 11.08 30.41 54.82 15.42 18.53 3.11 3.68 7.89
Women’s 50 m Breaststroke
0-5m (m/s) 5-10m (m/s) 10-15m (m/s) 15-20m (m/s) 20-25m (m/s) 25-30m (m/s) 30-35m (m/s) 35-40m (m/s) 40-45m (m/s) 45-50m (m/s)
1 3.22 1.67 1.38 1.44 1.59 1.83 1.33 1.37 1.42 1.48
2 3.20 2.14 1.31 1.36 1.56 1.74 1.35 1.30 1.28 1.45
3 3.14 1.66 1.33 1.41 1.54 1.74 1.23 1.37 1.34 1.47

How to utilize race analysis
Segment contribution
• The importance of each segment to the finishing time
Component contribution
• Identifying which components determine the performance
Race modelling
• Compare yourself to the "gold standard" / others / yourself
• Identify individual strengths and weaknesses
Compare after training
• If training improved your specific performance criteria
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Compare after training
At testing
Lap Avg. distance left arm Avg. distance right arm1 1.05 0.99
2 1.02 0.97
50-m front crawl: Left / right stroke distance
After1 1.04 1.022 1.02 1.01
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

What we are currently working on
Race analysis from the European long course championships• Identify benchmarks for high level performance for men and women in all events
Butterfly underwater dolphin kick movement variability• Underwater, transition and swim kick• Velocity, frequency and length of kick
Performance determining factors in 50 m front crawl and butterfly
Breaststroke underwater pull-out sequence• Differences between the first and last pull-out in 100 and 200 m breaststroke• Variability between the seven breaststroke turns in the 200 m breaststroke
• What is the optimal strategy for the underwater pull-out sequence
“Speed curve analysis between 21-22-23 sec 50 m freestyle swimmers”
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Strength & power – land and water technologyLoad-velocity profiles (belastning- og hastighetsprofiler)
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Swimmers have changed
https://myswimpro.com/blog/2016/05/24/dramatic-changes-in-swimmers-
physiques-over-the-past-century/
It’s clear that today’s top-
level swimmers are more
powerful and look physically
stronger than ever before!
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

and also the view on strength training
Methods 1980 (selection):
• Development of strength-endurance is
crucial for landtraining
• Usage of swimming benches
• Movement velocity during strength
training should be the same as during
competition
• 1 RM muscle contraction with unspecific
velocity is not meaningful
• (Low maximal-)strength requirements in
swimming
• High force peaks are not necessary for
propulsion
KRAFTKONZEPT 2016, 14.11.2016
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Strength training can improve the performance during
starts and turns
Requirement for Olympic Games final:
Squat Jump
Norwegian requirements for strength in swimming
Event Men Women
50 m front crawl > 45 cm > 40 cm
100 m front crawl > 45 cm > 40 cm
200 m front crawl > 40 cm > 35 cm
400 m front crawl > 40 cm > 35 cm
800 m front crawl > 30 cm
1500 m front crawl > 35 cm
100 m butterfly > 45 cm > 40 cm
200 m butterfly > 40 cm > 35 cm
100 m breaststroke > 45 cm > 40 cm
200 m breaststroke > 40 cm > 35 cm
100 m backstroke > 45 cm > 40 cm
200 m backstroke > 40 cm > 35 cm
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

How strong is strong enough?https://www.britishswimming.org
Frequently observed 1rep max scores on key exercises in elite senior swimmers
BW = Body Weight
Gender Distance Chin Up (BW + kg) Bench Press (kg) Back Squat (kg)
Female Sprint 25 75 85
Middle 20 65 80
Distance 15 55 75
Male Sprint 50 120 130
Middle 35 100 115
Distance 30 90 100
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Specific force requirementsFully-tethered swimming
Performance is determined by the ability to produce and maintain the highest forward swimming velocity
• Achieved by maximizing and minimizing propulsive and resistive forces, respectively (Maglischo, 2003)
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Specific force requirementsFully-tethered swimming
Performance is determined by the ability to produce and maintain the highest forward swimming velocity
• Achieved by maximizing and minimizing propulsive and resistive forces, respectively (Maglischo, 2003)
Tethered forces present moderate to very large relationships with swimming velocity, and associations between forces diminish as swimming distance increases (Amaro et al., 2017)
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Specific force requirementsFully-tethered swimming
Performance is determined by the ability to produce and maintain the highest forward swimming velocity
• Achieved by maximizing and minimizing propulsive and resistive forces, respectively (Maglischo, 2003)
Tethered forces present moderate to very large relationships with swimming velocity, and associations between forces diminish as swimming distance increases (Amaro et al., 2017)
It is essential for swimmers to have both an ability to produce a large muscular force and proper technical skill to apply the force to the water (Maglischo, 2003)
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Specific force requirementsFully-tethered swimming
Performance is determined by the ability to produce and maintain the highest forward swimming velocity
• Achieved by maximizing and minimizing propulsive and resistive forces, respectively (Maglischo, 2003)
Tethered forces present moderate to very large relationships with swimming velocity, and associations between forces diminish as swimming distance increases (Amaro et al., 2017)
It is essential for swimmers to have both an ability to produce a large muscular force and proper technical skill to apply the force to the water (Maglischo, 2003)
One major limitation with this approach is that it is not possible to assess how the propulsive force measured in this method is transferred to the velocity due to the lack of resistive force information
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Semi-tethered swimmingLoad-velocity profiles (Belastning- og hastighetsprofiler)
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Load-velocity profiles (Belastning- og hastighetsprofiler)
A reliable sport specific method to assess a swimmer’s strength (load/belastning) and (velocity/hastighet) production capabilities
• If a swimmer is strong enough, and/or has a good capability to reduce resistance
• Able to transfer strength into velocity
• Strength or velocity dominated
• Predict and assess swimming performance
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Vadj, adjusted horizontal velocity;
V0, predicted maximum velocity;
L0, predicted maximum load

Load-velocity profiles (Belastning- og hastighetsprofiler)
Theoretically, V0 corresponds to maximal free-swimming velocity, and L0 equal the fully tethered swimming force
• Assess both individual strength and velocity capabilities during swimming
• The slope of the load-velocity profile can identify
• Is the maximum swimming velocity achieved by a high propulsive force production (flatter slope)
• Or from drag minimizing abilities (steeper slope)
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Jumping
Swimming

Load-velocity profiles (Belastning- og hastighetsprofiler)
Theoretically, V0 corresponds to maximal free-swimming velocity, and L0 equal the fully tethered swimming force
• Assess both individual strength and velocity capabilities during swimming
• The slope of the load-velocity profile can identify
• Is the maximum swimming velocity achieved by a high propulsive force production (flatter slope)
• Or from drag minimizing abilities (steeper slope)
A load-velocity profile with a large L0 but with a small V0 (and consequently a flat slope) implies that the swimmer is capable of applying a large force to the water but has a limited ability to use it effectively (or exposed to a large resistive force when moving forward) to produce a large velocity (blue swimmer)
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Jumping
Swimming

Relevant for performance
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Correlation coefficients between variables obtained from load-velocity and 50 m swimming, males
Correlation coefficients between variables obtained from load-velocity (girls 11-13-16 yrs)
Comparing the performance of young, female swimmers using the Load-Velocity profile
Flatter slope = a better for performance
To a certain extent??

How to utilize load-velocity profiles (Belastning- og hastighetsprofiler) i treningsarbeidet
Trener kan følge (f.eks. den langsiktige utviklingen) eller sammenligne (mellom svømmere) deres evne til å utvikle fremdriftsskapende kraft (styrke) og evnen til å skape fri svømmehastighet

Compare between swimmers (Men sprint butterfly)
Relative

Predicted V0 versus actual swimming Vmax
The swimming velocity is influenced by the start and turn technique of the swimmer with subsequent underwater swimming movements (Veiga and Roig, 2017)
The load-velocity profile can therefore offer a practical advantage with estimating the theoretical maximal swimming velocity independent of the start and turn effect (Gonjo et al., 2021)
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
#1 1.90 1.93
#2 1.84 1.89#3 1.83 1.83
Men’s 50 m SC Butterfly
V0 Vmax

What we are currently working on
The load-velocity profile of sprint swimmers• Men and women for the four strokes
Intervention studies• Resisted and assisted sprint protocols to enhance performance based on the slope
The load-velocity profile of middle- and long-distance swimmers
The load-velocity profile of international level swimmers• Establish requirements to perform at different performance levels
Is there an individual optimal slope for swimming similar to jumping???
“Reliability of measuring active drag”
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Heart rate in swimming
https://www.forbes.com/sites/jenniferhicks/2016/02/28/polar-the-original-fitness-tracker-and-heart-rate-monitor/#7aa282cb5fe9
OH1
H10
M430 M600
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

How accurate is optical heart rate?
OH1 M600 H10
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

How accurate is optical heart rate?
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

How accurate is optical heart rate?
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

How to utilize heart rate
Monitoring intensity / training load:
• VO2max (calculate velocities)
• Lactate (calculate velocities)
• Step-test, Critical Swim Speed (calculate velocities)
• Heart rate (% of maxHR)
• RPE (subjective)
Swim training is predominantly based on velocity (from lactate, step-tests and Critical Swim Speed)
• Continuously monitor training intensity
• Teaching intensity control
• Maximal heart rate land and water
• Protocol for achieving maximal heart rate in swimming
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Maximal Heart Rate for Elite Swimmers
Different protocol to achieve maximal heart rate (maxHR) in sprinters compared to middle-distance swimmers?
To determine the difference in maxHR between front crawl swimming and running/cycling
• Three different maxHR step-test protocols
• MaxHR test in running/cycling
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Maximal Heart Rate for Elite Swimmers
Different protocol to achieve maximal heart rate (maxHR) in sprinters compared to middle-distance swimmers?
To determine the difference in maxHR between front crawl swimming and running/cycling
Three different maxHR protocols: 50 m, 100 m and 200 m step-test protocol
• MaxHR test in running/cycling
No differences in maxHR between the swimming protocols:
• 200 m: 192.0 ± 6.9 bpm (mean ± SD)
• 100 m: 190.8 ± 8.3 bpm
• 50 m: 191.9 ± 8.4 bpm
No differences in maxHR between sprinters and middle-distance for swimming protocols
MaxHR was 6.7 ± 5.3 bpm lower for swimming compared to 199.9 ± 8.9 bpm for running (cycling)
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Maximal Heart Rate for Elite Swimmers
Different protocol to achieve maximal heart rate (maxHR) in sprinters compared to middle-distance swimmers?
To determine the difference in maxHR between front crawl swimming and running/cycling
Three different maxHR protocols: 50 m, 100 m and 200 m step-test protocol
• MaxHR test in running/cycling
No differences in maxHR between the 200 m (mean ± SD; 192.0 ± 6.9 bpm), 100 m (190.8 ± 8.3 bpm) or 50 m protocol (191.9 ± 8.4 bpm).
• No differences in maxHR between sprinters and middle-distance for swimming protocols
MaxHR was 6.7 ± 5.3 bpm lower for swimming compared to running 199.9 ± 8.9 bpm (cycling)
All step-test protocols were suitable to achieve maxHR during front crawl swimming
No separate protocol is needed for swimmers specialized in sprint or middle-distance
Important to conduct sport-specific maxHR tests for different sports that are targeted to improve the aerobic capacity among elite swimmers of today (triathletes)
Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming

Kartlegging av mental trening og mentale ferdigheter i norsk svømming
Flere av verdens beste utøvere benytter seg av mental trening for å prestere bedre både i trening og i konkurranse
Målet med studien:
1. I hvilken grad bruker norske elitesvømmere mentale ferdigheter i trening og konkurranse? Hvilke ferdigheter har de?
2. I hvilken grad har trenere for norske elitesvømmere kunnskap om mental treningHvordan vektlegger de dette i arbeidet med sine utøvere?
Rebecca Karlssonn
Mental trening og mentale ferdigheter

Kartlegging av mental trening og mentale ferdigheter i norsk svømming
Rebecca Karlssonn
Mental trening og mentale ferdigheter
Anonym Trener- og Utøverundersøkelse
• To ulike nettbaserte spørreskjemaer
• Tar ca. 20 min å besvare
Hvem kan delta?
• Aktive utøvere over 16 år som deltok på NM (jr. og/eller sr.) i 2020
• Trenere og assistenttrenere for utøvere på dette nivået
Når?
• Spørreundersøkelsen blir utsendt i uke 39
• Vi håper dette er noe som kan gjennomføres i høstferien, på borte eller hjemmeleir ☺
Bidra til kunnskap om mental trening i svømming!
Ta kontakt dersom det er noen spørsmål: [email protected]

Bjørn Harald Olstad
Prestasjonsbestemmende faktorer i svømming
Takk for oppmerksomheten!