prevention of significant deterioration...jul 20, 2012  · sources on this list are also required...

81

Upload: others

Post on 02-Nov-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary
Page 2: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary
Page 3: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

Environmental solutions delivered uncommonly well

PREVENTION OF SIGNIFICANT DETERIORATION PERMIT APPLICATION FOR GREENHOUSE GASES

Tenaska Brownsville Partners, LLC

Tenaska Brownsville Generating Station

Preparedby

TENASKAINC.

LarryG.Carlson,QEP‐DirectorofAirPrograms

TRINITYCONSULTANTS

PaulGreywall,P.E.–DirectorMelissaDakas–ManagingConsultant

LathaKambham,Ph.D.–SeniorConsultantChakriTennety‐SeniorConsultant

LeleBao‐Consultant

February2013

Project124401.0126

Page 4: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 2

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY 3 

2. TCEQ FORM PI-1 6 

3. TCEQ CORE DATA FORM 7 

4. AREA MAP 8 

5. PLOT PLAN 9 

6. PROCESS DESCRIPTION 10 

7. EMISSIONS DATA 13 

8. EMISSION POINT SUMMARY (TCEQ TABLE 1(A)) 17 

9. FEDERAL REGULATORY REQUIREMENTS 18 

10. BEST AVAILABLE CONTROL TECHNOLOGY 22 

APPENDIX A. GHG EMISSION CALCULATIONS

APPENDIX B. ALTERNATIVE OPTIONS ANALYSIS FOR DUCT BURNERS

APPENDIX C. CCS COST ANALYSIS

Page 5: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 3

1. EXECUTIVE SUMMARY

TenaskaBrownsvillePartners,LLC(Tenaska)proposestoconstructagreenfieldelectricpowergenerationfacilityinBrownsville,CameronCounty,Texas(TenaskaBrownsvilleGeneratingStation).TheprimaryStandardIndustrialClassificationcodeoftheproposedTenaskaBrownsvilleGeneratingStation(BrownsvilleGeneratingStation)is4911(ElectricServices).TenaskahasbeenassignedaTexasCommissiononEnvironmentalQuality(TCEQ)CustomerReferenceNumber(CN)604252627andtheBrownsvilleGeneratingStationhasbeenassignedaTCEQRegulatedEntityNumber(RN)106579600.CameronCountyiscurrentlyanattainmentorunclassifiedareaforallcriteriapollutants.1Basedonthelocationofthefacility,theBrownsvilleGeneratingStationwillnotbesubjecttononattainmentnewsourcereview(NNSR).

1.1 PROPOSED PROJECT

Tenaskaisproposingtopermittwoprojectdesigns:a1‐on‐1ora2‐on‐1combinedcyclecombustionturbine(CCCT)configuration.TheBrownsvilleGeneratingStationwillbedesignedtohaveanestimatednominalpowergenerationsummerconditionoutputcapacityofapproximately400megawatts(MW)forthe1‐on‐1configurationor800MWforthe2‐on‐1configuration.TenaskaproposestoinstallMitsubishi501GACcombustionturbinegenerator(s)whichwillbeequippedwithaheatrecoverysteamgenerator(HRSG)withsupplemental250millionBritishthermalunitsperhour(MMBtu/hr,higherheatingvalue[HHV])naturalgas‐fired“duct”burners.SteamfromtheHRSG(s)willserveasinglesteamturbinegenerator.Eachcombustionturbineandassociatedductburnerwillhaveacommonexhauststack.Therefore,thesearerepresentedasasingleemissionpointforeachCCCT.TheCCCTswillbefueledbypipeline‐qualitynaturalgasonly.Selectivecatalyticreduction(SCR)willbeemployedastheBestAvailableControlTechnology(BACT)foremissionsofnitrogenoxides(NOX)fromtheCCCTs.OxidationCatalystwillbeemployedastheBACTforemissionsofcarbonmonoxide(CO)andvolatileorganiccompounds(VOC)fromtheCCCTs.ConstructionoftheproposedplantisprojectedtocommenceinMay2014andtheplantisproposedtobeoperationalinJune2016.TheproposedBrownsvilleGeneratingStationwillincludethefollowingemissionsources:

> One(1)ortwo(2)NaturalGas‐firedCombustionTurbineswithductburners,includingplannedmaintenance,start‐up,andshutdown(MSS)activities

> One(1)CoolingTower> One(1)DieselFirePumpEngine> One(1)DieselEmergencyGenerator> One(1)FuelGasHeater> One(1)AuxiliaryBoiler> Two(2)DieselStorageTanks> FugitiveemissionsfromfuelandammoniapipingcomponentsandSF6emissionscircuitbreakers> OtherMSSactivitiesonsite

1Per40CFR§81.344(EffectiveJuly20,2012)

Page 6: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 4

TenaskaproposestouseanhydrousammoniafortheSCRsystem.Theanhydrousammoniawillbestoredinapressurizedtankandtheunloadingoperationswillbeequippedwithavaporreturnline.Therefore,theammoniastoragetankandunloadingoperationsarenotconsideredaspotentialemissionsources.AdetailedprocessdescriptionisincludedinSection6ofthispermitapplication.

1.2. PERMITTING CONSIDERATIONS

PSDregulationsdefineastationarysourceasamajorsourceifitemitsorhasthepotentialtoemit(PTE)eitherofthefollowing:

> 250tonsperyear(tpy)ormoreofanyPSDpollutant;or> 100tpyormoreofanyPSDpollutantandthefacilitybelongstooneofthe28listedPSDmajorfacility

categories.

Fossilfuel‐firedsteamelectricplantswithheatinputgreaterthan250MMBtu/hrareoneofthe28PSDmajorfacilitycategories.Sourcesonthislistarealsorequiredtoincludefugitiveemissionsindeterminingwhetherthesourceisa“majorstationarysource”andthereforesubjecttothePSDpermittingprogram.TheproposedBrownsvilleGeneratingStationiswithinamajorfacilitycategoryandsubjecttoa100tpythresholdforclassificationasaPSDmajorsource.TheBrownsvilleGeneratingStationisestimatedtohavepotentialemissionsinexcessof100tpyforNOx,CO,andVOCemissions.Inaddition,thegreenhousegas(GHG)emissionsexceedthetailoredmajorsourcePSDthresholdof100,000tpy.Therefore,theBrownsvilleGeneratingStationwillbeconsideredanewmajorsourcewithrespecttothePSDprogram.AccordingtoEPAguidance,the"majorforone,majorforall"PSDpolicy,ifasiteismajorforoneormorecriteriapollutants,thentheothercriteriapollutantemissionsneedtobecomparedtotheSignificantEmissionRates(SERs)whendeterminingPSDapplicabilityforparticulatematter(PM),particulatematterwithanaerodynamicdiameterof10micronsorless(PM10),particulatematterwithanaerodynamicdiameterof2.5micronsorless(PM2.5),sulfurdioxide(SO2)andsulfuricacid(H2SO4)mist.BasedonemissionsestimatesfortheBrownsvilleGeneratingStation,theproposedprojectwillbePSDmajorforNOX,CO,VOC,PM,PM10,PM2.5,H2SO4mist,andGHGs.GHGemissionsforeachapplicableemissionsourcewereestimatedbasedonemissionlimitsandcontrolsproposedasBACT,proposedequipmentspecificationsasprovidedbythemanufacturerandthedefaultemissionfactorsintheEPA’sMandatoryGreenhouseReportingRule(40CFR98,SubpartC,TablesC‐1andC‐2fornaturalgasanddiesel).ThePTEofGHGsfromtheproposedBrownsvilleGeneratingStationwillbegreaterthan100,000tpyonaCO2ebasis.AsummaryoftheGHGemissionsfromtheproposedproject,calculatedonaCO2ebasisbyuseoftheGlobalWarmingPotentialssetforthinTableA‐1toSubpartAof40CFRPart98,isshowninTable1.2‐1.

Page 7: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 5

Table1.2‐1.BrownsvilleGeneratingStation‐ProposedProjectGHGEmissions

EPN

EmissionPointDescription

GHGEmissionRates(shorttonsperyear)

CO2 CH4 N2O SF6 TotalCO2e1 CombustionTurbine1/Duct

Burner(NormalOperations)1,570,399.4 105.57 40.099 ‐ 1,585,046

2 CombustionTurbine2/DuctBurner(NormalOperations)

1,570,399.4 105.57 40.099 ‐ 1,585,046

4 FirePumpEngine 31.2 1.3E‐03 2.52E‐04 ‐ 315 EmergencyGenerator 155.1 6.3E‐03 1.26E‐03 ‐ 1566 FuelGasHeater 5,119.7 0.10 0.010 ‐ 5,125

7 AuxiliaryBoiler 23,038.6 0.43 0.044 ‐ 23,061

12 FugitiveSF6CircuitBreakerEmissions

‐ ‐ ‐ 0.005 122

12

ComponentsFugitiveLeakEmissions

1.02

21

1and2 CCCTMSSEmissions 3,208.80 ‐ ‐ 67,385

Total(1on1Scenario) 1,598,744.0 1,711.52 40.155 0.005 1,647,254

Total(2on1Scenario) 3,169,143.4 3421.49 80.254 0.005 3,265,993

TobeconsistentwiththereportingformatinGHGMandatoryReportingRule,theemissionsroundedasfollows:CO2‐1decimalplace,CH4‐2decimalplaces,N2O‐3decimalplaces,andCO2e‐roundedtonearestdigit.

1.3. PERMIT APPLICATION

Allrequiredsupportingdocumentationforthepermitapplicationisprovidedinthefollowingsections.TheTCEQFormPI‐1isincludedinSection2andaTCEQCoreDataformisfoundinSection3ofthisapplication.AnareamapindicatingthesitelocationandaplotplanidentifyingthelocationofvariousemissionunitsatthesiteareincludedinSections4and5ofthereport,respectively.AprojectdescriptionandprocessflowdiagramarepresentedinSection6.AsummaryoftheemissioncalculationsandtheTCEQTable1(a)canbefoundinSections7and8ofthisapplication.DetailedfederalregulatoryrequirementsareprovidedinSection9anddiscussionsofBestAvailableControlTechnology(BACT)areprovidedinSection10.

Page 8: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 6

2. TCEQ FORM PI-1

Page 9: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TCEQ-10252 (Revised 10/12) PI-1 Instructions This form is for use by facilities subject to air quality requirements and may be revised periodically. (APDG 5171v19) Page 1 of 9

Texas Commission on Environmental Quality

Form PI-1 General Application for Air Preconstruction Permit and Amendment

Important Note: The agency requires that a Core Data Form be submitted on all incoming applications unless a Regulated Entity and Customer Reference Number have been issued and no core data information has changed. For more information regarding the Core Data Form, call (512) 239-5175 or go to www.tceq.texas.gov/permitting/central_registry/guidance.html.

I. Applicant Information

A. Company or Other Legal Name: Tenaska Brownsville Partners, LLC

Texas Secretary of State Charter/Registration Number (if applicable):

B. Company Official Contact Name: Jim Welniak

Title: Vice President, Engineering

Mailing Address: 1044 N. 115th St., Suite 400

City: Omaha State: NE ZIP Code: 68154-4446

Telephone No.: 402- 691-9500 Fax No.: 402-691-9530 E-mail Address: [email protected]

C. Technical Contact Name: Larry G. Carlson

Title: Director, Air Programs

Company Name: Tenaska Brownsville Partners, LLC

Mailing Address: 1044 N. 115th St., Suite 400

City: Omaha State: NE ZIP Code: 68154-4446

Telephone No.: 402-938-1661 Fax No.: 402-691-9530 E-mail Address: [email protected]

D. Site Name: Tenaska Brownsville Generating Station

E. Area Name/Type of Facility: Power Generating Plant Permanent Portable

F. Principal Company Product or Business:

Principal Standard Industrial Classification Code (SIC): 4911

Principal North American Industry Classification System (NAICS): 221112

G. Projected Start of Construction Date: 05/01/2014

Projected Start of Operation Date: 06/01/2016

H. Facility and Site Location Information (If no street address, provide clear driving directions to the site in writing.):

Street Address: NE Corner of State Hwy 550 & Old Alice Road

City/Town: Brownsville County: Cameron ZIP Code: 78575

Latitude (nearest second): 26° 1'36"N Longitude (nearest second): 97°30'13"W

Page 10: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TCEQ-10252 (Revised 10/12) PI-1 Instructions This form is for use by facilities subject to air quality requirements and may be revised periodically. (APDG 5171v19) Page 2 of 9

Texas Commission on Environmental Quality

Form PI-1 General Application for Air Preconstruction Permit and Amendment

I. Applicant Information (continued)

I. Account Identification Number (leave blank if new site or facility):

J. Core Data Form.

Is the Core Data Form (Form 10400) attached? If No, provide customer reference number and regulated entity number (complete K and L).

YES NO

K. Customer Reference Number (CN): 604252627

L. Regulated Entity Number (RN): 106579600

II. General Information

A. Is confidential information submitted with this application? If Yes, mark each confidential page confidential in large red letters at the bottom of each page.

YES NO

B. Is this application in response to an investigation, notice of violation, or enforcement action? If Yes, attach a copy of any correspondence from the agency and provide the RN in section I.L. above.

YES NO

C. Number of New Jobs : Approximately 20

D. Provide the name of the State Senator and State Representative and district numbers for this facility site:

State Senator: Eddie Lucio District No.: 27

State Representative: Rene O. Oliveira District No.: 37

III. Type of Permit Action Requested

A. Mark the appropriate box indicating what type of action is requested.

Initial Amendment Revision (30 TAC 116.116(e) Change of Location Relocation

B. Permit Number (if existing):

C. Permit Type: Mark the appropriate box indicating what type of permit is requested. (check all that apply, skip for change of location)

Construction Flexible Multiple Plant Nonattainment Plant-Wide Applicability Limit

Prevention of Significant Deterioration Hazardous Air Pollutant Major Source

Other:

D. Is a permit renewal application being submitted in conjunction with this amendment in accordance with 30 TAC 116.315(c).

YES NO

Page 11: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TCEQ-10252 (Revised 10/12) PI-1 Instructions This form is for use by facilities subject to air quality requirements and may be revised periodically. (APDG 5171v19) Page 3 of 9

Texas Commission on Environmental Quality Form PI-1 General Application for

Air Preconstruction Permit and Amendment

III. Type of Permit Action Requested (continued)

E. Is this application for a change of location of previously permitted facilities? If Yes, complete III.E.1 - III.E.4.0

YES NO

1. Current Location of Facility (If no street address, provide clear driving directions to the site in writing.):

Street Address:

City: County: ZIP Code:

2. Proposed Location of Facility (If no street address, provide clear driving directions to the site in writing.):

Street Address:

City: County: ZIP Code:

3. Will the proposed facility, site, and plot plan meet all current technical requirements of the permit special conditions? If “NO”, attach detailed information.

YES NO

4. Is the site where the facility is moving considered a major source of criteria pollutants or HAPs?

YES NO

F. Consolidation into this Permit: List any standard permits, exemptions or permits by rule to be consolidated into this permit including those for planned maintenance, startup, and shutdown.

List: N/A

G. Are you permitting planned maintenance, startup, and shutdown emissions? If Yes, attach information on any changes to emissions under this application as specified in VII and VIII.

YES NO

H. Federal Operating Permit Requirements (30 TAC Chapter 122 Applicability) Is this facility located at a site required to obtain a federal operating permit? If Yes, list all associated permit number(s), attach pages as needed).

YES NO To be determined Permit Application will be submitted per the requirements

Associated Permit No (s.): N/A –Greenfield Site

1. Identify the requirements of 30 TAC Chapter 122 that will be triggered if this application is approved.

FOP Significant Revision FOP Minor Application for an FOP Revision

Operational Flexibility/Off-Permit Notification Streamlined Revision for GOP

To be Determined None

Page 12: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TCEQ-10252 (Revised 10/12) PI-1 Instructions This form is for use by facilities subject to air quality requirements and may be revised periodically. (APDG 5171v19) Page 4 of 9

Texas Commission on Environmental Quality Form PI-1 General Application for

Air Preconstruction Permit and Amendment

III. Type of Permit Action Requested (continued)

H. Federal Operating Permit Requirements (30 TAC Chapter 122 Applicability) (continued)

2. Identify the type(s) of FOP(s) issued and/or FOP application(s) submitted/pending for the site. (check all that apply)

GOP Issued GOP application/revision application submitted or under APD review

SOP Issued SOP application/revision application submitted or under APD review

IV. Public Notice Applicability

A. Is this a new permit application or a change of location application? YES NO

B. Is this application for a concrete batch plant? If Yes, complete V.C.1 – V.C.2. YES NO

C. Is this an application for a major modification of a PSD, nonattainment, FCAA 112(g) permit, or exceedance of a PAL permit?

YES NO

D. Is this application for a PSD or major modification of a PSD located within 100 kilometers or less of an affected state or Class I Area?

YES NO

If Yes, list the affected state(s) and/or Class I Area(s).

List:

E. Is this a state permit amendment application? If Yes, complete IV.E.1. – IV.E.3. No

1. Is there any change in character of emissions in this application? YES NO

2. Is there a new air contaminant in this application? YES NO

3. Do the facilities handle, load, unload, dry, manufacture, or process grain, seed, legumes, or vegetables fibers (agricultural facilities)?

YES NO

F. List the total annual emission increases associated with the application (List all that apply and attach additional sheets as needed):

Volatile Organic Compounds (VOC): See emission calculations

Sulfur Dioxide (SO2): See emission calculations

Carbon Monoxide (CO): See emission calculations

Nitrogen Oxides (NOx): See emission calculations

Particulate Matter (PM): See emission calculations

PM 10 microns or less (PM10): See emission calculations

PM 2.5 microns or less (PM2.5): See emission calculations

Lead (Pb): None

Hazardous Air Pollutants (HAPs):

Other speciated air contaminants not listed above: NH3, H2SO4 Mist and (NH4)2SO4

Page 13: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TCEQ-10252 (Revised 10/12) PI-1 Instructions This form is for use by facilities subject to air quality requirements and may be revised periodically. (APDG 5171v19) Page 5 of 9

Texas Commission on Environmental Quality Form PI-1 General Application for

Air Preconstruction Permit and Amendment

V. Public Notice Information (complete if applicable)

A. Public Notice Contact Name: Christie Couvillion

Title: Sr. Environmental Specialist

Mailing Address: 1044 N. 115th St, Suite 400

City: Omaha State: NE ZIP Code: 68154

B. Name of the Public Place: Brownsville Public Library – Main Branch

Physical Address (No P.O. Boxes): 2600 Central Boulevard

City: Brownsville County: Cameron ZIP Code: 78520

The public place has granted authorization to place the application for public viewing and copying.

YES NO

The public place has internet access available for the public. YES NO

C. Concrete Batch Plants, PSD, and Nonattainment Permits

1. County Judge Information (For Concrete Batch Plants and PSD and/or Nonattainment Permits) for this facility site.

The Honorable: Carlos H. Cascos

Mailing Address: 1100 E. Monroe St., Dancy Building, Second Floor

City: Harlingen State: TX ZIP Code: 78520

2. Is the facility located in a municipality or an extraterritorial jurisdiction of a municipality? (For Concrete Batch Plants)

YES NO

Presiding Officers Name(s):

Title:

Mailing Address:

City: State: ZIP Code:

3. Provide the name, mailing address of the chief executive and Indian Governing Body; and identify the Federal Land Manager(s) for the location where the facility is or will be located.

Chief Executive: Mayor Tony Martinez

Mailing Address: P.O. Box 911

City: Brownsville State: TX ZIP Code: 78522

Name of the Indian Governing Body:

Mailing Address:

City: State: ZIP Code:

Page 14: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TCEQ-10252 (Revised 10/12) PI-1 Instructions This form is for use by facilities subject to air quality requirements and may be revised periodically. (APDG 5171v19) Page 6 of 9

Texas Commission on Environmental Quality

Form PI-1 General Application for Air Preconstruction Permit and Amendment

V. Public Notice Information (complete if applicable) (continued)

C. Concrete Batch Plants, PSD, and Nonattainment Permits

3. Provide the name, mailing address of the chief executive and Indian Governing Body; and identify the Federal Land Manager(s) for the location where the facility is or will be located. (continued)

Name of the Federal Land Manager(s):

D. Bilingual Notice

Is a bilingual program required by the Texas Education Code in the School District? YES NO

Are the children who attend either the elementary school or the middle school closest to your facility eligible to be enrolled in a bilingual program provided by the district?

YES NO

If Yes, list which languages are required by the bilingual program? Spanish

VI. Small Business Classification (Required)

A. Does this company (including parent companies and subsidiary companies) have fewer than 100 employees or less than $6 million in annual gross receipts?

YES NO

B. Is the site a major stationary source for federal air quality permitting? YES NO

C. Are the site emissions of any regulated air pollutant greater than or equal to 50 tpy?

YES NO

D. Are the site emissions of all regulated air pollutants combined less than 75 tpy? YES NO

VII. Technical Information

A. The following information must be submitted with your Form PI-1 (this is just a checklist to make sure you have included everything)

1. Current Area Map

2. Plot Plan

3. Existing Authorizations N/A

4. Process Flow Diagram

5. Process Description

6. Maximum Emissions Data and Calculations

7. Air Permit Application Tables

a. Table 1(a) (Form 10153) entitled, Emission Point Summary

b. Table 2 (Form 10155) entitled, Material Balance

c. Other equipment, process or control device tables

B. Are any schools located within 3,000 feet of this facility? YES NO

Page 15: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TCEQ-10252 (Revised 10/12) PI-1 Instructions This form is for use by facilities subject to air quality requirements and may be revised periodically. (APDG 5171v19) Page 7 of 9

Texas Commission on Environmental Quality Form PI-1 General Application for

Air Preconstruction Permit and Amendment

VII. Technical Information

C. Maximum Operating Schedule:

Hour(s):24 hrs/day Day(s):7 days/week Week(s):52 weeks/yr Year(s): 8,760 hrs/year

Seasonal Operation? If Yes, please describe in the space provide below. YES NO

D. Have the planned MSS emissions been previously submitted as part of an emissions inventory?

YES NO

Provide a list of each planned MSS facility or related activity and indicate which years the MSS activities have been included in the emissions inventories. Attach pages as needed.

E. Does this application involve any air contaminants for which a disaster review is required?

YES NO

F. Does this application include a pollutant of concern on the Air Pollutant Watch List (APWL)?

YES NO

VIII. State Regulatory Requirements Applicants must demonstrate compliance with all applicable state regulations to obtain a permit or amendment. The application must contain detailed attachments addressing applicability or non applicability; identify state regulations; show how requirements are met; and include compliance demonstrations.

A. Will the emissions from the proposed facility protect public health and welfare, and comply with all rules and regulations of the TCEQ?

YES NO

B. Will emissions of significant air contaminants from the facility be measured? YES NO

C. Is the Best Available Control Technology (BACT) demonstration attached? YES NO

D. Will the proposed facilities achieve the performance represented in the permit application as demonstrated through recordkeeping, monitoring, stack testing, or other applicable methods?

YES NO

IX. Federal Regulatory Requirements Applicants must demonstrate compliance with all applicable federal regulations to obtain a permit or amendment. The application must contain detailed attachments addressing applicability or non applicability; identify federal regulation subparts; show how requirements are met; and include compliance demonstrations.

A. Does Title 40 Code of Federal Regulations Part 60, (40 CFR Part 60) New Source Performance Standard (NSPS) apply to a facility in this application?

YES NO

B. Does 40 CFR Part 61, National Emissions Standard for Hazardous Air Pollutants (NESHAP) apply to a facility in this application?

YES NO

Page 16: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TCEQ-10252 (Revised 10/12) PI-1 Instructions This form is for use by facilities subject to air quality requirements and may be revised periodically. (APDG 5171v19) Page 8 of 9

Texas Commission on Environmental Quality Form PI-1 General Application for

Air Preconstruction Permit and Amendment

IX. Federal Regulatory Requirements Applicants must demonstrate compliance with all applicable federal regulations to obtain a permit or amendment. The application must contain detailed attachments addressing applicability or non applicability; identify federal regulation subparts; show how requirements are met; and include compliance demonstrations.

C. Does 40 CFR Part 63, Maximum Achievable Control Technology (MACT) standard apply to a facility in this application?

YES NO

D. Do nonattainment permitting requirements apply to this application? YES NO

E. Do prevention of significant deterioration permitting requirements apply to this application?

YES NO

F. Do Hazardous Air Pollutant Major Source [FCAA 112(g)] requirements apply to this application?

YES NO

G. Is a Plant-wide Applicability Limit permit being requested? YES NO

X. Professional Engineer (P.E.) Seal

Is the estimated capital cost of the project greater than $2 million dollars? YES NO

If Yes, submit the application under the seal of a Texas licensed P.E.

XI. Permit Fee Information

Check, Money Order, Transaction Number ,ePay Voucher Number: Fee Amount: $75,000 (TCEQ Fee)

Paid online? YES NO

Company name on check: Tenaska Inc.

Is a copy of the check or money order attached to the original submittal of this application?

YES NO N/A

Is a Table 30 (Form 10196) entitled, Estimated Capital Cost and Fee Verification, attached?

YES NO N/A

Page 17: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary
Page 18: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 7

3. TCEQ CORE DATA FORM

Page 19: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TCEQ-10400 (09/07) Page 1 of 2

TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided) New Permit, Registration or Authorization (Core Data Form should be submitted with the program application)

Renewal (Core Data Form should be submitted with the renewal form) Other 2. Attachments Describe Any Attachments: (ex. Title V Application, Waste Transporter Application, etc.) Yes No NSR Initial Permit Application 3. Customer Reference Number (if issued) Follow this link to search

for CN or RN numbers in Central Registry**

4. Regulated Entity Reference Number (if issued)

CN 604252627 RN 106579600

SECTION II: Customer Information

5. Effective Date for Customer Information Updates (mm/dd/yyyy) 6. Customer Role (Proposed or Actual) – as it relates to the Regulated Entity listed on this form. Please check only one of the following:

Owner Operator Owner & Operator Occupational Licensee Responsible Party Voluntary Cleanup Applicant

Other:

7. General Customer Information

New Customer Update to Customer Information Change in Regulated Entity Ownership Change in Legal Name (Verifiable with the Texas Secretary of State) No Change**

**If “No Change” and Section I is complete, skip to Section III – Regulated Entity Information.

8. Type of Customer: Corporation Individual Sole Proprietorship- D.B.A

City Government County Government Federal Government State Government

Other Government General Partnership Limited Partnership Other:

9. Customer Legal Name (If an individual, print last name first: ex: Doe, John) If new Customer, enter previous Customer below End Date:

Tenaska Brownsville Partners, LLC

10. Mailing Address:

1044 N. 115th St, Suite 400

City Omaha State NE ZIP 68154 ZIP + 4 4446

11. Country Mailing Information (if outside USA) 12. E-Mail Address (if applicable) [email protected] 13. Telephone Number 14. Extension or Code 15. Fax Number (if applicable)

( 402 ) 938-1661 ( 402 ) 691-9530 16. Federal Tax ID (9 digits) 17. TX State Franchise Tax ID (11 digits) 18. DUNS Number(if applicable) 19. TX SOS Filing Number (if applicable)

46-134904 20. Number of Employees 21. Independently Owned and Operated?

0-20 21-100 101-250 251-500 501 and higher Yes No

SECTION III: Regulated Entity Information

22. General Regulated Entity Information (If ‘New Regulated Entity” is selected below this form should be accompanied by a permit application)

New Regulated Entity Update to Regulated Entity Name Update to Regulated Entity Information No Change** (See below)

**If “NO CHANGE” is checked and Section I is complete, skip to Section IV, Preparer Information.

23. Regulated Entity Name (name of the site where the regulated action is taking place)

Tenaska Brownsville Partners, LLC

TCEQ Use Only

Page 20: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary
Page 21: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 8

4. AREA MAP

TheBrownsvilleGeneratingStationwillbelocatedinCameronCounty,Texas.Anareamapisincludedinthissectiontographicallydepictthelocationofthefacilityandthepowerblockwithrespecttothesurroundingtopography.Figure4‐1isanareamapcenteredontheBrownsvilleGeneratingStationthatextendsoutatleast3,000feetfromthepropertylineinalldirections.Themapdepictsthepropertylinewithrespecttopredominantgeographicfeatures(suchashighways,roads,streams,andrailroads).Theimageshowsthereisoneelementaryschool(RanchoVerdeElementarySchool)within3,000feetofthefacilityboundary.

Figure4‐1AreaMapTenaskaBrownsvillePartners,LLCBrownsvilleGeneratingStation

Page 22: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 9

5. PLOT PLAN

ThefollowingfiguresdepictthesiteplanfortheproposedBrownsvilleGeneratingStation.

Page 23: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary
Page 24: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 10

6. PROCESS DESCRIPTION

TheBrownsvilleGeneratingStationwillconsistofa1‐on‐1ora2‐on‐1CCCTconfigurationwithductburnersandassociatedequipmentincludingacoolingtower,afirepumpengine,anemergencygenerator,afuelgasheater,anauxiliaryboiler,twodieselstoragetanks(oneassociatedwiththefirepumpengineandtheotherassociatedwiththeemergencygenerator),andanammoniastorageandunloadingsystem.Aprocessflowdiagramfortheproposedoperationsisincludedattheendofthissection.Inaddition,maintenance,start‐up,andshutdownactivitiesaredetailedbelow.

6.1. COMBUSTION TURBINES

ThecombustionturbinesattheproposedBrownsvilleGeneratingStation(FacilityIdentificationNumber[FIN]/EmissionPointNumber[EPN]s:1and2)willbeeitheroneortwoMitsubishi’s501GACCCCTs.TheCCCTswillbefiredwithpipeline‐qualitynaturalgasandhaveanestimatednominalpowergenerationsummerconditioncapacityof400MWor800MW,dependinguponwhetheroneortwoCCCTsareconstructed.PrimaryelectricpowerproductionatthefacilitywillbeprovidedbytheCCCTs.Acombustionturbineoperatesbyusingambientairastheprimaryworkinggas.Initially,airisinductedintoaseriesofcompressorstagestoincreaseitsoverallpotentialenergy.Thehigh‐pressureairexitingthecompressorthenpassesintoalow‐NOXburnerunit,whereitismixedwiththefuel(i.e.,naturalgas).Thepremixedworkinggasesarethensubjectedtoanearconstantpressurecombustionprocess.Thisincreasestheworkinggastemperature,furtherincreasingpotentialenergy.Followingcombustion,theworkinggasesareexpandedandcooledthroughaseriesofturbinestages.Thisdecreaseinpotentialenergyoftheworkinggasesdrivestheturbineshaft.Partoftheenergyextractedbytherotatingturbineisusedtodrivethecompressorstagestoallowforacontinuousprocess,andtheremainingenergyisusedtodriveanelectro‐magneticgenerator,therebyproducingelectricity.Sincetheexhaustgasesexitingtheturbinebladestagesareattemperaturessignificantlyabovethestartingambientconditions,theyrepresentadditionalavailableenergy.TheturbineexhaustisroutedtoanHRSG.EachHRSGhasanassociatedductburnerthatcanbeusedtoraisethetemperatureoftheturbineexhaustgasforadditionalsteamgenerationundercertainoperatingconditions.Theductburnersoperateasanaturalgasdiffusionflameprocess.SteamproducedbytheHRSGsisexpandedthroughasteamturbinetodriveanotherelectro‐magneticgenerator,creatingadditionalelectricity.Exhaustfromthesteamgeneratoristhensenttoacondensertocondensethesteamandreducethewatertemperatureforre‐useinthesteamcycle.EmissionsresultingfromthecombustionofnaturalgasintheCCCTsandductburnersconsistmainlyofcriteriapollutants(i.e.,NOX,CO,SO2,VOC,andallformsofPM),GHGs,andasmallamountofhazardousairpollutants(HAPs).Emissionsfromeachcombustionturbine(CT)andHRSGductburnerunitwillpassthroughanSCRunitbeforebeingreleasedtotheatmospherethroughacommonstack.TherewillbenobypassstackfortheCTandductburnerexhaust.TheSCRunitwillemployammoniaandcatalysttocontrolNOXemissions.OxidationcatalystwillbeemployedupstreamoftheSCRcatalystforthecontrolofCOandVOCemissionsfromtheCTsandductburners.Thedetailsofthestartupandshutdown(SUSD)eventsareprovidedinSection7ofthisapplicationandinemissioncalculations.

Page 25: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 11

6.2. FIRE PUMP ENGINE AND EMERGENCY GENERATOR

TheBrownsvilleGeneratingStationwillhavetwodiesel‐firedemergencyengines:anemergencyfirepumpengine(FIN/EPN:4)andanemergencygenerator(FIN/EPN:5).Themaximumratingofthefirepumpenginewillbe575horsepower(hp).Theemergencygeneratorwillhaveamaximumratedoutputof2,000kilowatts(kW).Bothengineswillbecertifiedtoapplicableemissionsstandardswithoperationhourslimitedto100hours/yearforeachunitandoperatesolelyinemergencysituationsandforrequiredmaintenanceandtesting.

6.3. FUEL GAS HEATER AND AUXILIARY BOILER

TheBrownsvilleGeneratingStationwillincludeonenaturalgas‐firedfuelgasheater(FIN/EPN:6)withamaximumratedheatinputof10MMBtu/hrHHV.Inadditiontothefuelgasheater,thesitewillhaveanauxiliaryboiler(FIN/EPN:7).Thisboilerhasamaximumratedheatinputof90MMBtu/hrHHV.Thefuelgasheaterandtheauxiliaryboilerwillbefiredonpipeline‐qualitynaturalgasexclusively.Thefuelgasheaterisproposedtobeauthorizedfor8,760hours/year.Tenaskaproposestolimittheusageoftheauxiliaryboilerbylimitingitsoperationto4,380hours/year.

6.4. SF6 CIRCUIT BREAKERS

Theproposedprojectwillincludeapproximately9circuitbreakersonsitewhichcontainsulfurhexafluoride(SF6).ThereisexpectedtobeminimalSF6leakagetotheatmosphere(FIN/EPN:FUG_GHG).

6.5. PIPING COMPONENTS

Theproposedprojectwillincludepipingcomponentsinnaturalgasservice.TheBrownsvilleGeneratingStationwillimplementanAudio/Visual/Olfactory(AVO)programtoreduceemissionsfromequipmentleaks,withcorrespondingcontrolefficienciesappliedtotheequipmentleakfugitivecalculations(FIN/EPN:FUG_GHG).

6.6. COOLING TOWER

TheBrownsvilleGeneratingStationwillinstallonecoolingtower(FIN/EPN:3).CoolingtoweremissionsconsistonlyoftotalsuspendedPM(TSP),PM10andPM2.5,originatingfromthedissolvedsolids(e.g.,calcium,magnesium,etc.)inthecirculatingwaterthatareassumedtocrystallizeandformairborneparticulatesasaportionofthecirculatingwaterescapesthecoolingtowerthroughtheinduceddraftfansandevaporates.Particulateemissionsfromthecoolingtowerwillbeminimizedbydrifteliminators.ThecoolingtowerisnotasourceofGHGemissions.

6.7. AMMONIA STORAGE AND UNLOADING SYSTEM

AnhydrousammoniawillbeusedintheSCRsystem.Anhydrousammoniawillbebroughton‐siteviatanktrucksandunloadedintoapressurizedstoragetank.TheNH3unloadingsystemwillbeequippedwithavaporreturnlinetocollectNH3vaporsgeneratedduringunloadingandwillberoutedbacktothetanktruckusingavacuumsystem.AmmoniawillbetransferredtotheSCRsystemusingtransferpumpsandpipelines.Therefore,theammoniastoragetankandunloadingoperationsarenotconsideredaspotentialemissionsources;however,fugitiveemissionsofNH3willbeproducedfromequipmentleaksfromcomponentsinammoniaservice(FIN/EPN:8).TheammoniastorageandunloadingsystemarenotasourceofGHGemissions.

Page 26: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 12

6.8. DIESEL STORAGE TANKS

Dieselusedforthefirepumpengineandtheemergencygeneratorwillbestoredinhorizontaltanksthatareinternallyassociatedwiththeengineenclosure(FIN/EPNs:9and10foremergencygeneratortankandfirepumpenginetank,respectively).ThedieselstoragetanksarenotasourceofGHGemissions.

Page 27: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

124401.0126February 2013

Tenaska Brownsville Generating StationBrownsville, Cameron County, TX

Process Flow DiagramLegend

Material Flow

Air Emissions

Natural Gas to DB

Ammonia to SCR

Combined CycleCombustion Turbine

( FIN 2)

Natural Gas to DB

SCR

HRSG with DB

Ammonia to SCR

Natural Gas from Fuel

Heater

Electricity

Electricity

Steam Turbine

Combined CycleCombustion Turbine

(FIN 1)

SCR

HRSG with DB

Natural Gas from Fuel

Heater

Steam

Electricity

Cooling Tower (FIN 3)

EPN 3

Cooled Water to HRSG

Water (Condensed Steam) from Steam Turbine

Fire Pump Engine (FIN 4)

Mechanical Energy

Auxiliary Boiler (FIN 7) SteamNatural Gas

Fuel Gas Heater (FIN 6)

EPN 6

Heated Natural Gas to Combustion TurbinesNatural Gas

Emergency Generator (FIN 5)

EPN 5

Electricity

Steam

EPN 8EPN 1

EPN 2 EPN 8

EPN 7EPN 4

Diesel Fuel Storage Tank

(FIN 9)

EPN 9

Diesel Fuel Storage Tank

(Fin 10)

EPN 10

For 2 Turbine Scenario Only

Miscellaneous Maintenance Activities EPN MISC_MSS

LKambham
Typewritten Text
LKambham
Typewritten Text
LKambham
Typewritten Text
LKambham
Typewritten Text
LKambham
Typewritten Text
LKambham
Typewritten Text
LKambham
Typewritten Text
LKambham
Text Box
Fugitive Emissions from Fuel Piping Components and Circuit Breakers EPN FUG_GHG
LKambham
Typewritten Text
LKambham
Typewritten Text
Page 28: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 13

7. EMISSIONS DATA

ThissectionsummarizestheGHGemissioncalculationmethodologiesandprovidesemissioncalculationsfortheemissionsourcesofGHGsattheproposedBrownsvilleGeneratingStation.Detailedemissioncalculationspreadsheets,includingexamplecalculations,areincludedinAppendixB.TheseemissionestimatesreflecttheemissionlimitsandcontrolsproposedasBACTinSection10.PotentialGHGemissionsfromtheproposedprojectwillresultfromthefollowingemissionunits:

> CombustionTurbines,DuctBurnersandSUSDemissions(EPNs:1and2);> OneDieselFirePumpEngine(EPN:4);> OneEmergencyGenerator(EPN:5);> OneFuelGasHeater(EPN:6);> OneAuxiliaryBoiler(EPN:7);> FugitiveEmissionsfromFuelPipingComponentsandSF6CircuitBreakerFugitiveEmissions(EPN:FUG_GHG)

Table7‐1providesasummaryoftheannualpotentialtoemitemissionsofGHGsfortheproposedproject.

Table7‐1.ProposedProjectPotentialGHGEmissions

AnnualPotentialGHGEmissions(shorttonsperyear)

Source CO2 CH4 N2O SF6 CO2e

CombustionTurbine1/DuctBurner(NormalOperations)

1,570,399.4 105.57 40.099 ‐ 1,585,046

CombustionTurbine2/DuctBurner(NormalOperations

1,570,399.4 105.57 40.099 ‐ 1,585,046

FirePumpEngine 31.2 1.3E‐03 2.52E‐04 ‐ 31

EmergencyGenerator 155.1 6.3E‐03 1.26E‐03 ‐ 156

FuelGasHeater 5,119.7 0.10 0.010 ‐ 5,125

AuxiliaryBoiler 23,038.6 0.43 0.044 ‐ 23,061

FugitiveSF6CircuitBreakerEmissions

‐ ‐ ‐ 0.005 122

ComponentsFugitiveLeakEmissions

1.02

21

CCCTMSSEmissions 3,208.80 ‐ ‐ 67,385

TotalProjectEmissions–1on1Scenario 1,598,744.0 1,711.52 40.155 0.005 1,647,254

TotalProjectEmissions–2on1Scenario 3,169,143.4 3.421.49 80.254 0.005 3,265,993

GHGemissionsfortheCCCTs(forbothnormalandMSSoperations),werebasedonemissionlevelsproposedasBACTandequipmentspecificationsprovidedbytheequipmentmanufacturer.Forallothercombustionsources,theGHGemissionsforeachemissionunitwerebasedonemissionlevelsandcontrolsproposedasBACT,proposedequipment

Page 29: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 14

specificationsasprovidedbythemanufacturer,andthedefaultemissionfactorsintheEPA’sMandatoryGreenhouseReportingRule(40CFR98,SubpartC,TablesC‐1andC‐2fornaturalgasanddiesel).Accordingto40CFR§52.21(b)(49)(ii),GHGemissionsforPSDapplicabilitymustshowCO2eemissionscalculatedbymultiplyingthemassofeachofthesixGHGsbythegas’associatedglobalwarmingpotential(GWP),whichisestablishedinTableA‐1toSubpartAof40CFRPart98.Table7‐2.GlobalWarmingPotentialsprovidestheGWPforeachGHGemittedfromthisproposedproject.

Table7‐2.GlobalWarmingPotentials(GWPs)

Pollutant GWP1

CO2 1CH4 21N2O 310SF6 23,900

1 GWPs are based on a 100-year time horizon, as identified in Table A-1 to 40 CFR Part 98, Subpart A.

ThefollowingisanexamplecalculationforannualCO2eemissions:

CO eAnnualEmissionRate tpyCO AnnualEmissionRate tpy CO GWP CH AnnualEmissionRate tpy CH GWP

N OAnnualEmissionRate tpy N OGWP SF AnnualEmissionRate tpy SF GWP

7.1. COMBUSTION TURBINES

ThecombustionturbinesattheproposedBrownsvilleGeneratingStation(EPNs:1and2)willbeeitheroneortwoofMitsubishi’s501GACcombustionturbines.TheCCCTswillbefiredwithpipeline‐qualitynaturalgasandhaveanestimatednominalsummerconditionpowergenerationcapacityof400MWor800MW,dependinguponwhetheroneortwoCCCTsareconstructed.Eachturbineisratedatamaximumnominalheatinputcapacityof2,903MMBtu/hrHHVat20°Fambient.TheannualhoursofoperationforeachCCCTwillbeto8,760hoursperyear(hr/yr).Eachductburnerisratedamaximumheatinputcapacityof250MMBtu/hrHHV.Theannualmaximumhoursofoperationforeachductburnerwillbelimitedto5,200hr/yr.GHGemissionsareestimatedbasedonemissionlevelsproposedasBACT,proposedequipmentspecificationsasprovidedbythemanufacturer,andthedefaultemissionfactorsintheEPA’sMandatoryGreenhouseReportingRule(MRR).SeeAppendixAfordetailedemissioncalculations.

GHGemissionsfromMSSactivitiesresultfromthecombustionofnaturalgasandthereleaseofunburnednaturalgas,whichcontainsmethane.SUSDemissionsfromeachcombustionturbineareestimatedbasedonaworst‐casescenarioof2hotstarts,350warmstarts,2coldstarts,2coldcoldstarts,and356shutdowneventsperyear.AplannedstartupofeachCCCTisdefinedastheperiodthatbeginswhenthedataacquisitionandhandlingsystem(DAHS)measuresfuelflowtotheCTandendswhentheCTgenerator(CTG)loadreaches50%.Aplannedshutdown

Page 30: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 15

ofeachCCCTisdefinedastheperiodthatbeginswhentheCTGoutputdropsbelow50%loadandendswhenthereisnolongermeasurablefuelflowtotheCCCT.Furtherdefinitionsforthefourtypesofstartupeventsasfollows:

> Acoldcoldstartisdefinedasastartupwherethepowerblockhasnotoperatedduringthepreceding96hours;

> Acoldstartisdefinedasastartupwherethepowerblockhasnotoperatedduringthepreceding72hours;> Ahotstartisdefinedasastartupwhenthepowerblockhasoperatedwithintheprevious8hours;and> Awarmstartisastartupthatisneitherhotnorcold.

AnnualCH4emissionsduringSUSDeventsarecalculatedbasedonCH4emissionsfromeachSUSDevent,durationofeventSUSDevent,andthenumberofSUSDeventsperyear.MaximumCO2andN2Oemissionsoccurduringsteadystate(i.e.,non‐SUSD)operations.SeedetailedemissioncalculationsinAppendixA.

7.2. FIRE PUMP ENGINE AND EMERGENCY GENERATOR

TheBrownsvilleGeneratingStationwillhavetwodiesel‐firedemergencyengines:anemergencyfirepumpengine(FIN/EPN:4)andanemergencygenerator(FIN/EPN:5).Themaximumratingofthefirepumpenginewillbe575horsepower(hp).Theemergencygeneratorwillhaveamaximumratedoutputof2,000kilowatts(kW).Bothengineswillbecertifiedtoapplicableemissionsstandardsandoperatesolelyinemergencysituationsandforrequiredmaintenanceandtesting.Thedieselfirepumpengineandemergencygeneratorwillbelimitedto100hoursperyearforeachunitforroutinetesting,maintenance,andinspectionpurposesonly.CombustionofdieselfuelwillresultinemissionsofCO2,CH4,andN2O.GHGemissionsareestimatedbasedonemissionlevelsandcontrolsproposedasBACT,proposedequipmentspecificationsasprovidedbythemanufacturer,andthedefaultemissionfactorsintheEPA’sMandatoryGreenhouseReportingRule(MRR).SeeAppendixAfordetailedemissioncalculations.

7.3. FUEL GAS HEATER AND AUXILIARY BOILER

TheBrownsvilleGeneratingStationwillincludeonenaturalgas‐firedfuelgasheater(FIN/EPN:6)withamaximumratedheatinputof10MMBtu/hrHHV.Inadditiontothefuelgasheater,thesitewillhaveanauxiliaryboiler(FIN/EPN:7).Thisboilerhasamaximumratedheatinputof90MMBtu/hrHHV.Theauxiliaryboilerwillbefiredonpipeline‐qualitynaturalgasexclusively.Thefuelgasheaterisproposedtobeauthorizedfor8,760hours/year.Tenaskaproposestolimittheusageoftheauxiliaryboilerbylimitingitsoperationto4,380hours/year.GHGemissionsforeachemissionunitwereestimatedbasedonemissionlevelsandcontrolsproposedasBACT,proposedequipmentspecificationsasprovidedbythemanufacturer,andthedefaultemissionfactorsintheEPA’sMandatoryGreenhouseReportingRule(40CFR98,SubpartC,TablesC‐1andC‐2fornaturalgasanddiesel).

Page 31: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 16

7.4. CIRCUIT BREAKER SF6 EMISSIONS

Theproposedprojectwilluseapproximately9circuitbreakersonsitewhichcontainsulfurhexafluoride(SF6).ThereisexpectedtobeminimalSF6leakagetotheatmosphere.SF6fugitiveemissions(EPN:FUG_GHG)arecalculatedasfollows:AnnualEmissionRate(shorttpy)=

(AmountofSF6inFullCharge(lb))x(SF6LeakRate(%/yr))x(1/2,000(shortton/lb))Aworst‐caseleakrateof0.5%peryearwasusedfromEPA'stechnicalpapertitled,"SF6LeakRatesfromHighVoltageCircuitBreakers‐EPAInvestigatesPotentialGreenhouseGasEmissionSource‐byJ.Blackman,ProgramManager,EPAandM.Averyt,ICFConsulting,andZ.Taylor,ICFConsulting".SeeAppendixAfordetailedemissioncalculations.

7.5. FUGITIVE EMISSIONS FROM PIPING COMPONENTS

FugitiveemissionsofCH4areproducedbyequipmentleaksfromcomponentsinnaturalgasservice(EPN:FUG_GHG).ThecontrolledCH4emissionsarecalculatedusingthemethodologyandemissionfactorsobtainedfromTable2forOilandGasProductionOperationsfromAddendumtoRG‐360,EmissionFactorsforEquipmentLeakFugitiveComponents,TCEQ,January2008,gasfactors.TheBrownsvilleGeneratingStationwillimplementanAudio/Visual/Olfactory(AVO)programtoreduceemissionsfromequipmentleaks,withcorrespondingcontrolefficienciesappliedtotheequipmentleakfugitivecalculations.SeeAppendixAfordetailedemissioncalculations.

Page 32: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 17

8. EMISSION POINT SUMMARY (TCEQ TABLE 1(A))

Page 33: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

Date: February2013 PermitNo.: TBD RegulatedEntityNo.: 106579600

AreaName: CustomerReferenceNo.: 604252627

ReviewofapplicationsandissuanceofpermitswillbeexpeditedbysupplyingallnecessaryinformationrequestedonthisTable.

1.EmissionPoint 2.ComponentorAirContaminantName 3.AirContaminantEmissionRate

(A)EPN (B)FIN (C)NAME (A)PoundPerHour (B)TPY

1 1 CH4(NormalOperations) 25.70

CH4(MSSOperations)1 SeeNote1

N2O 9.46 40.10

CO2 370,435.00 1,570,399.40

CO2e(Normaloperations) 373,907.00

CO2e(MSSoperations) SeeNote1

2 2 CH4(NormalOperations) 25.70

CH4(MSSOperations)1 SeeNote1

N2O 9.46 40.10

CO2 370,435.00 1,570,399.40

CO2e(Normaloperations) 373,907.00

CO2e(MSSoperations) SeeNote1

4 4 FirePumpEngine CH4 0.03 <0.01

N2O 0.01 <0.01

CO2 623.24 31.20

CO2e 626.97 31.00

5 5 EmergencyGenerator CH4 0.13 0.01

N2O 0.03 <0.01

CO2 3,102.97 155.10

CO2e 3,115.00 156.00

CombustionTurbine2/DuctBurner

TEXASCOMMISSIONONENVIRONMENTALQUALITY

Table1(a)EmissionPointSummary

TenaskaBrownsvilleGeneratingStation

AIRCONTAMINANTDATA

1,709.97

1,709.97

1,618,738.40

1,618,738.40

CombustionTurbine1/DuctBurner

TCEQ -10153 (Revised 04/08) Table 1(a)This form is for use by sources subject to air quality permit requirements andmay be revised periodically. (APDG 5178 v5) Page 1 of 2

Page 34: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

Date: February2013 PermitNo.: TBD RegulatedEntityNo.: 106579600

AreaName: CustomerReferenceNo.: 604252627

ReviewofapplicationsandissuanceofpermitswillbeexpeditedbysupplyingallnecessaryinformationrequestedonthisTable.

1.EmissionPoint 2.ComponentorAirContaminantName 3.AirContaminantEmissionRate

(A)EPN (B)FIN (C)NAME (A)PoundPerHour (B)TPY

TEXASCOMMISSIONONENVIRONMENTALQUALITY

Table1(a)EmissionPointSummary

TenaskaBrownsvilleGeneratingStation

AIRCONTAMINANTDATA

6 6 FuelGasHeater CH4 0.02 0.10

N2O <0.01 0.01

CO2 1,168.88 5,119.70

CO2e 1,169.98 5,125.00

7 7 AuxiliaryBoiler CH4 0.20 0.43

N2O 0.02 0.04

CO2 10,519.91 23,038.60

CO2e 10,530.31 23,061.00

FUG_GHG FUG_GHG FugitiveEmissions‐GHGs SF6(fromcircuitbreakers) <0.01 0.005

CO2e(fromcircuitbreakers) 27.85 122.00

CH4(fromfuelpipingcomponents) 0.23 1.02

CO2e(fromfuelpipingcomponents) 4.79 21.00

EPN=EmissionPointNumberFIN=FacilityIdentificationNumber

1UnburnedCH4emisionsduringMSSoperationsareprovidedfortheannualemissionlimits.

TCEQ -10153 (Revised 04/08) Table 1(a)This form is for use by sources subject to air quality permit requirements andmay be revised periodically. (APDG 5178 v5) Page 2 of 2

Page 35: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TCEQ -10153 (Revised 04/08) Table 1(a)This form is for use by sources subject to air quality permit requirements andmay be revised periodically. (APDG 5178 v5) Page 1 of 1

Date: February 2013 Permit No.:

Area Name:

Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table.

AIR CONTAMINANT DATA

5. Building

EPN FIN Name Zone East North Height Diameter Velocity Temperature Length Width Axis

(A) (B) (C) (Meters) (Meters) (Ft.) (Ft.) (Ft.) (A) (FPS) (B) (°F) (C) (Ft.) (A) (Ft.) (B) Degrees (C)

1 1 Combustion Turbine 1/Duct Burner 14 649,867 2,879,440 160 18 55.98 177

2 2 Combustion Turbine 2/Duct Burner 14 649,915 2,879,440 160 18 55.98 177

4 4 Fire Pump Engine 14 649,859 2,879,373 10.0 10 0.5 282.49 9065 5 Emergency Generator 14 649,821 2,879,437 12.0 12 1.5 95.23 7626 6 Fuel Gas Heater 14 649,992 2,879,495 30 2.5 17.06 10007 7 Auxiliary Boiler 14 649,802 2,879,447 40 4 42.78 331FUG_GHG FUG_GHG Fugitive Emissions - GHGs 14 650,310 2,879,452 Ambient 39 43

EPN = Emission Point NumberFIN = Facility Identification Number

Tenaska Brownsville Generating Station Customer Reference No.: 604252627

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Table 1(a) Emission Point Summary

TBD Regulated Entity No.: 106579600

EMISSION POINT DISCHARGE PARAMETERS

1. Emission Point 4. UTM Coordinates of Emission Source

Point 6. Height Above

Ground

7. Stack Exit Data 8. Fugitives

Page 36: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 18

9. FEDERAL REGULATORY REQUIREMENTS

Thissectionaddressestheapplicabilityofthefollowingpartsof40CFRfortheequipmentattheproposedBrownsvilleGeneratingStation:> PreventionofSignificantDeterioration(PSD)in40CFRSection52.21;> NewSourcePerformanceStandards(NSPS)in40CFRPart60;> NationalEmissionsStandardsforHazardousAirPollutants(NESHAP)in40CFRPart61;and> NESHAPin40CFRPart63,i.e.,MaximumAvailableControlTechnology(MACT)rules.

9.1. PSD APPLICABILITY REVIEW

Astationarysourceisconsidered“major”forPSDifithasthepotentialtoemiteither(1)100tpyormoreofaregulatedpollutantifthesourceisclassifiedasoneof28PSDmajorfacilitysourcecategories,or(2)250tpyormoreofanyregulatedpollutantforunlistedsources.Fossilfuel‐firedsteamelectricplantswithheatinputgreaterthan250MMBtu/hrareoneofthe28PSDmajorfacilitycategories.Sourcesonthislistarealsorequiredtoincludefugitiveemissionsindeterminingwhetherthesourceisa“majorstationarysource”andthereforesubjecttothePSDpermittingprogram.TheproposedBrownsvilleGeneratingStationiswithinamajorfacilitycategoryandissubjecttoa100tpythresholdforclassificationasaPSDmajorsource.TheBrownsvilleGeneratingStationisestimatedtohavepotentialemissionsinexcessof100tpyforNOx,CO,VOCandGHGandwillthereforebeconsideredanewmajorsourcewithrespecttothePSDprogram.AccordingtoEPAguidance,"majorforone,majorforall"PSDpolicy,ifasiteismajorforoneormorecriteriapollutants,thentheothercriteriapollutantemissionsneedtobecomparedtotheSignificantEmissionRates(SERs)whendeterminingPSDapplicabilityforparticulatematter(PM),particulatematterwithanaerodynamicdiameterof10micronsorless(PM10),particulatematterwithanaerodynamicdiameterof2.5micronsorless(PM2.5),sulfurdioxide(SO2)andsulfuricacid(H2SO4)mist.BasedonemissionsestimatesfortheBrownsvilleGeneratingStation,theproposedprojectwillbePSDmajorforNOX,CO,VOC,PM,PM10,PM2.5,H2SO4mist,andGHGs.Theproposedpotentialsource‐wideemissionsofallfederallyregulatedNSRpollutantsarecomparedtotheapplicablePSDSERsinTable9.1‐1.

Page 37: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 19

Table9.1‐1.ProposedPotentialEmissionsComparedwithPSDThresholdsandPSDSERs

PSDApplicabilitySummary(1on1Scenario) CO NOx PM PM10 PM2.5 SO2 VOC H2SO4Mist CO2e Site‐wideEmissions(tpy) 828 155 59 40 36 9 262 7 1,647,254

PSDMajorSourceThreshold(tpy) 100 100 100 100 100 100 100 100 100,000 IsthesiteabovePSDlimits? YES YES NO NO NO NO YES NO YES

SignificantEmissionRates(SER)

(tpy) 100 40 25 15 10 40 40 7 75,000 IsthesiteaboveSER? YES YES YES YES YES NO YES NO YES

PSDApplicabilitySummary(2on1Scenario) CO NOx PM PM10 PM2.5 SO2 VOC H2SO4Mist CO2e Site‐wideEmissions(tpy) 1,644 304 92 74 70 18 525 14 3,265,993

PSDMajorSourceThreshold(tpy) 100 100 100 100 100 100 100 100 100,000 IsthesiteabovePSDlimits? YES YES NO NO NO NO YES NO YES

SignificantEmissionRates(SER)

(tpy) 100 40 25 15 10 40 40 7 75,000 IsthesiteaboveSER? YES YES YES YES YES NO YES YES YES

Page 38: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 20

TheestimatedGHGemissionsfromtheproposedBrownsvilleGeneratingStationaregreaterthan100,000tpyonaCO2ebasisandwilltriggertherequirementforPSDpermittingduetobeingamajorsourceofGHGemissions.TheproposedprojectwillalsoresultinasignificantnetemissionsincreaseforCO,NOX,PM,PM10,PM2.5,VOC,andH2SO4Mistemissions.Therefore,PSDrequirements,includingbestavailablecontroltechnology(BACT),applyforGHGsandforCO,NOX,PM,PM10,PM2.5,VOC,andH2SO4Mistemissions.TenaskaBrownsvilleGeneratingStationissubmittingtwoseparateapplications;onetotheTCEQforauthorizationofitsnon‐GHGemissionsinaccordancewiththePSDrulesandthisonetotheEPAforauthorizationofitsGHGemissions.Theapplicationtoauthorizethenon‐GHGemissionsisbeingsubmittedtotheTCEQ.UnderthePSDregulations,eachnewsourceormodifiedemissionunitsubjecttoPSDisrequiredtoundergoaBACTreview.TheBACTrequirementsforGHGemissionsfromtheBrownsvilleGeneratingStationareaddressedinSection10ofthisapplication.

9.2. NEW SOURCE PERFORMANCE STANDARDS

EPAproposedanewNewSourcePerformanceStandard(NSPS)that,asproposed,willbeapplicabletotheGHGemissionsfromtheproposedCCCTsattheBrownsvilleGeneratingStation.ThefinalrequirementsofthisNSPSarenotknownatthistime.However,sincethisprojectwillcommenceconstructionaftertheproposaldateofNSPSTTTT,theaffectedsourcewillbesubjecttothefinallimitsestablishedbyNSPSSubpartTTTT,asadopted.Applicability:Asproposed,NSPSSubpartTTTTappliestoelectricutilitygeneratingunits(EGUs)thatcommenceconstructionafterApril13,2012withabaseloadratingofmorethan250MMBtu/hrheatinputoffossilfuel,unlesstheunitqualifiesforcertainexceptionsthatarenotapplicablehere.Keydefinitionsforapplicabilityareasfollows.

ElectricutilitygeneratingunitorEGUmeansanysteamelectricgeneratingunitorstationarycombustionturbinethatisconstructedforthepurposeofsupplyingmorethanone‐thirdofitspotentialelectricoutputcapacityandmorethan25MWnet‐electricaloutputtoanyutilitypowerdistributionsystemforsale….Stationarycombustionturbinemeansallequipment,includingbutnotlimitedtotheturbine,thefuel,air,lubricationandexhaustgassystems,controlsystems(exceptemissionscontrolequipment),heatrecoverysystem,fuelcompressor,heater,and/orpump,postcombustionemissioncontroltechnology,andanyancillarycomponentsandsub‐componentscomprisinganysimplecyclestationarycombustionturbine,anycombinedcyclecombustionturbine,andanycombinedheatandpowercombustionturbinebasedsystem….Steamelectricgeneratingunitmeansanyfurnace,boiler,orotherdeviceusedforcombustingfuelforthepurposeofproducingsteam(includingfossilfuel‐firedsteamgeneratorsassociatedwithcombinedcyclegasturbines

BrownsvilleGeneratingStationwillhaveoneortwocombustionturbines,eachwithaheatinputexceeding250MMBtu/hrandeachsupplyingmorethan25MWtothepowergrid.TheCCCTwillincludebothastationarycombustionturbineandasteamelectricgeneratingunit.Assuch,theBrownsvilleCCCTsaresubjecttoNSPSSubpartTTTTasproposed.EmissionLimits:NSPSSubpartTTTT,asproposed,includesa1,000lb/MW‐hrgrossCO2emissionlimitona12‐operatingmonthannualaveragebasis.EmissionsfromeachCCCTwillbelimitedto914lbofCO2/MW‐hrgrossatISOconditions(Standardpressureat14.696psiaandtemperatureat60degreeF),atbaseloadandatplantelevation.

Page 39: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 21

TheproposedemissionlimitincludesemissionsfromtheductburnerforeachCCCT.Thecompliancewiththeproposedemissionlimitswillbedemonstratedon12‐operatingmonthannualaveragebasis.Thisvalueincludesadegradationfactorof12.3%toaccountfornormalwearandtearoftheequipment.ThedetailsofthesedegradationfactorsareincludedinSection10.5.6.Therefore,itisexpectedtheproposedCCCTswillcomplywithNSPSSubpartTTTT,asproposed.

9.3. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

TherearecurrentlynoNESHAPsorMACTsfortheregulationofGHGs.TheapplicablecriteriapollutantMACTsareaddressedintheCriteriaPollutantPSDapplicationsubmittedtotheTCEQunderaseparatecover.

Page 40: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 22

10. BEST AVAILABLE CONTROL TECHNOLOGY

Thissectiondocumentstheassumptions,methodologiesandconclusionsoftheBACTanalysisundertakentodeterminetheBACTbasedlimitsonGHGemissionsfromtheproposedemissionunits.

10.1. BACT DEFINITION

TherequirementtoconductaBACTanalysisissetforthinthePSDregulationat40CFR§ 52.21(j)(2):

(j)ControlTechnologyReview. …

(2)AnewmajorstationarysourceshallapplybestavailablecontroltechnologyforeachregulatedNSRpollutantthatitwouldhavethepotentialtoemitinsignificantamounts.

BACTisdefinedinthePSDregulationsat40CFR§ 52.21(b)(12)(emphasisadded)asfollows:

...anemissionslimitation(includingavisibleemissionstandard)basedonthemaximumdegreeofreductionforeachpollutantsubjecttoregulationunderActwhichwouldbeemittedfromanyproposedmajorstationarysourceormajormodificationwhichtheAdministrator,onacase‐by‐casebasis,takingintoaccountenergy,environmental,andeconomicimpactsandothercosts,determinesisachievableforsuchsourceormodificationthroughapplicationofproductionprocessesoravailablemethods,systems,andtechniques,includingfuelcleaningortreatmentorinnovativefuelcombustiontechniquesforcontrolofsuchpollutant.Innoeventshallapplicationofbestavailablecontroltechnologyresultinemissionsofanypollutantwhichwouldexceedtheemissionsallowedbyanyapplicablestandardunder40CFRparts60and61.

DifferencesinthecharacteristicsofcriteriapollutantandGHGemissionsfromlargeindustrialsourcespresentseveralGHG‐specificconsiderationsundertheBACTdefinitionwhichwarrantfurtherdiscussion.ThoseunderlinedtermsintheBACTdefinitionareaddressedfurtherbelow.

10.1.1. Emission Limitation

BACTis“anemissionlimitation,”notanemissionreductionrateoraspecifictechnology.WhileBACTispredicatedupontheapplicationoftechnologiesreflectingthemaximumreductionrateachievable,thefinalresultofaBACTdeterminationisanemissionlimit.Typically,whenquantifiableandmeasurable,thislimitwouldbeexpressedasanemissionratelimitofapollutant(e.g.,lb/MMBtuHHV,ppm,orlb/hr).2,3Furthermore,EPA’sguidanceonGHGBACThasindicatedthatGHGBACTlimitationsshouldbeaveragedoverlong‐termtimeframes.4

2ThedefinitionofBACTallowsuseofaworkpracticewhereemissionsarenoteasilymeasuredorenforceable.40CFR§52.21(b)(12).3Emissionlimitscanbebroadlydifferentiatedas“rate‐based”or“mass‐based.”Foraturbine,arate‐basedlimitwouldtypicallybeinunitsof

lb/MMBtu(massemissionsperunitofheatinput).Incontrast,atypicalmass‐basedlimitwouldbeinunitsoflb/hr(massemissionsperunitof

time).4USEPA,,PSDandTitleVPermittingGuidanceforGreenhouseGases.EPA‐457/B‐11‐001(Mar.2011),page46(hereinafter“2011Guidance”)

Page 41: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 23

10.1.2. Each Pollutant

BecauseBACTappliesto“eachpollutantsubjecttoregulationundertheAct,”theBACTevaluationprocessistypicallyconductedforeachregulatedNSRpollutantindividuallyandnotforacombinationofpollutants.5ForPSDapplicabilityassessmentsinvolvingGHGs,theregulatedNSRpollutantsubjecttoregulationundertheCleanAirAct(CAA)isthesumofsixGHGsandnotasinglepollutant.InthefinalTailoringRulepreamble,EPAmadeclearthatthiscombinedpollutantapproachforGHGsdidnotapplyjusttoPSDapplicabilitydeterminationsbutalsotoPSDBACTdeterminations,suchthatapplicantsshouldconductasingleGHGBACTevaluationonaCO2ebasisforemissionsourcesthatemitmorethanoneGHGpollutant:

However,wedisagreewiththecommenter’sultimateconclusionthatBACTwillberequiredforeachconstituentgasratherthanfortheregulatedpollutant,whichisdefinedasthecombinationofthesixwell‐mixedGHGs.Tothecontrary,webelievethat,incombinationwiththesum‐of‐sixgasesapproachdescribedabove,theuseoftheCO2emetricwillenabletheimplementationofflexibleapproachestodesignandimplementmitigationandcontrolstrategiesthatlookacrossallsixoftheconstituentgasescomprisingtheairpollutant(e.g.,flexibilitytoaccountforthebenefitsofcertainCH4controloptions,eventhoughthoseoptionsmayincreaseCO2).Moreover,webelievethattheCO2emetricisthebestwaytoachievethisgoalbecauseitallowsfortradeoffsamongtheconstituentgasestobeevaluatedusingacommoncurrency.6

TenaskaacknowledgesthepotentialbenefitsofconductingasingleGHGBACTevaluationonaCO2ebasisforthepurposesofaddressingpotentialtradeoffsamongconstituentgasesforcertaintypesofemissionunits.However,fortheproposedBrownsvilleGeneratingStation,theGHGemissionsarepredominatedbyCO2.CO2emissionsrepresentmorethan99%ofthetotalCO2efortheprojectasawhole.Assuch,thefollowingtop‐downGHGBACTanalysisshouldandwillfocusonCO2.

10.1.3. BACT Applies to the Proposed Source

Theapplicantdefinestheproposedsource(i.e.,itsgoals,aims,andobjectives).BACTappliestothetypeofsourceproposedbytheapplicant.Accordingly,EPA’sGHGPermittingGuidancestatesthatapplicantsneednotidentifycontroloptionsthatfundamentallyredefinethesourceortheapplicant’spurpose.7

10.1.4. Case-by-Case Basis

ThePSDprogram’sBACTevaluationiscase‐by‐case.In1990,EPAissuedaDraftManualonNewSourceReviewpermitting,whichincludeda“top‐down”BACTanalysis,toassistapplicantsandregulatorswiththiscase‐by‐caseprocess.

Inbrief,thetop‐downprocessprovidesthatallavailablecontroltechnologiesberankedindescendingorderofcontroleffectiveness.ThePSDapplicantfirstexaminesthemoststringent‐‐or"top"‐‐alternative.ThatalternativeisestablishedasBACTunlesstheapplicantdemonstrates,andthepermittingauthorityinitsinformedjudgmentagrees,thattechnicalconsiderations,orenergy,environmental,oreconomicimpactsjustify

540CFR§52.21(b)(12)675FR31,531,PreventionofSignificantDeteriorationandTitleVGreenhouseGasTailoringRule;FinalRule,June3,2010.7 “EPAhasrecognizedthataStep1listofoptionsneednotnecessarilyincludeinherentlylowerpollutingprocessesthatwouldfundamentallyredefinethenatureofthesourceproposedbythepermitapplicant.BACTshouldgenerallynotbeappliedtoregulatetheapplicant’spurposeor

objectivefortheproposedfacility.”2011Guidance,page26

Page 42: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 24

aconclusionthatthemoststringenttechnologyisnot"achievable"inthatcase.Ifthemoststringenttechnologyiseliminatedinthisfashion,thenthenextmoststringentalternativeisconsidered,andsoon.8

Thefivestepsinatop‐downBACTevaluationcanbesummarizedasfollows:

Step1.Identifyallavailablecontroltechnologies;Step2.Eliminatetechnicallyinfeasibleoptions;Step3.Rankthetechnicallyfeasiblecontroltechnologiesbycontroleffectiveness;Step4.Evaluatemosteffectivecontrols;andStep5.SelectBACT.

WhilethisEPA‐recommendedfivestepprocesscanbedirectlyappliedtoGHGswithoutanysignificantmodifications,itisimportanttonotethatthetop‐downprocessisconductedonaunit‐by‐unit,pollutant‐by‐pollutantbasisandonlyconsiderstheportionsofthefacilitythatareconsidered“emissionunits”asdefinedunderthePSDregulations.9

10.1.5. Achievable

BACTistobesetatthelowestvaluethatis“achievable.”However,thereisanimportantdistinctionbetweenemissionratesachievedataspecifictimeonaspecificunit,andanemissionlimitationthataunitmustbeabletomeetcontinuouslyoveritsoperatinglife.AsdiscussedbytheD.C.CircuitCourtofAppeals:

Whereastatuterequiresthatastandardbe"achievable,"itmustbeachievable"undermostadversecircumstanceswhichcanreasonablybeexpectedtorecur."10

EPAhasreachedsimilarconclusionsinpriordeterminationsforPSDpermits.

Agencyguidanceandourpriordecisionsrecognizeadistinctionbetween,ontheonehand,measured“emissionsrates,“whicharenecessarilydataobtainedfromaparticularfacilityataspecifictime,andontheotherhand,the‘emissionslimitation’determinedtobeBACTandsetforthinthepermit,whichthefacilityisrequiredtocontinuouslymeetthroughoutthefacility’slife.Statedsimply,ifthereisuncontrollablefluctuationorvariabilityinthemeasuredemissionrate,thenthelowestmeasuredemissionratewillnecessarilybemorestringentthanthe“emissionslimitation”thatis“achievable”forthatpollutioncontrolmethodoverthelifeofthefacility.Accordingly,becausethe“emissionslimitation”isapplicableforthefacility’slife,itiswhollyappropriateforthepermitissuertoconsider,aspartoftheBACTanalysis,theextenttowhichtheavailabledatademonstratewhethertheemissionsrateatissuehasbeenachievedbyotherfacilitiesoveralongterm.11

8DraftNSRManualatB‐2.“TheNSRManualhasbeenusedasaguidancedocumentinconjunctionwithnewsourcereviewworkshopsand

training,andasaguideforstateandfederalpermittingofficialswithrespecttoPSDrequirementsandpolicy.AlthoughitisnotbindingAgency

regulation,theNSRManualhasbeenlookedtobythisBoardasastatementofthe Agency’sthinkingoncertainPSDissues.E.g.,InreRockGen

EnergyCtr.,8E.A.D.536,542n.10(EAB1999),InreKnaufFiberGlass,GmbH,8E.A.D.121,129n.13(EAB1999).”InrePrairieStateGenerating

Company13E.A.D.1,13n2(2006)9Pursuantto40CFR§52.21(a)(7),emissionunitmeansanypartofastationarysourcethatemitsorwouldhavethepotentialtoemitany

regulatedNSRpollutant.10SierraClubv.U.S.EPA,167F.3d658(D.C.Cir.1999),quoting.NationalLimeAss'nv.EPA,627F.2d416,431n.46(D.C.Cir.1980). 11EPAEnvironmentalAppealsBoarddecision,Inre:NewmontNevadaEnergyInvestmentL.L.C.PSDAppealNo.05‐04,decidedDecember21,2005.

EnvironmentalAdministrativeDecisions,Volume12,Page442.

Page 43: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 25

Thus,BACTmustbesetrecognizingthatcompliancewiththatlimitmustbeachievableforthelifetimeofthefacilityonacontinuousbasis.WhileviewingindividualunitperformancecanbeinstructiveinevaluatingwhatBACTmightbe,anyactualperformancedatamustbeviewedcarefully,asrarelywillthedatabeadequatetotrulyassesstheperformancethataunitwillachieveduringitsentireoperatinglife.ToassistinmeetingtheBACTlimit,thesourcemustconsiderproductionprocessesoravailablemethods,systemsortechniques,aslongasthoseconsiderationsdonotredefinethesource.

10.1.6. Production Process

ThedefinitionofBACTlistsbothproductionprocessesandcontroltechnologiesaspossiblemeansforreducingemissions.

10.1.7. Available

Theterm“available”inthedefinitionofBACTisimplementedthroughafeasibilityanalysis–adeterminationthatthetechnologybeingevaluatedisdemonstratedoravailableandapplicable.

10.1.8. Floor

Forcriteriapollutants,theleaststringentemissionrateallowableforBACTisanyapplicablelimitundereitherNewSourcePerformanceStandards(NSPS–Part60)orNationalEmissionStandardsforHazardousAirPollutants(NESHAP–Parts61).AsdiscussedinSection9.2,NSPSSubpartTTTT,asproposed,includesa1,000lb/MW‐hrgrossCO2emissionlimitona12‐operatingmonthannualaveragebasis.Therefore,thisapplicablelimit,asproposed,isconsideredthefloorforBACTanalysis.

10.2. GHG BACT ASSESSMENT METHODOLOGY

GHGBACTfortheproposedprojecthasbeenevaluatedviaa“top‐down”approach,whichincludesthestepsoutlinedinthefollowingsubsections.ItshouldbenotedthatEPAclarifiedthescopeofaGHGBACTreviewintwoways:

> EPAstressedthatapplicantsshouldclearlydefinethescopeoftheprojectbeingreviewed.TenaskahasprovidedthisinformationinSection6(ProcessDescription)ofthisapplication.12

> EPAclarifiedthattheBACTanalysisshouldfocusontheproject’slargestcontributorstoCO2eandmaysubjectlesssignificantcontributorsforCO2etolessstringentBACTreview.Becausetheproject’sGHGemissionsarepredominatedbythetwonaturalgasCCCTs,thisBACTanalysisfocusesmainlyonthesepredominantsourcesofCO2efromtheproject.

10.2.1. Step 0 – Define the Project

Historicalpractice,aswellasrecentcourtrulings,hasbeenclearthatakeyfoundationoftheBACTprocessisthatBACTappliestothetypeofsourceproposedbytheapplicant,andthatredefiningthesourceisnotappropriateinaBACTdetermination.

122011Guidance,pages22‐23.

Page 44: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 26

ThoughBACTisbasedonthetypeofsourceasproposedbytheapplicant,thescopeoftheapplicant’sabilitytodefinethesourceisnotabsolute.AsEPAnotes,akeytaskforthereviewingagencyistodeterminewhichpartsoftheproposedprocessareinherenttotheapplicant’spurposeandwhichpartsmaybechangedwithoutchangingthatpurpose.AsdiscussedbyEPAinanopiniononthePrairieStatePSDproject,

Wefinditsignificantthatallpartieshere,includingPetitioners,agreethatCongressintendedthepermitapplicanttohavetheprerogativetodefinecertainaspectsoftheproposedfacilitythatmaynotberedesignedthroughapplicationofBACTandthatotheraspectsmustremainopentoredesignthroughapplicationofBACT.13…WhentheAdministratorfirstdeveloped[EPA’spolicyagainstredefiningthesource]inPennsauken,theAdministratorconcludedthatpermitconditionsdefiningtheemissionscontrolsystems“areimposedonthesourceastheapplicanthasdefinedit”andthat“thesourceitselfisnotaconditionofthepermit.14

GiventhatsomepartsoftheprojectarenotopenforreviewunderBACT,EPAthendiscussesthatitisthepermitreviewer’sburdentodefinetheboundary.BasedonprecedentsetinmultiplepriorEPArulings(e.g.,PennsaukenCountyResourceRecovery[1988],OldDominionElectricCoop[1992],SpokaneRegionalWastetoEnergy[1989]),EPAstatesthefollowinginthePrairieStatePSDAppeal:

Forthesereasons,weconcludethatthepermitissuerappropriatelylookstohowtheapplicant,inproposingthefacility,definesthegoals,objectives,purpose,orbasicdesignfortheproposedfacility.Thus,thepermitissuermustbemindfulthatBACT,inmostcases,shouldnotbeappliedtoregulatetheapplicant'sobjectiveorpurposefortheproposedfacility,andtherefore,thepermitissuermustdiscernwhichdesignelementsareinherenttothatpurpose,articulatedforreasonsindependentofairqualitypermitting,andwhichdesignelementsmaybechangedtoachievepollutantemissionsreductionswithoutdisruptingtheapplicant'sbasicbusinesspurposefortheproposedfacility.15

EPA’sopinioninPrairieStatewasupheldonappealtotheSeventhCircuitCourtofAppeals,wherethecourtaffirmedthesubstantialdeferenceduethepermittingauthorityondefiningthedemarcationpoint.16Takenasawhole,thepermittingagencyistaskedwithdeterminingwhichcontrolsareappropriate,butthediscretionoftheagencydoesnotextendtoapointrequiringtheapplicanttoredefinethesource.Assuch,itisimperativeforTenaskatoincludeadiscussionunder“Step0”oftheGHGBACTAssessmentMethodologyastowhatactuallyconstitutestheproposedprojectanditsfundamentalobjectivesandbasicdesign.PleasereferSection6(ProcessDescription)forwhatconstitutethescopeoftheproposedproject.

13EPAEnvironmentalAppealsBoarddecision,Inre:PrairieStateGeneratingCompany.PSDAppealNo.05‐05,decidedAugust24,2006,Page26.

14EPAEnvironmentalAppealsBoarddecision,Inre:PrairieStateGeneratingCompany.PSDAppealNo.05‐05,decidedAugust24,2006,Page29.

15EPAEnvironmentalAppealsBoarddecision,Inre:PrairieStateGeneratingCompany.PSDAppealNo.05‐05,decidedAugust24,2006,Page30.SeealsoEPAEnvironmentalAppealsBoarddecision,Inre:DesertRockEnergyCompanyLLC.PSDAppealNos.08‐03,08‐04,08‐05&08‐06,decidedSept.24,2009,page64(“TheBoardarticulatedthepropertesttobeusedto[assesswhetheratechnologyredefinesthesource]inPrairieState.”).

16SierraClubv.EPAandPrairieStateGeneratingCompanyLLC,SeventhCircuitCourtofAppeals,No.06‐3907,August24,2007.RehearingdeniedOctober11,2007.

Page 45: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 27

10.2.2. Step 1 - Identify All Available Control Technologies

AvailablecontroltechnologiesforCO2ewiththepracticalpotentialforapplicationtotheemissionunitareidentifiedunderStep1.Theapplicationofdemonstratedcontroltechnologiesinothersourcecategoriessimilartotheemissionunitinquestioncanalsobeconsidered.Whileidentifiedtechnologiesmaybeeliminatedinsubsequentstepsintheanalysisbasedontechnicalandeconomicinfeasibilityorenvironmental,energy,economicorotherimpacts,controltechnologieswithpotentialapplicationtotheemissionunitunderreviewareidentifiedinthisstep.UnderStep1ofacriteriapollutantBACTanalysis,thefollowingresourcesaretypicallyconsultedwhenidentifyingpotentialtechnologies:

1. EPA’sReasonablyAvailableControlTechnology(RACT)/BestAvailableControlTechnology(BACT)/LowestAchievableEmissionReduction(LAER)Clearinghouse(RBLC)database;

2. DeterminationsofBACTbyregulatoryagenciesforothersimilarsourcesorairpermitsandpermitfilesfromfederalorstateagencies,includingEPARegion6websitewiththedetailsofPSDGHGpermitapplications;17

3. Engineeringexperiencewithsimilarcontrolapplications;4. Informationsuchascommercialguaranteesprovidedbyairpollutioncontrolequipmentvendorswith

significantmarketshareintheindustry;and/or5. Reviewofpeerreviewedliteraturefromindustrialtechnicalortradeorganizations.

10.2.3. Step 2 - Eliminate Technically Infeasible Options

Aftertheavailablecontroltechnologieshavebeenidentified,eachtechnologyisevaluatedwithrespecttoitstechnicalfeasibilityincontrollingGHGemissionsfromthesourceinquestion.Thefirstquestionindeterminingwhetherornotatechnologyisfeasibleiswhetherornotitisdemonstrated.Ifso,itisdeemedfeasible.Whetherornotacontroltechnologyisdemonstratedisconsideredtobearelativelystraightforwarddetermination.

Demonstrated“meansthatithasbeeninstalledandoperatedsuccessfullyelsewhereonasimilarfacility.”PrairieState,slipop.at45.18“Thisstepshouldbestraightforwardforcontroltechnologiesthataredemonstrated‐‐ifthecontroltechnologyhasbeeninstalledandoperatedsuccessfullyonthetypeofsourceunderreview,itisdemonstratedanditistechnicallyfeasible.”19

Anundemonstratedtechnologyisonlytechnicallyfeasibleifitis“available”and“applicable.”Acontroltechnologyorprocessisonlyconsideredavailableifithasreachedthelicensingandcommercialsalesphaseofdevelopmentandis“commerciallyavailable”.20ControltechnologiesintheR&Dandpilotscalephasesarenotconsideredavailable.BasedonEPAguidance,anavailablecontroltechnologyispresumedtobeapplicableifithasbeenpermittedoractuallyimplementedbyasimilarsource.Decisionsabouttechnicalfeasibilityofacontroloptionconsiderthephysicalorchemicalpropertiesoftheemissionsstreamincomparisontoemissionsstreamsfromsimilarsourcessuccessfullyimplementingthecontrolalternative.TheNSRManualexplainstheconceptofapplicabilityasfollows:“Anavailabletechnologyis‘applicable’ifitcanreasonablybeinstalledandoperatedonthesourcetypeunder

17GHGPSDpermitsandapplicationsavailableatEPARegion6website,http://yosemite.epa.gov/r6/Apermit.nsf/AirP,accessedJanuary2013.18PSDAppealNo.05‐05,PrairieStateGeneratingCompany(decidedAugust24,2006),page13.19NSRWorkshopManual(Draft),PreventionofSignificantDeterioration(PSD)andNonattainmentNewSourceReview(NNSR)Permitting,page

B.17.20NSRWorkshopManual(Draft),PreventionofSignificantDeterioration(PSD)andNonattainmentNewSourceReview(NNSR)Permitting,page

B.18.

Page 46: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 28

consideration.”21ApplicabilityofatechnologyisdeterminedbytechnicaljudgmentandconsiderationoftheuseofthetechnologyonsimilarsourcesasdescribedintheNSRManual.

10.2.4. Step 3 - Rank Remaining Control Technologies by Control Effectiveness

AllremainingtechnicallyfeasiblecontroloptionsarerankedbasedontheiroverallcontroleffectivenessforGHG.ForGHGs,thisrankingmaybebasedonenergyefficiencyand/oremissionrate.

10.2.5. Step 4 - Evaluate Most Effective Controls and Document Results

Afteridentifyingandrankingavailableandtechnicallyfeasiblecontroltechnologies,theeconomic,environmental,andenergyimpactsareevaluatedtoselectthebestcontroloption.Ifadversecollateralimpactsdonotdisqualifythetop‐rankedoptionfromconsideration,itisselectedasthebasisfortheBACTlimit.Alternatively,inthejudgmentofthepermittingagency,ifunreasonableadverseeconomic,environmental,orenergyimpactsareassociatedwiththetopcontroloption,thenextmoststringentoptionisevaluated.Thisprocesscontinuesuntilacontroltechnologyisidentified.Theenergy,environment,andeconomicimpactsanalysisunderStep4ofaGHGBACTassessmentpresentsauniquechallengewithrespecttotheevaluationofCO2andCH4emissions.ThetechnologiesthataremostfrequentlyusedtocontrolemissionsofCH4inhydrocarbon‐richstreams(e.g.,flaresandthermaloxidizers)actuallyconvertCH4emissionstoCO2emissions.Consequently,thereductionofoneGHG(i.e.,CH4)resultsinaproportionalincreaseinemissionsofanotherGHG(i.e.,CO2).However,sincetheGlobalWarmingPotential(GWP)ofCH4is21timeshigherthanCO2,conversionofCH4emissionstoCO2resultsinanetreductionofCO2eemissions.

PermittingauthoritieshavehistoricallyconsideredtheeffectsofmultiplepollutantsintheapplicationofBACTaspartofthePSDreviewprocess,includingtheenvironmentalimpactsofcollateralemissionsresultingfromtheimplementationofemissioncontroltechnologies.Toclarifythepermittingagency’sexpectationswithrespecttotheBACTevaluationprocess,stateshavesometimesprioritizedthereductionofonepollutantaboveanother.Forexample,technologieshistoricallyusedtocontrolNOXemissionsfrequentlycausedincreasesinCOemissions.Accordingly,severalstatesprioritizedthereductionofNOXemissionsabovethereductionofCOemissions,approvinglowNOXcontrolstrategiesasBACTthatresultinhigherCOemissionsrelativetotheuncontrolledemissionsscenario.

10.2.6. Step 5 - Select BACT

Inthefinalstep,theBACTemissionlimitisdeterminedforeachemissionunitunderreviewbasedonevaluationsfromthepreviousstep.Althoughthefirstfourstepsofthetop‐downBACTprocessinvolvetechnicalandeconomicevaluationsofpotentialcontroloptions(i.e.,definingtheappropriatetechnology),theselectionofBACTinthefifthstepinvolvesanevaluationofemissionratesachievablewiththeselectedcontroltechnology.BACTisanemissionlimitunlesstechnologicaloreconomiclimitationsofthemeasurementmethodologywouldmaketheimpositionofanemissionsstandardinfeasible,inwhichcaseaworkpracticeoroperatingstandardcanbeimposed.

21Ibid.

Page 47: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 29

EstablishinganappropriateaveragingperiodfortheBACTlimitisakeyconsiderationunderStep5oftheBACTprocess.LocalizedGHGemissionsarenotknowntocauseadversepublichealthorenvironmentalimpacts.Rather,EPAhasdeterminedthatGHGemissionsareanticipatedtocontributetolong‐termenvironmentalconsequencesonaglobalscale.Accordingly,EPA’sClimateChangeWorkGrouphascharacterizedthecategoryofregulatedGHGsasa“globalpollutant.”GiventheglobalnatureofimpactsfromGHGemissions,NationalAmbientAirQualityStandards(NAAQS)arenotestablishedforGHGsandadispersionmodelinganalysisforGHGemissionsisnotarequiredelementofaPSDpermitapplicationforGHGs.Sincelocalizedshort‐termhealthandenvironmentaleffectsfromGHGemissionsarenotrecognized,TenaskaproposesonlyanannualaverageGHGBACTlimit.

10.3. GHG BACT REQUIREMENT

TheGHGBACTrequirementappliestoeachnewemissionunitforwhichthecalculatedGHGemissionsaresubjecttoPSDreview.TheproposedBrownsvilleGeneratingStationisanewmajorsourcewithrespecttoGHGemissions.TheestimatedGHGemissionsfromtheproposedfacilitywillbegreaterthan100,000tpyonaCO2ebasisprimarilyduetothecombustionofnaturalgasinthetwoturbines.PotentialemissionsofGHGsfromtheproposedBrownsvilleGeneratingStationwillresultfromthefollowingemissionunits:

> Combustionturbines,ductburners,andSUSDemissions(EPN:1and2);> FirePumpEngine(EPN:4);> EmergencyGenerator(EPN:5);> FuelGasHeater(EPN:6);> AuxiliaryBoiler(EPN:7);> Fugitiveemissionsfromfuelpipingcomponents(EPN:FUG_GHG);and> FugitiveemissionsfromSF6circuitbreakers(EPN:FUG_GHG).

ThisBACTanalysisfocusesmainlyonthepredominantsourcesofCO2efromtheproject(i.e.,combustionturbines).GHGemissionsfromsmallemissionsourcessuchasthefirepumpengine,emergencygenerator,fuelgasheater,auxiliaryboiler,MSSactivities,circuitbreakerequipmentleaks,andfuelpipingcomponentleaksareincludedintheBACTanalysisaswell. TheemissioncalculationsprovidedinAppendixAincludeasummaryoftheestimatedmaximumannualpotentialtoemitGHGemissionratesfortheproposedBrownsvilleGeneratingStation.GHGemissionsforeachemissionunitareestimatedbasedonemissionlimitsandcontrolsproposedasBACT,proposedequipmentspecificationsprovidedbythemanufacturer,andthedefaultemissionfactorsintheEPA’sMandatoryGreenhouseGasReportingRule(40CFR98,SubpartC).ThefollowingguidancedocumentswereutilizedasresourcesincompletingtheGHGBACTevaluationfortheproposedproject:

1. PSDandTitleVPermittingGuidanceForGreenhouseGases(hereafterreferredtoasGeneralGHGPermittingGuidance)22

22U.S.EPA,OfficeofAirandRadiation,OfficeofAirQualityPlanningandStandards,(ResearchTrianglePark,NC:March2011).

http://www.epa.gov/nsr/ghgdocs/ghgpermittingguidance.pdf

Page 48: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 30

2. ReportoftheInteragencyTaskForceonCarbonCapture&Storage(hereafterreferredtoasCCSTaskForceReport)23

10.4. GHG BACT EVALUATION FOR PROPOSED EMISSION SOURCES

ThefollowingisananalysisofBACTforthecontrolofGHGemissionsfromtheproposedBrownsvilleGeneratingStationfollowingtheEPA’sfive‐step“top‐down”BACTprocess.Tenaskaisproposingtheuseofgoodcombustion,operatingandmaintenancepracticestogetherwithotherBACTcontrolsdescribedbelowforallthestationarycombustionsourcesattheproposedfacility.Table10.1providesasummaryoftheproposedBACTlimitsdiscussedinthefollowingsections.

Table10.1.ProposedGHGBACTLimitsfortheBrownsvilleGeneratingStation

EPN DescriptionProposedBACTLimit,a

(CO2etpy)ProposedBACTLimitb(lbsofCO2/MW‐hrgross)

1CombustionTurbine1/DuctBurner(NormalOperations)

1,585,046 914

2CombustionTurbine2/DuctBurner(NormalOperations)

1,585,046 914

4 FirePumpEngine WorkPracticeStandards

5 EmergencyGenerator WorkPracticeStandards

6 FuelGasHeater 5,125

7 AuxiliaryBoiler 23,061

1and2 MSSOperationsforCCCTs WorkPracticeStandards

FUG_GHGFugitiveemissionsfrom

equipmentleaksWorkPracticeStandards

aTheBACTlimitsarerepresentedinshorttonsbTheBACTlimitsarerepresentedatISOconditions(Standardpressureat14.696psiaandtemperatureat60degreeF),atbaseload,andatplantelevation.

AdetailedBACTanalysisisconductedforthetwocombustionturbines,MSSemissionsfromthecombustionturbines,thefirewaterpump,emergencygenerator,fuelgasheater,auxiliaryboiler,fugitiveemissionsfromfuelpipingcomponents,andthecircuitbreakerequipmentleaks.

10.5. COMBUSTION TURBINES

GHGemissionsfromtheproposedcombustionturbinesconsistofCO2,CH4,andN2Oandresultfromthecombustionofnaturalgas.ThefollowingsectionpresentsaGHGBACTevaluationfortheproposedCCCTs.

23ReportoftheInteragencyTaskForceonCarbonCapture&Storage,August2010,http://www.epa.gov/climatechange/downloads/CCS‐Task‐Force‐Report‐2010.pdf

Page 49: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 31

10.5.1. Step 0 – Define the Project

AsdescribedinSection1.1ofthisreport,Tenaska’sfundamentalobjectiveinpursuingtheproposedprojectistoconstructapipelinequalitynaturalgas‐firedCCCTfacilitynearBrownsvilleforthereliableandeconomicalsupplyofanestimatednominalpowergenerationsummerconditioncapacityof400MWor800MWonaflexibleorbaseloadbasis.

10.5.2. Step 1 Identify All Available Control Technologies

TheavailableGHGemissioncontrolstrategiesforCCCTsthatareanalyzedaspartofthisBACTanalysisconsistsof:

> CarbonCaptureandSequestration,> EvaporativeCooling,> SelectionofEfficientCCCT,> FuelSelection,and> GoodCombustion,Operating,andMaintenancePractices.

10.5.2.1. Carbon Capture and Sequestration

CCSinvolves“capturing”andseparatingtheCO2fromtheexhaustoftheemissionsource,transportingtheCO2toanappropriateinjectionsite,andthenstoringCO2atasuitablesequestrationsite.ThefollowingsectionsdescribethetechnicalfeasibilityofeachofthethreestepsnecessaryforthesuccessfulimplementationofCCS.TheCO2transferoptionsincludebothtransfertoapipelineoruseinEnhancedOilRecovery(EOR).

10.5.2.1.1. CO2 Capture CCSwouldinvolvepostcombustioncaptureoftheCO2fromthecombustionturbinesandductburnersandsequestrationoftheCO2insomefashion.Intheory,carboncapturecouldbeaccomplishedwithlowpressurescrubbingofCO2fromtheexhauststreamwitheithersolvents(e.g.,aminesandammonia),solidsorbents,ormembranes.However,onlysolventshavebeenusedto‐dateonacommercial(yetslipstream)scale,andsolidsorbentsandmembranesareonlyintheresearchanddevelopmentphase.FloridaPower&Light(FP&L)conductedCO2capturetoproduce320‐350tpdCO2usingtheFluorEconamineFGSMscrubbersystemon15percentofthefluegasfromits320MWe2x1naturalgascombinedcycleunitinBellingham,Massachusettsfrom1991to2005.ThecapturedCO2wascompressedandstoredonsiteforsaletotwonearbymajorfoodprocessingplants.24,25Therefore,thisprojectindicatesCO2captureispotentiallytechnicallyfeasibleforasmallslipstreamofnaturalgascombinedcycle(NGCC)fluegas.Asdiscussedbelow,anumberoflargerscalecoal‐basedCCSdemonstrationprojectshavebeenproposedthroughtheDOECleanCoalPowerInitiative(CCPI).26

“CCPIispursuingthreepre‐combustionandthreepost‐combustionCO2capturedemonstrationprojectsusingcurrentlyavailabletechnologies(seeAppendixA,TableA‐8)...Thepost‐combustionprojectswillcaptureCO2fromaportionofthePCplant’sfluegasstream.Thespecificprojectsincludethefollowing:

24InternationalEnergyAgencyGHGResearch&DevelopmentProgram,RD&DDatabase:FloridaLightandPowerBellinghamCO2CaptureCommercialProject,http://www.ieaghg.org/index.php?/RDD‐Database.html.25Reddy,Satish,et.al.,Fluor’sEconamineFGPlusSMTechnologyforCO2CaptureatCoal‐firedPowerPlants,PowerPlantAirPollutantControl“Mega”Symposium,August25‐28,2008,Baltimore,Maryland,http://web.mit.edu/mitei/docs/reports/reddy‐johnson‐gilmartin.pdf.26CCSTaskForceReport,August2010,p.32.

Page 50: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 32

> BasinElectric:amine‐basedcaptureof900,000tonnesperyearofCO2froma120MW

equivalentslipstreamataNorthDakotaplantforuseinanEORapplicationand/orsalinestorage.

> NRGEnergy:amine‐basedcaptureof400,000tonnesperyearofCO2froma60MWequivalentslipstreamataTexasplantforuseinanEORapplication.

> AmericanElectricPower:ammonia‐basedcaptureof1.5milliontonnesperyearofCO2froma235MWequivalentslipstreamataWestVirginiaplantforsalinestorage.”

NoneoftheseCCSprojectsareoperatingand,infact,nonehavebeenfullydesignedorconstructed.Furthermore,AmericanElectricPowerrecentlyannouncedthattheCCSprojecthasbeenputonholdduetothelackoffederalcarbonlimits.27Finally,Tenaskaiscurrentlyintheprocessofdevelopinga900MWegrossgeneratingplantfueledbypulverizedcoalnearSweetwater,Texas.Tenaskaisplanningtocapture85to90percentoftheCO2emittedfromtheplantusingtheFluorEconamineFGPlussm(amine‐based)technology,andsendthecapturedCO2tothePermianBasinforenhancedoilrecovery.28Thisplanthasalsonotyetbegunconstruction.Asmentionedabove,therehasbeenonlyonecaseofpostcombustioncaptureofCO2fromanaturalgasCCCTfacilityanditutilizedonlyasmallslipstreamofthetotalexhaustgasvolume.Onereasonfortherebeingmore,yetstillnotfull‐scalecommercial,experienceoncoal‐basedcombustionfluegasisthattheexhaustfromacoal‐fueledplanthasasignificantlyhigherconcentrationofCO2ascomparedtoamoredilutestreamfromthecombustionofnaturalgas(approximately13‐15percentvolumeforacoalfiredsystemversus3‐5percentvolumeforanatural‐gasfiredsystem).29BasedontheemissionsandstackexhaustdataprovidedbytheCCCTmanufacturer,theconcentrationofCO2variesfrom4to5percentfortheproposedCCCTs.Inaddition,priortosendingtheCO2streamtotheappropriatesequestrationsite,itisnecessarytocompresstheCO2fromnearatmosphericpressuretopipelinepressure(around2,000psia).ThecompressionoftheCO2wouldrequirealargeauxiliarypowerload,resultinginadditionalfuel(andCO2emissions)togeneratethesameamountofpower.30

Whilecarboncapturetechnologymaybetechnologicallyavailableonasmall‐scale,ithasnotbeendemonstratedinpracticeforfull‐scalenaturalgascombinedcyclepowerplants,suchastheproposedBrownsvilleGeneratingStation.

10.5.2.1.2. CO2 Transport CO2capturehasnotbeendemonstratedinpracticeonafullsizednaturalgaspowerplantand,therefore,notcommerciallyavailableasBACT.Nonetheless,TenaskaisincludingadiscussiononthefeasibilityoftransportingtheCO2capturedfromtheexhaustoftheCCCTstoanappropriatesequestrationsite.TenaskawouldneedtoeithertransportthecapturedCO2toanexistingCO2pipelinelocatedattheHastingsOilField,operatedbyDenburyResources(258milesfromtheproposedBrownsvilleGeneratingStation31),ortransporttheCO2toasitewithrecognizedpotentialforstorage(e.g.,enhancedoilrecovery[EOR]sites).TheclosestpotentialEORsiteisanexistingoilwell,locatedinJimHoggCounty,operatedbyWynn‐CrosbyOperating,Ltd.(JimHoggWell,APINo.24732057).Thiswellislocatedapproximately106milesfromtheproposedBrownsvilleGeneratingStation.32RefertoFigures27Sweet,Cassandra.TheWallStreetJournal.“AEPDropsCarbonStorageProjectOnLackOfFederalCarbonLimits”.http://online.wsj.com/article/BT‐CO‐20110714‐716173.html.July14,2011.28Tenaska,July26,2010,http://www.tenaska.com/newsItem.aspx?id=8229CCSTaskForceReport,August2010,p.29andCO2concentrationsfromvendorprovidedexhaustcharacteristics30CCSTaskForceReport,August2010,p.30.31CCSTaskForceReport,August2010,p,159–AppendixB.1–ExistingPipelineNetworksintheUnitedStates32 RRCOnlineSystem–Oil&GasDataQuery

Page 51: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 33

10.1and1.2belowformapsillustratingthedistancefromtheproposedfacilitytotheclosestCO2pipelinelocatedattheHastingsOilFieldandtheJimHoggWellsiterespectively.

Figure10.1.CO2SourcesandPipelines33

33ThismapistakendirectlyfromCCSTaskForceReport,p.B‐1.

Tenaska Brownsville Generating

Station

Hastings Oil Field

Page 52: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 34

Figure10.2.JimHoggWellinRelationtotheBrownsvilleGeneratingStation

ItistechnicallyfeasibletoconstructaCO2pipeline106milestotheclosestpotentialsequestrationsite.

10.5.2.1.3. CO2 Storage TheprocessofinjectingCO2intosubsurfaceformationsforlong‐termsequestrationisreferredtoasCO2storage.CO2canbestoredundergroundinoil/gasfields,un‐mineablecoalseams,andsalineformations.Inpractice,CO2iscurrentlyinjectedintothegroundforenhancedoilandgasrecovery.PertheCCSTaskForceReport,approximately50milliontonnesofCO2peryearareinjectedduringenhancedoilandgasrecoveryoperations.Internationally,therearethreelargescaleprojectsthatarecurrentlyinoperationworldwideasfollows:34

1. TheSleipnerProject(1996–current):OnemilliontonnesofCO2peryearisseparatedfromproducednaturalgasinNorwayandisinjectedintoUtsiraSand(highpermeability,highporositysandstone)1,100metersbelowtheseasurface.

2. TheWeyburnProject(2000–2011):1.8milliontonnesofCO2peryearwasinjectedinto29horizontalandverticalwellsintotwoadjacentcarbonatelayersinSaskatchewan,CanadaneartheNorthDakotaborder.TheCO2originatesfromanearbysynfuelplant.35

3. TheSnohvitProject(2010–current):Theprojectisexpectedtoinject0.7milliontonnesCO2peryearfromnaturalgasproductionoperationsneartheBarentsSea.Theinjectionwellreaches2,600metersbeneaththeseabedintheTubasensandstoneformation.

4. TheInSalahProject(2004–current):Theprojectinjects1.2milliontonnesofCO2annuallyproducedfromnaturalgasinto1,800meterdeepmuddysandstone(lowporosity,lowpermeability).

34CCSTaskForceReport,PagesC‐1andC‐2.35PetroleumTechnologyResearchCentre,http://www.ptrc.ca/weyburn_overview.php

Page 53: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 35

InTexas,EORiscurrentlyconductedonalargescaleattheScurryAreaCanyonReedOperators(SACROC)oilfieldneartheeasternedgeofthePermianBasisinScurryCounty,Texas.Since1974,over175milliontonnesofCO2havebeeninjectedintotheSACROCoilfieldforEOR.36TheSACROCoilfieldisapproximately505milesfromtheBrownsvilleGeneratingStation.Figure10.3belowprovidesavisualillustrationoftheproximityoftheBrownsvilleGeneratingStationtotheSACROCoilfield.EORisoccurringinotherareasofTexasaswell,andforpurposesofthisanalysis,TenaskahasidentifiedtheclosestpotentialsequestrationsiteastheJimHoggWell(APINo.24732057)locatedinJimHoggCounty,whichisapproximately106milesfromtheproposedBrownsvilleGeneratingStation.

Figure10.3:SACROCOilFieldinRelationtotheBrownsvilleGeneratingStation37

Inconclusion,eventhoughtransportingandsequesteringCO2isfeasible,CCSisnotaviable,technicallyfeasibleoptionforthisprojectduetothefactthatCO2capturehasnotbeenachievedinpracticeforalargescale,800MWnaturalgascombinedcycleplant,whichwasdeterminedbyTenaskanottobefeasibleinSection10.5.2.1.1.Nevertheless,TenaskahaschosentocarryitforwardintheBACTanalysistoevaluateandpresenttheassociatedenvironmental,energyandeconomicimpacts.

10.5.2.2. Evaporative Cooling

Evaporativecoolinginvolvesthecoolingofgasturbineinletairinordertoincreasecombustionairmassflow.Airflowsthroughawettedmediumandiscooledassomeofthewaterevaporatesoffthewetmediaandintotheinletair.Theevaporationprocessreducestheairtemperature.Cooledairthenpassesthroughamisteliminatortoremove

36BureauofEconomicGeology,SACROCResearchProject,http://www.beg.utexas.edu/gccc/sacroc.php

37Mapobtainedfromthefollowingwebsite:http://www.beg.utexas.edu/gccc/sacroc.php

Page 54: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 36

leftoverwaterdroplets,andisthendirectedintothecompressorinlet.Coolingthecombustionairincreasesthedensityand,therefore,resultsinahighermass‐flowrateandpressureratio,resultinginincreasedturbineoutputandefficiency.ThetwoCCCTswillemployevaporativecoolingwhenambienttemperaturesarehighenoughtorenderiteffective.

10.5.2.3. Selection of Efficient CCCT

TenaskaconductedacomprehensiveevaluationoftheavailableCCCTsthatcouldbeinstalledattheproposedBrownsvilleGeneratingStationwhileremainingconsistentwiththeprojectdefinition.SeveraladvancedheavydutyframetypecombustionturbinetechnologieswereconsideredandevaluatedsuchasGeneralElectric’s7FA.05,SiemensSGT6‐5000F5ee,SiemensSGT6‐8000H,Mitsubishi501GAC,Mitsubishi501J.Evaluationcriteriaincludedplantsize,marketconsiderations,heatrate,operatingexperience,capitalandO&Mcosts,andall‐inlevelizedcostofenergy.Eachoftheaforementionedcombustionturbinemodelswereevaluatedsolelyinacombinedcycleconfiguration.Table10.2belowincludesacomparisonoftheCCCTsevaluatedbasedontheefficiencyoftheturbines(e.g.,BtuinputperkWhoutput)andnetplantoutputin2x1configuration.Ingeneral,GHGemissionsareproportionaltoheatrate.

Table10.2.CCCTsEvaluated

CCCTDescription

CombinedCycleUnfiredNetPlantHeatRate(Btu/kW‐hr)LHV38

NetPlantOutput2x1Configuration

MHI501GAC 5,744 810.7

SiemensSGT6‐5000F 5,970 620.0

GE7FA.05 5,831 647.8

SiemensSGT6‐8000H 5,691 822.0

MHI501J 5,531 942.9AsshowninTable10.2,theGE7FA.05andSiemensSGT6‐5000Fhavesignificantlyloweroutputratesthanthedesirednominalplantoutputandhavehigherheatratescomparedtotheothermodels.TheMHI501Jmodelexceedsthedesirednominal400MWor800MWplantoutput.AlthoughTable10.2indicatestheMitsubishi501JandSiemensSGT6‐8000Hexhibitaslightlybetternetplantdesignheatrate(approximately1%),eitherasingleunitortwo‐unitcombinedcycleconfigurationutilizingthoseturbinesexceedsthedesirednominal400MWor800MWplantoutput.Basedontheevaluationcriteriaabove,theMitsubishi501GACwasselectedasbestmeetingTenaska’sprojectscope,sincetheoutputforthismodelistheclosesttothedesiredplantoutputfornormaloperations.Inaddition,Tenaskaproposestouseductburnerstoprovideadditionalpowerduringpeakdemandperiods.AdetailedprojectanalysisincludingalternativeoptionsconsideredfortheductburnersisprovidedinAppendixB.As

38GasTurbineWorld2012PerformanceSpecs28thEd.;ISOConditions

Page 55: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 37

showninthisanalysis,useofductburnersistheonlyeconomicallyreasonableoptiontomeetTenaska’sprojectscope.InorderfortheBrownsvilleGeneratingStationtoprovideflexible,baseloadcapacityto“balance”otherintermittentgenerationsuchaswinditmusthavetheabilitytostartandstopasdictatedbydispatch.Therefore,aconservativeapproachhasbeentakenwithrespecttotheestimatedannualnumberofstartupsandshutdowns,byassumingtheunitswillcycledaily(onewarmstartandstopeachday)inadditiontotwohotstartseachyear,andtwoannualcoldandcoldcoldstartsfollowingpreventativemaintenanceoutages.Whilethenumberofeachtypeofstartisnotproposedasapermitlimit,norwouldthatbeappropriate,theemissionscalculatedaccordingtothisschedulewillbeincludedintheannualpermitlimits.Theassumptionsusedpresentaworst‐caseannualscenariotakingintoaccountthenumberofhoursofCTdowntimeassociated,bydefinition,witheachtypeofstartasfollows:

Hot<8hrs Warm>8hrsbut<72hrs Cold>72hrsbut<96hrs ColdCold>96hrs

Forexample,althoughthecoldandcoldcoldstartshavehigheremissionsduetotheirlongerduration,thisislessconservativeonanannualbasisbecausetheturbinesareassumedtobedownforthepreceding72‐96hoursand,therefore,havenonormaloperatingemissionsduringthattime.Thedurationofsuchevents,particularlystartups,isdictatedbyseveralfactorsincludingambienttemperature,elapsedtimesincelastoperation,equipmenttemperature,equipmentwarrantyrestrictions,off‐takercontractualobligations,anddispatchinstructions.OfcoursetheBrownsvilleGeneratingStationhaseveryincentivetominimizethedurations,asthesearelessefficientmodesofoperationwhilelittletonopowerisbeingsold.Plantoperationswillbeoptimizedtominimizethefrequencyanddurationofstartsandstopstotheextentpractical.FastercombustionturbinestartcapabilitiesareavailableinthemarketandhavebeenconsideredfortheMitsubishi501GACandothercombustionturbinemodels.Thefaststartoptionshaveadetrimentalimpactonoverallplantperformanceandmaintenancecosts.TheBrownsvilleGeneratingStationwillprimarilybeabaseloaded,combinedcycleplant,asmarketallows.Forthisreason,aswellasperformanceandmaintenanceconsiderations,thehigher‐performingstandardMitsubishi501GACwasselected.Theplantwillbedesignedtooptimize(i.e.,minimize)plantstartupdurations.Theproposedauxiliaryboilerwillbeusedtofacilitatecommissioningandpre‐commercialoperationplantstartupactivities,aswellaspost‐commercialoperationplantstartupsandmaintenanceactivities.Theauxiliaryboilercanbeusedtowarmsteampipingandbalanceofplantsystemsinadditiontoprovidingsteamforsteamturbinesealstoaidinreducingstartupdurationsandrelatedemissions.

10.5.2.4. Fuel Selection

TenaskaproposestheuseofpipelinequalitynaturalgasasthesolefuelsourceforthetwoCCCTsbeingproposedaspartofthisproject.TableC‐1of40CFRPart98showsCO2emissionsperunitheatinput(intermsofkg/MMBtu)forawidevarietyofindustrialfueltypes.Asshowninthistable,Naturalgashasthelowestcarbonintensityofanyavailablefuelforthecombustionturbines.Theproposedcombustionturbineswillbefiredwithonlypipelinequalitynaturalgasfuel.

Page 56: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 38

10.5.2.5. Good Combustion, Operating, and Maintenance Practices

Goodcombustionandoperatingpractices(GCPs)areapotentialcontroloptionbyimprovingthefuelefficiencyofthecombustionturbines.GCPsalsoincludepropermaintenanceandtune‐upofthecombustionturbinesatleastannuallyperthemanufacturer’sspecifications.Tenaskawillimplementthefollowinggoodcombustion,operating,andmaintenancepracticesonthetwoCCCTs:

Table10.3‐1.GoodCombustion,Operating,andMaintenancePractices

GoodCombustionTechnique Practice Standard

Operatorpractices Officialdocumentedoperatingprocedures,updatedasrequiredforequipmentorpracticechange.

Proceduresincludestartup,shutdown,malfunction

Operatinglogs/recordkeeping

MaintainwrittensitespecificoperatingproceduresinaccordancewithGCPs,includingstartup,shutdown,andmalfunction.

Maintenanceknowledge

Trainingonapplicableequipment&procedures.

Equipmentmaintainedbypersonnelwithtrainingspecifictoequipment.

Maintenancepractices

Officialdocumentedmaintenanceprocedures,updatedasrequiredforequipmentorpracticechange

Routinelyscheduledevaluation,inspection,overhaulasappropriateforequipmentinvolved

Maintenancelogs/recordkeeping

Maintainsitespecificproceduresforbest/optimummaintenancepractices

Scheduledperiodicevaluation,inspection,overhaulasappropriate.

Fuelqualityanalysisandfuelhandling

Monitorfuelquality Fuelqualitycertificationfromsupplierif

needed Periodicfuelsamplingandanalysis Fuelhandlingpractices Tenaskawillusepipelinequalitynaturalgas

Fuelanalysiswherecompositioncouldvary

Fuelhandlingproceduresapplicabletothefuel.

10.5.3. Step 2 Eliminate Technically Infeasible Options

Asdiscussedabove,CCSisdeemedtechnicallyinfeasibleforcontrolofGHGemissionsfromthecombustionturbines.However,TenaskahasdecidedtoperformaneconomicfeasibilityanalysisfortheuseofCCSontheCO2emissionsfromthetwoCCCTs.Allothercontroloptionsdiscussedabovearetechnicallyfeasible.

10.5.4. Step 3 Rank Remaining Control Technologies by Control Effectiveness

Thefollowingremainastechnicallyfeasiblecontroloptionsor,inthecaseofCCS,acontroloptionthatTenaskahaschosentocarryforwardintheBACTanalysisdespiteinfeasibilityconcerns,forminimizingGHGemissionsfromthecombustionturbines:

Page 57: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 39

> CarbonCaptureandSequestration(CCS);> Evaporativecooling;> SelectionofefficientCCCTs;> Fuelselection;and> Implementationofgoodcombustion,operating,andmaintenancepractices.

RankingtheabovecontroloptionsisunnecessarybecauseTenaskaproposestoimplementallofthesecontroloptions,exceptforCCS,basedontheenvironmental,energy,andeconomicanalysisdiscussedinStep4.

10.5.5. Step 4 Evaluate Most Effective Control Options

Afteridentifyingandrankingavailableandtechnicallyfeasiblecontroltechnologies,theeconomic,environmental,andenergyimpactsareevaluatedtoselectthebestcontroloption.ForallidentifiedcontroltechnologiesexceptCCS,Tenaskahasnotidentifiedanyadverseenergy,environmental,oreconomicimpacts.AsdiscussedinSections10.5.2and10.5.3,CCSisconsideredtechnicallyinfeasiblefortheproposedproject.However,TenaskahasoptedtoincludeacostfeasibilityassessmentforuseofCCSforcompleteness.ThefollowinganalysisoftheenvironmentalandeconomicimpactsfromimplementingCCSdeemsthiscontroloptioninfeasible.ThecostsassociatedwithCCScanbebrokendownintothesamethreecategoriesthattheCCSprocessisdivided:CO2Capture,CO2Transport,andCO2Storage.TheCCScostestimationpresentedinthisdocumentisprimarilybasedoncostfactorsobtainedfromtheCCSTaskForceReport.ThecostanalysiscarriedoutinthisreportidentifiesarangeofcostsassociatedwitheachcomponentofCCS(i.e.,capture,transport,andstorage).Tobeconservative,thelowest,mostapplicablefactorsaretakenforuseinthecostestimationpresentedherein.Itshouldalsobenotedthatforthisanalysis,thefactorswhichappearintheCCSTaskForceReporthavebeenconvertedfromametrictonsbasistoashorttonsbasisandescalatedfromDecember2009dollarstoDecember2012(current)dollarsusingappropriatepriceindices.39TheoriginalvaluesaspublishedintheCCSTaskForceReportaswellastheadjustedvaluesareshowninTable10.3below.Captureandcompressioncostsvarywidelydependingonwhattypeofcombustionequipmentandprocessisusedatthefacility.OfthepowerplantconfigurationsforwhichcostfactorsareprovidedintheCCSTaskForceReport,thefactorforanewnaturalgascombinedcyclefacilityistakentobethemostapplicable.Captureandcompressioncoststypicallyuseeithera“CO2‐Captured”ora“CO2‐Avoided”basis.TheCO2‐capturedbasisaccountsforallCO2thatisremovedfromtheprocessasaresultoftheinstallationanduseofacontroltechnology,withoutincludinganylossesduringtransportandstorageoremissionsfromthecontroltechnologyitself.ACO2‐avoidedbasistakesintoaccounttheCO2lossesduringtransportandstorageaswellasCO2emissionsfromequipmentassociatedwiththeimplementationoftheCCSsystem.ItismoreappropriatetousetheCO2capturedmonetaryestimatesbecausetheBACTanalysisisbasedonemissionsfromasinglesource(i.e.,thedirectemissionsfromtheCCCTs)anddoesnotaccountforsecondaryemissions(e.g.,theGHGemissionsgeneratedfromtheactofcompressingtheCO2topipelinepressures).Assuch,thecostfactorwhichusesaCO2‐capturedbasisisselectedforuseinthisanalysis.TheCO2transportcostspresentedintheCCSTaskForceReport(i.e.,$1.00pertonneCO2)arebasedonapipelinelengthof100km(62miles).Itisassumedthatthisfactormaybelinearlyscaledupforlongerpipelinelengths.ThehypotheticallengthofaCO2pipelineassociatedwiththeproposedprojectis106miles(theminimumdistancetothe

39PriceindicesforDecember2009andDecember2012areobtainedfromtheConsumerPriceIndexpublishedbytheU.S.BureauofLabor

Statistics.CPIvaluesobtainedfromhistorictables.Accessedonline3/16/2012athttp://www.bls.gov/cpi/tables.htm.

Page 58: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 40

nearestpipelineorEORsite).Assuch,theCO2transportcostfactorfromCCSTaskForceReporthasbeenadjustedupwardproportionallyforthisconsideration.AspresentedintheCCSTaskForceReport,thecostsassociatedwithstorageofCO2showlargevariability.TheCCSTaskForceReportpresentsacostrangeof$0.40upto$20.00pertonneofCO2stored.Whileacostoffortycentspertonnemaybeanunderestimation,itisconservativelytakenastheappropriatecostfactorforthiscostestimate.

Table10.3.CostEvaluationofCCS

CarbonCaptureandStorage(CCS)Component

ApproximateCostFactors(ACF)($/tonneCO2

removed,08/10Dollars)

AdjustedACF($/tonCO2removed,12/2012Dollars)1

BasisCapture‐NGCC 114.00 108.57 CO2Captured

Transport 4.00 2.67CO2Transportedper106

milesofpipelineStorage 0.40 0.38 CO2Stored

TotalCostForCapture,Transport,andStorage

$118.40 $111.61CO2Captured,

Transported,andStored

TheoriginalandadjustedcostfactorsaswellastheoverallestimatedcostofCCSimplementationattheBrownsvilleGeneratingStationareshowninTable10.3above.TheoverallestimatedcostofCCSimplementationrepresentsthesumoftheindividualcostfactors.Asshowninthetable,theestimatedcostofCCSimplementationattheBrownsvilleGeneratingStationis$111.61/tonofCO2removed.Thisequalsapproximately$523million/yr(includesinstallation,operation,andmaintenancecostsforCCS)basedontheannualCO2emissionscontrolledbyimplementingCCS.ThecapitalcostfortheproposedBrownsvilleGeneratingStationisapproximately$500million.UsingthesamecostfactorsasCCScost,theammortizedcapitalcostfortheproposedprojectisapproximately$52million/yr(includingannualoperationandmaintenancecosts).Basedonthesecostestimations,implementationofCCSwillcostTenaskaalmost10timestheprojectcapitalcostonanannualbasis,whichiseconomicallyinfeasible.ThedetailedCCScostanalysisandcomparisonwithprojectcapitalcostsarepresentedinAppendixCofthisapplication.ThefollowingTable10.4summarizesthecostpertonofCO2avoidedasrepresentedinotherGHGPSDapplicationsforcombinedcyclepowerplantsinU.S.EPARegion6.

Table10.4.SummaryofCostpertonofCO2AvoidedfromotherCCCTPlants

Facility $/tonofCO2avoided

LaPalomaEnergyCenter $91.82

EnergyTransfer $414.81

CalpineEnergyDeerPark,TX $122.22

CalpineEnergyPasadena,TX $122.22

ApexBethelEnergyCenter $185

AirLiquide–Pasadena,TX $66

Page 59: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 41

ThecostestimatedfortheproposedCCCTsisconsistentwiththecostsestimatedinotherpermitapplications.AlltheseapplicationsdeemedCCSaseconomicallyinfeasible.ThefollowingisalistofthesitespecificsafetyorenvironmentalimpactsassociatedwithapotentialCO2removalsystem.

1. EconomicFeasibility:ThelowpurityandconcentrationofCO2inthecombustionturbines’exhaustmeansthatthepertoncostofremovalandstoragewillbemuchhigherthanthepublicdataestimatesformuchlargercarbonrichfossilfuelpowerfacilitiesduetothelossofeconomiesofscale.Evenusinglow‐sidepublishedestimatesforCO2captureandstorageof$256pertonforanewnaturalgascombinedcyclefacility,assumingaconservative$6/MMBtugaspricemeansaddedcosttotheprojectover$200,000,000peryear.40

2. EnergyandEmissionsPenalty:Publishedstudiesmentionedelsewhereinthisresponseestimateenergypenaltiesintherangeof15%to30%ofproducedenergyforCCS.Thiswouldalsomeanthatapproximately15%‐30%morefuelwillbeconsumedanduptoanadditional15%‐30%ofCO2peryearwillbeproduced(basedontotalfuelusedfor2CCCTs).Thisequatestoburninguptoanadditional16,133MMscf/yrofnaturalgasperyear(usinga30%energypenalty)andproducesadditionalcombustionemissionsaslistedbelow,

> 951,028tonsofCO2peryear> 490tonsofCOperyear> 89tonsofNOXperyear> 20tonsofPM/PM10/PM2.5peryear> 6tonsofSO2peryear> 157tonsofVOCperyear> 4tonsofH2SO4Mistperyear> 108tonsofNH3peryear> 5tonsofHAPsperyear.

ThecombustionemissionsfromtheadditionalnaturalgasusagearecalculatedbasedontheemissioncalculationmethodsusedtoestimateemissionsfromtheCCCTs.

3. Long‐termStorageUncertainty:Astudyoftherisksassociatedwithlong‐termgeologicstorageofCO2placesthoserisksonparwiththeundergroundstorageofnaturalgasoracid‐gas.41TheliabilityofundergroundCO2storage,however,islessunderstood.ArecentpublicationfromMITstatesthat“Thecharacteristics(oflongtermCO2storage)poseachallengetoapurelyprivatesolutiontoliability.”42

Assuch,TenaskacontendsthatCCSiseconomicallyinfeasiblecontroltechnologyoptionandeliminatesCCSfromfurtherreviewunderthisBACTanalysis.

40 Anderson,S.,andNewell,R.2003.ProspectsforCarbonCaptureandStorageTechnologies.ResourcesfortheFuture.WashingtonDC 41 Benson,S.2006.CARBONDIOXIDECAPTUREANDSTORAGE,AssessmentofRisksfromCarbonDioxideStorageinDeepUndergroundGeologicalFormations.LawrenceBerkleyNationalLaboratory 42 deFigueiredo,M.,2007.TheLiabilityofCarbonDioxideStorage,Ph.D.Thesis,MITEngineering

Page 60: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 42

10.5.6. Step 5 Select BACT for the CCCTs

TenaskaproposesthefollowingdesignelementsandworkpracticesasBACTforthecombustionturbines:

> Evaporativecoolingdesign;> InstallationofoneortwoMHI501GACCCCTsalongwithductburnersforpeakcapacity;> Useofpipeline‐qualitynaturalgasasfuel;and> Implementationofgoodcombustion,operating,andmaintenancepractices.

TheproposedBACTlimitisdeterminedbyapplyinga“reasonablemarginofcompliance”tothe“newandclean”designnetbaseheatrateestablishedfor2‐on‐1scenario.Themarginofcomplianceaccountsforthefollowingdegradationfactors:

A3.3%designmargintoreflectthatthebaselineperformancevaluesfortheHRSGsandsteamturbinegeneratorsarepreliminaryestimatesabsentequipmentsuppliercommercialguaranteesandthattheequipmentasconstructedandinstalledmaynotfullyachievetheassumptionsthatwentintothedesigncalculations,

A6%reasonableperformancedegradationmargintoreflectnormalwearandtearoverthelifeofthecombustionsturbines,HRSGs,andsteamturbinegenerators,and

A3%reasonabledegradationmarginbasedonnormalwearandtearoverthelifeoftheauxiliaryplantequipment(e.g.,coolingtowers).

TenaskaproposesacombinedcyclecombustionturbineBACTlimitas914lbofCO2/MW‐hrgross,foreachCCCT.Thisvalueincludesthedegradationfactorsdiscussedabove.TheproposedBACTlimitisbelowtheemissionlimitof1,000lbofCO2/MW‐hrgross,includedintheproposedNSPSSubpartTTTT.TheproposedBACTlimitappliesatcombinedcyclebaseload,withductburners,atISOconditions(standardpressureof14.696psiaandtemperatureat60degreeF)correctedforplantelevation,andnotaccountingfortransformerlossesandbalanceofplantauxiliaryloads.Inaddition,TenaskaproposesCO2eemissionlimitof1,577,254tpyCO2eforeachofthetwoCCCTsfornormaloperations.Theproposedemissionlimitisbasedona12‐monthrollingaveragebasisandincludesCO2,CH4,andN2Oemissions,withCO2emissionsbeingmorethan99%ofthetotalemissions.TheproposedGHGBACTlimitforstartupandshutdowneventsisgoodoperatingpracticesthatleadtotheminimizationofstartupandshutdowndurations.Asdiscussedabove,manyfactorscaninfluencethedurationwithmostbeingbeyondthecontroloftheplant.Therefore,anumericalemissionslimitwouldneedtobesoconservative,astoallowfortheworst‐casestartupconditions,thatitwouldberathermeaninglessforthemajorityoftheseevents.CompliancewiththeproposedBACTlimitsduringnormaloperationswillbedemonstratedbasedonperiodicperformancetestingconductedatbaseload,correctedtoISOconditions,andnotaccountingfortransformerlossesandbalanceofplantauxiliaryloads.Tenaskaproposestoconducttheperformancetestatafrequencyofatleastonceevery25,000hoursofoperationofeachCCCTblock. Inaddition,Tenaskaproposestomonitorandrecordthefollowingparametersandsummarizethedataonacalendarmonthbasis,todemonstratecontinuouscompliancewiththeapplicableemissionlimits:

> FuelfortheCCCTswillbelimitedtopipeline‐qualitynaturalgas.Thegrosscalorificvalueofthefuelwillbedeterminedmonthlybytheprocedurescontainedin40CFRpart75,Appendix5.5.2.

> Afuelflowmeterwillbeinstalled,calibrated,andoperatedforeachCCCTandthefuelflowmeterwillcomplywiththeapplicablerequirements,includingcertificationtesting,of40CFRPart75,AppendixDand40CFRPart60.

Page 61: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 43

> Theenergyoutput(MWh(gross))willbemeasuredandrecordedonanhourlybasisatthegeneratorterminals.

> TheamountofactualCO2emittedfromtheCCCTsintpywillbecalculatedusingapplicableequationsin40CFRPart98SubpartC.Compliancewiththeemissionlimitswillbeevaluatedbasedona12‐monthrollingtotal.

> CalculatedCO2emissionsfromnormal,unfired,baseloadoperationswillbedividedbythegrosshourlyenergyoutput(MW‐hrgross)todetermineemissionsintermsoflbofCO2/MW‐hrgross,andcomparedwiththeproposedBACTemissionlimitof914lbofCO2/MW‐hrgross.

> EmissionsofCH4andN2Owillbecalculatedbasedonthefuelflowandapplicableequationsin40CFRPart98subpartC.Compliancewiththeemissionlimitswillbeevaluatedbasedona12‐monthrollingtotal.

> OperatinghoursfortheCCCTswithandwithoutductburnerswillbemonitored.> Thenumber,type,date,anddurationofeachstart‐upandshutdowneventfortheCCCTswillbemonitored

andrecorded.

10.6. FIRE PUMP ENGINE AND EMERGENCY GENERATOR

Theproposedprojectwillcompriseofone500‐hpdieselfiredfirepumpengineandone2,000kWdieselfiredemergencygenerator.Thefirepumpengineandtheemergencygeneratorwillbelimitedto100hoursofoperationperyearperunitforpurposesofmaintenanceandtesting.CO2,CH4,andN2Oemissionsfromtheseunitsareproducedfromthecombustionofdieselfuel.ThefollowingsectionspresentaBACTevaluationofGHGemissionsfromtheemergencygeneratorengineandthefirepump.

10.6.1. Step 1 – Identify All Available Control Technologies

TheavailableGHGemissioncontrolstrategiesforemergencygeneratorandfirepumpthatwereanalyzedaspartofthisBACTanalysisinclude:

> CarbonCaptureandSequestration(CCS);> Selectionoffuelefficientengine;> FuelSelection;and> GoodCombustionPractices,Operating,andMaintenancePractices.

10.6.1.1. Carbon Capture and Sequestration

CCSisnotconsideredanavailablecontroloptionforemergencyequipmentthatoperatesonanintermittentbasisandmustbeimmediatelyavailableduringplantemergencieswithouttheconstraintofstartinguptheCCSprocess.

10.6.1.2. Efficient Engine Design

SinceTenaskaisproposingtoinstallanewfirepumpandanewemergencygenerator,theequipmentisdesignedforoptimalcombustionefficiency.Additionally,theseunitsaredesignedtomeettheemergencyrequirementsattheBrownsvilleGeneratingStation.

Page 62: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 44

10.6.1.3. Fuel Selection

Theonlytechnicallyfeasiblefuelforthefirepumpandtheemergencygeneratorisdieselfuel.Whilenaturalgas‐fueledfirepumpsmayprovidelowerGHGemissionsperunitofpoweroutput,naturalgasisnotconsideredatechnicallyfeasiblefuelforthefirepumpandemergencygeneratorsinceitwillneedtobeusedintheeventoffire,whennaturalgassuppliesmaybeinterrupted.

10.6.1.4. Good Combustion, Operating, and Maintenance Practices

Goodcombustionandoperatingpracticesareapotentialcontroloptionformaintainingthecombustionefficiencyoftheemergencyequipment.Goodcombustionpracticesincludepropermaintenanceandtune‐upofthefirepumpandemergencygeneratorperthemanufacturer’sspecifications.

10.6.2. Step 2 – Eliminate Technically Infeasible Options

Asdiscussedabove,CCSisnottechnicallyfeasiblefortheemergencyequipment.Therefore,ithasbeeneliminatedfromfurtherconsiderationintheremainingstepsoftheanalysis.Asexplainedabove,theonlytechnicallyfeasiblefuelforthefirepumpandemergencygeneratorisdieselfuel.Allothercontroltechnologiesareconsideredfeasible.

10.6.3. Step 3 – Rank Remaining Control Technologies by Control Effectiveness

Tenaskawillselectafirepumpandanemergencygeneratorwithhighfuelcombustionefficiencyandwillimplementgoodcombustion,operating,andmaintenancepracticestominimizeGHGemissions.

10.6.4. Step 4 – Evaluate Most Effective Control Options

Noadverseenergy,environmental,oreconomicimpactsareassociatedwiththeabove‐mentionedtechnicallyfeasiblecontroloptions.

10.6.5. Step 5 – Select CO2 BACT for Fire Pump and Emergency Generator

Basedontheselectionofafuelefficientfirepumpandemergencygeneratorandimplementingworkpracticestandardsincludinggoodcombustion,operatingandmaintenancepractices.Theseinclude:

> Firepumpandemergencygeneratorinternalcombustionengines(ICE)certifiedbythemanufacturerwillbepurchasedtomeetapplicableemissionstandardsunderNSPSandMACTregulations.

> Anonresettablehourmeterwillbeinstalledandhoursofoperationwillberecorded.> Operationofthefirepumpandemergencygenerator,forpurposesofmaintenancechecksandreadiness

testing(perrecommendationsfromthegovernment,manufacturer/vendor,orinsurance),willbelimitedto100hoursperyearforeachunit.

> Thefuelcombustedinthefirepumpengineandemergencygeneratorwillbecalculatedusingthehoursofoperationandmaximumhourlyfuelflowrate.

> Thefirepumpengineandemergencygeneratorwillbetunedforthermalefficiencyonanannualbasis.

Tenaskawillmaintainreportsanddocumentsoffirepumpengineanddieselemergencygenerator,includingbutnotlimitedtothefollowing;recordspertainingtomaintenanceperformed,allrecordsrelatingtoperformancetestsandmonitoringoftheemergencygeneratorandthefirepumpengine.

Page 63: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 45

10.7. FUEL GAS HEATER AND AUXILIARY BOILER

TheBrownsvilleGeneratingStationwillincludeonenaturalgas‐firedfuelgasheater(FIN/EPN:6)withamaximumratedheatinputof10MMBtu/hrHHV.Inadditiontothefuelgasheater,thesitewillhaveanauxiliaryboiler(FIN/EPN:7).CO2,CH4,andN2Oemissionsfromthefuelgasheaterandauxiliaryboilerareproducedfromthecombustionofnaturalgas.ThefollowingsectionspresentaBACTevaluationofGHGemissionsfromthefuelgasheaterandtheauxiliaryboiler.

10.7.1. Step 1 – Identify All Available Control Technologies

TheavailableGHGemissioncontrolstrategiesforfuelgasheaterandauxiliaryboilerthatwereanalyzedaspartofthisBACTanalysisinclude:

> CarbonCaptureandSequestration;> Selectionoffuelefficientgasheaterandauxiliaryboiler;> FuelSelection;and> GoodCombustionPractices,Operating,andMaintenancePractices.

10.7.1.1. Carbon Capture and Sequestration

CCSisnotfeasiblesolelyforsmallcombustionunitssuchasthe10MMBtu/hrHHVand90MMBtu/hrHHVunitsproposedwiththisproject.However,sincetheproposedprojectalsoincludelargecombustionsources(i.e.,CCCTs),itispotentiallyfeasibletocaptureandtransferCO2emissionsfromtheseunits.AsdiscussedinSection10.5.5CCSisnotaneconomicallyorenvironmentallyfeasibleoption.Therefore,thisoptionisnotevaluatedinthesubsequentanalysis.

10.7.1.2. Efficient Engine Design

SinceTenaskaisproposingtoinstallanewfuelgasheaterandauxiliaryboiler,theequipmentisdesignedforoptimalcombustionefficiency.Inaddition,thesizeofthefuelhasheaterandauxiliaryboilerisdeterminedbasedontheplant’soperationalrequirementsandoptimaluseoftheseunits.

10.7.1.3. Fuel Selection

Naturalgashasthelowestcarbonintensityofanyavailablefuelforthecombustionsources.Theproposedfuelgasheaterandauxiliaryboilerwillbefiredwithonlynaturalgasasfuel.

10.7.1.4. Good Combustion, Operating, and Maintenance Practices

Goodcombustionandoperatingpracticesareapotentialcontroloptionformaintainingthecombustionefficiencyoftheequipment.Goodcombustionpracticesincludepropermaintenance,maintaininggoodfuelmixinginthecombustionzone,andmaintainproperair/fuelratiotofacilitatecompletecombustion.

10.7.2. Step 2 – Eliminate Technically Infeasible Options

Asexplainedabove,CCSisnotevaluatedasafeasibleoptionforthefuelgasheaterandauxiliaryboiler.Allothercontroltechnologiesareconsideredfeasible.

Page 64: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 46

10.7.3. Step 3 – Rank Remaining Control Technologies by Control Effectiveness

Tenaskawillselectfuelgasheaterandauxiliaryboilerwithhighfuelcombustionefficiencyandwillimplementgoodcombustion,operating,andmaintenancepracticestominimizeGHGemissions.

10.7.4. Step 4 – Evaluate Most Effective Control Options

Noadverseenergy,environmental,oreconomicimpactsareassociatedwiththeabove‐mentionedtechnicallyfeasiblecontroloptions.

10.7.5. Step 5 – Select CO2 BACT for Fuel Gas Heater and Auxiliary Boiler

Basedontheselectionofanefficientfuelgasheaterandauxiliaryboilerandimplementinggoodcombustion,operatingandmaintenancepractices,TenaskaproposesaCO2eBACTlimitof5,125tonsperyearforfuelgasheaterand23,061tonsperyearforauxiliaryboiler,ona12‐monthrollingaveragebasis.CompliancewiththeseemissionlimitswillbedemonstratedbymonitoringfuelusageandperformingcalculationsconsistentwiththecalculationsincludedinAppendixAofthisapplication.CompliancewiththerequestedBACTlimitsdemonstratedthroughthefollowingoperational,monitoringandrecordkeepingrequirements:

> CO2emittedfromthefuelgasheaterandauxiliaryboilerwillbecalculatedonamonthlybasisusingequationsin40CFRPart98SubpartC.

> CH4andN2OemissionswillbecalculatedonamonthlybasisusingthedefaultCH4andN2Oemissionfactorscontainedin40CFRPart98andthemeasuredactualheatinput(HHV).

> TheCO2eemissionswillbecalculatedona12‐monthrollingaverage,basedontheproceduresandGlobalWarmingPotentials(GWP)containedintheGreenhouseGasRegulations,40CFRPart98,SubpartA,TableA‐1,aspublishedonOctober30,2009(74FR56395).

> Thehigherheatingvalue(HHV)ofthefuelshallbedetermined,ataminimum,semiannuallybytheprocedurescontainedin40CFRPart98.34(a)(6).

> Thefuelcombustedinthefuelgasheaterandauxiliaryboilerwillbemeasuredandrecordedusingaflowmeter.Flowmeterswillbecalibratedaccordingtomanufacturer’srecommendations.

> Thefuelgasheaterandauxiliaryboilerwillbetunedforthermalefficiencyaccordingtomanufacturer’srecommendations.

Tenaskawillmaintainreportsanddocumentsoffuelgasheaterandauxiliaryboiler,includingbutnotlimitedtothefollowing;recordspertainingtomaintenanceperformed,allrecordsrelatingtoperformancetestsandmonitoringofthefuelgasheaterandauxiliaryboilerequipmentresults.

10.8. FUGITIVE COMPONENTS

ThefollowingsectionspresentaBACTevaluationoffugitiveCH4emissions.Pipingcomponentsthatproducefugitiveemissionsattheproposedprojectinclude:valves,pressurereliefvalves,pumpseals,compressorseals,andsamplingconnections.

Page 65: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 47

GHGemissionsfromleakingpipecomponents(fugitiveemissions)fromtheproposedprojectincludeCH4andCO2.TheratioofCO2toCH4inpipeline‐qualitynaturalgasisrelativelylow.ForpurposesoftheGHGcalculations,itwasassumedallpipingcomponentsareinarichCH4stream.

10.8.1. Step 1 – Identify All Available Control Technologies

IndeterminingwhetheratechnologyisavailableforcontrollingGHGemissionsfromfugitivecomponents,permitsandpermitapplicationsandEPA’sRBLCwereconsulted.Basedontheseresources,thefollowingavailablecontroltechnologieswereidentified:

> Installingleaklesstechnologycomponentstoeliminatefugitiveemissionsources;> ImplementingvariousLDARprogramsinaccordancewithapplicablestateandfederalairregulations;> Implementinganalternativemonitoringprogramusingaremotesensingtechnologysuchasinfrared

cameramonitoring;> ImplementinganAVOmonitoringprogramforcompounds;and> Designingandconstructingfacilitieswithhighqualitycomponentsandmaterialsofconstruction

compatiblewiththeprocess.

10.8.2. Step 2 – Eliminate Technically Infeasible Options

Leaklesstechnologyvalvesareavailableandcurrentlyinuse,primarilywherehighlytoxicorotherwisehazardousmaterialsareused.Thesetechnologiesaregenerallyconsideredcostprohibitiveexceptforspecializedservice.Someleaklesstechnologies,suchasbellowsvalves,iftheyfail,cannotberepairedwithoutaunitshutdownthatoftengeneratesadditionalemissions.RecognizingthatleaklesstechnologieshavenotbeenuniversallyadoptedasLAERorBACT,evenfortoxicorextremelyhazardousservices,itisreasonabletostatethatthesetechnologiesareimpracticalforcontrolofGHGemissionswhoseimpactshavenotbeenquantified.AnyfurtherconsiderationofavailableleaklesstechnologiesforGHGcontrolsisunwarranted.LDARprogramshavetraditionallybeendevelopedforthecontrolofVOCemissions.BACTdeterminationsrelatedtocontrolofVOCemissionsrelyontechnicalfeasibility,economicreasonableness,reductionofpotentialenvironmentalimpacts,andregulatoryrequirementsfortheseinstrumentedprograms.MonitoringdirectemissionsofCO2isnotfeasiblewiththenormallyusedinstrumentationforfugitiveemissionsmonitoring.However,instrumentedmonitoringistechnicallyfeasibleforcomponentsinCH4service.Alternatemonitoringprogramssuchasremotesensingtechnologieshavebeenproveneffectiveinleakdetectionandrepair.Theuseofsensitiveinfraredcameratechnologyhasbecomewidelyacceptedasacosteffectivemeansforidentifyingleaksofhydrocarbons.LeakingfugitivecomponentscanbeidentifiedthroughAVOmethods.Naturalgasleaksfromcomponentsattheproposedfacilityareexpectedtohavediscernibleodortosomeextent,makingthemsuitablefordetectionbyolfactorymeans.Alargeleakcanbedetectedbysound(audio)andsight.Thevisualdetectioncanbeadirectviewingofleakinggases,orasecondaryindicatorsuchascondensationaroundaleakingsourceduetocoolingoftheexpandinggasasitleavestheleakinterface.AVOprogramsarecommonandinplaceinindustry.

Page 66: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 48

Akeyelementinthecontroloffugitiveemissionsistheuseofhighqualityequipmentthatisdesignedforthespecificserviceinwhichitisemployed.Forexample,avalvethathasbeenmanufacturedunderhighqualityconditionscanbeexpectedtohavelowerrunoutonthevalvestem,andthevalvestemistypicallypolishedtoasmoothersurface.Bothofthesefactorsgreatlyreducethelikelihoodofleaking.

10.8.3. Step 3 – Rank Remaining Control Technologies by Control Effectiveness

InstrumentedmonitoringiseffectiveforidentifyingleakingCH4,butmaybewhollyineffectiveforfindingleaksofCO2.WithCH4havingaglobalwarmingpotentialgreaterthanCO2,instrumentedmonitoringofthefuelandfeedsystemsforCH4wouldbeaneffectivemethodforcontrolofGHGemissions.Quarterlyinstrumentedmonitoringwithaleakdefinitionof500ppmv,accompaniedbyintensedirectedmaintenance,isgenerallyassignedacontroleffectivenessof97%.RemotesensingusinginfraredimaginghasproveneffectiveforidentificationofleaksincludingCO2.TheprocesshasbeenthesubjectofEPArulemakingasanalternativemonitoringmethodtotheEPA’sMethod21.EffectivenessislikelycomparabletoEPAMethod21whencostisincludedintheconsideration.Audio/Visual/Olfactorymeansofidentifyingleaksowesitseffectivenesstothefrequencyofobservationopportunities.Thoseopportunitiesariseasoperatingtechniciansmakerounds,inspectingequipmentduringthoseroutinetoursoftheoperatingareas.Thismethodcannotgenerallyidentifyleaksataslowaleakrateasinstrumentedreadingcanidentify;however,lowleakrateshavelowerpotentialimpactsthandolargerleaks.Thismethod,duetofrequencyofobservationiseffectiveforidentificationoflargerleaks.UseofhighqualitycomponentsiseffectiveinpreventingemissionsofGHGs,relativetouseoflowerqualitycomponents.

10.8.4. Step 4 – Evaluate Most Effective Control Options

Withleaklesscomponentseliminatedfromconsideration,Tenaskaproposestoimplementthemosteffectiveremainingcontroloption.Instrumentedmonitoringimplementedthroughthe28MIDLDARprogram,withcontroleffectivenesson97%,isconsideredtopBACT.AnAVOprogramtomonitorleaksalsohasacontroleffectivenessof97%formostcomponents.TenaskahaschosentoimplementanAVOprogramtomonitorfugitiveemissionsfromnaturalgasservicepipingcomponents.Theproposedprojectwillalsoutilizehighqualitycomponentsandmaterialsofconstruction,includinggasketing,thatarecompatiblewiththeserviceinwhichtheyareemployed.SinceTenaskaisimplementingthemosteffectivecontroloptionsavailable,additionalanalysisisnotnecessary.

10.8.5. Step 5 – Select CH4 BACT for Fugitive Emissions

FugitiveCH4isthemajorcomponentoftheGHGemissionsfrompipingcomponents;TenaskaproposestoimplementaworkpracticeasBACT.TheAVOprogramwillbeusedtodetectanyleaksandrepairswillbeperformedassoonaspracticable.

Page 67: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 49

10.9. CIRCUIT BREAKERS

Sulfurhexafluoride(SF6)gasisusedinthecircuitbreakersassociatedwithelectricitygenerationequipment.PotentialsourcesofSF6emissionsincludeequipmentleaksfromSF6containingequipment,releasesfromgascylindersusedforequipmentmaintenanceandrepairoperations,andSF6handlingoperations.ThefollowingsectionproposesappropriateGHGBACTforSF6emissions.

10.9.1. Step 1 – Identify All Available Control Technologies

IndeterminingwhetheratechnologyisavailableforcontrollingandreducingSF6emissionsfromcircuitbreakers,permitsandpermitapplicationsandEPA’sRBLCwereconsulted.Inaddition,currentlyavailableliteraturewasreviewedtoidentifyemissionreductionmethods.43,44,45Basedontheseresources,thefollowingavailablecontroltechnologieswereidentified:

> Useofnewandstate‐of‐the‐artcircuitbreakersthataregas‐tightandrequirelessamountsofSF6;> EvaluatingalternatesubstancestoSF6(e.g.,oilorairblastcircuitbreakers);> ImplementinganLDARprogramtoidentifyandrepairleaksandleakingequipmentasquicklyas

possible;> Systematicoperationstracking,includingcylindermanagementandSF6gasrecyclingcartuse;and> EducatingandtrainingemployeeswithproperSF6handlingmethodsandmaintenanceoperations.

10.9.2. Step 2 – Eliminate Technically Infeasible Options

Ofthecontroltechnologiesidentifiedabove,onlysubstitutionofSF6withothernon‐GHGsubstancesisdeterminedastechnicallyinfeasible.Whiledielectricoilorcompressedaircircuitbreakershavebeenusedhistorically,theseunitsrequirelargeequipmentcomponentstoachievethesameinsulatingcapabilitiesofSF6circuitbreakers.Inaddition,pertheEPA,“Noclearalternativeexistsforthisgasthatisusedextensivelyincircuitbreakers,gas‐insulatedsubstations,andswitchgear,duetoitsinertnessanddielectricproperties.”46Allothercontroltechnologiesaretechnicallyfeasible.TenaskaproposestoimplementthesemethodstoreduceandcontrolSF6emissions.

10.9.3. Step 3 – Rank Remaining Control Technologies by Control Effectiveness

SinceTenaskaproposestoimplementfeasiblecontroloptions,rankingthesecontroloptionsisnotnecessary.

4310StepstoHelpReduceSF6EmissionsinT&D,RobertMueller,AirgasInc.,availableat:http://www.airgas.com/documents/pdf/50170‐120.pdf.44SF6EmissionReductionPartnershipforElectricPowerSystems2007AnnualReport,U.S.EnvironmentalProtectionAgency,December2008,availableat:http://www.epa.gov/electricpower‐sf6/documents/sf6_2007_ann_report.pdf.45SF6LeakRatesfromHighVoltageCircuitBreakers–U.S.EPAInvestigatesPotentialGreenhouseGasEmissionsSource,J.Blackman(U.S.EPA,ProgramManager,SF6EmissionReductionPartnershipforElectricPowerSystems),M.Averyt(ICFConsulting),andZ.Taylor(ICFConsulting),June2006,availableat:http://www.epa.gov/electricpower‐sf6/documents/leakrates_circuitbreakers.pdf.46SF6EmissionReductionPartnershipforElectricPowerSystems2007AnnualReport,U.S.EnvironmentalProtectionAgency,December2008,availableat:http://www.epa.gov/electricpower‐sf6/documents/sf6_2007_ann_report.pdf.

Page 68: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 50

10.9.4. Step 4 – Evaluate Most Effective Control Options

Noadverseenergy,environmental,oreconomicimpactsareassociatedwiththeaforementionedtechnicallyfeasiblecontroloptions.

10.9.5. Step 5 – Select SF6 BACT for Circuit Breakers

TenaskaproposesthefollowingworkpracticesasSF6BACT:

> Useofstate‐of‐the‐artcircuitbreakersthataregas‐tightandguaranteedtoachievealeakrateof0.5%byyearbyweightorless(thecurrentmaximumleakratestandardestablishedbytheInternationalElectrotechnicalCommission[IEC]);

> ImplementinganLDARprogramtoidentifyandrepairleaksandleakingequipmentasquicklyaspossible;

> Systematicoperationstracking,includingcylindermanagementandSF6gasrecyclingcartuse;and> EducatingandtrainingemployeeswithproperSF6handlingmethodsandmaintenanceoperations.

Page 69: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 51

APPENDIX A

GHG Emission Calculations

Page 70: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

AnnualPotentialGHGEmissions

EPN CO2 CH4 N2O SF6 TotalCO2e1

1 CombustionTurbine1/DuctBurner‐NormalOperations

1,570,399.4 105.57 40.099 ‐ 1,585,046

1 CombustionTurbine1/DuctBurner‐MSSOperations

‐ 1,604.40 ‐ ‐ 33,692

2 CombustionTurbine2/DuctBurner‐NormalOperations

1,570,399.4 105.57 40.099 ‐ 1,585,046

2 CombustionTurbine2/DuctBurner‐MSSOperations

‐ 1,604.40 ‐ ‐ 33,692

4 FirePumpEngine 31.2 1.3E‐03 2.52E‐04 ‐ 315 EmergencyGenerator 155.1 6.3E‐03 1.26E‐03 ‐ 1566 FuelGasHeater 5,119.7 0.10 0.010 ‐ 5,1257 AuxiliaryBoiler 23,038.6 0.43 0.044 ‐ 23,061FUG_GHG FugitiveSF6CircuitBreakerEmissions ‐ ‐ ‐ 0.005 122FUG_GHG ComponentsFugitiveLeakEmissions ‐ 1.02 ‐ ‐ 21

TotalGHGEmissions‐1on1Scenario 1,598,744.0 1,711.52 40.155 0.005 1,647,254TotalGHGEmissions‐2on1Scenario 3,169,143.4 3,421.49 80.254 0.005 3,265,993

CO2 1

CH4 21N2O 310SF6 23900

2PercentContribution(%)=TotalCO2eforeachEPN(tpy)/TotalCO2e(tpy)*1003ProposedBACTlimitsareroundeduptothenearestdigit.

1Per40CFR98‐MandatoryGreenhouseGasReporting,SubpartA,TableA‐1.TotalCO2eemissionsarecalculatedbasedonthefollowingGlobalWarmingPotentials.

SITE-WIDE EMISSIONS SUMMARY FOR GHG EMISSIONS

EmissionPointDescription

PontentualGHGEmissions(shorttonsperyear)

TenaskaBrownsvillePartners,LLCBrownsvilleGeneratingStation Page1of1

TrinityConsultants124401.0126

Page 71: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

FIN: 1 & 2EPN: 1 & 2

Mitsubishi MHI 501GAC Combustion Turbines in 1x1 or 2x1 Combined­Cycle Configuration

Input Data1

GHG EMISSION CALCULATIONS FOR COMBUSTION TURBINES - NORMAL OPERATIONS

Parameter Value Units

Annual Hours of Operation per Turbine1 8,760 hr/yrAnnual Maximum Hours of Operation w/o Duct Burner1 3,560 hr/yrAnnual Maximum Hours of Operation w/ Duct Burner1 5,200 hr/yrRated Output of Each Combustion Turbine at 20 deg F, Unfired2 305 MWRated Output for Steam Turbine, 1x1 Fired Configuration2 174 MWRated Output of 1x1 Combined Cycle Configuration, Fired at 20 oF2 479 MW

2Combustion Turbine Capacity (HHV basis)2 2,903 MMBtu/hr/turbineDuct Burner Capacity (HHV basis)2 250 MMBtu/hrTotal Combustion Turbine Capacity (HHV basis, each turbine)2 3,153 MMBtu/hr/turbineNatural Gas High Heat Value, Site‐Info (HHV) 2 1,027 btu/scfNumber of Turbines 2 (for 2 x 1 scenario)

1 Hours of operation data provided by Mr. Larry Carlson (Tenaska) via email to Ms. Latha Kambham (Trinity Consultants) on October 24, 2012.2 Turbine and duct burner capacity and site‐specific natural gas HHV are based on MHI 501GAC model data provided by Mr. Larry Carlson (Tenaska) via email to Ms. Latha Kambham (Trinity Consultants) on January 17 2013 February 5 2013 and February 11 2013

Proposed Hourly and Annual Emissions ­ GHG Pollutants ­ Based on Vendor Data

Without Duct Burner

With Duct Burner

(lb/hr) (lb/hr) (metric tpy) (metric tpy) (short tpy) (short tpy)

CO 341 162 0 370 435 0 1 424 657 0 2 849 314 0 1 570 399 4 3 140 798 8

(Trinity Consultants) on January 17, 2013, February 5, 2013 and February 11, 2013.

Annual Emissions for 1x1 Scenario2

Annual Emissions for 1x1 Scenario3

Annual Emissions for 2x1 Scenario

Pollutant

Hourly Emissions per Turbine1 Annual Emissions for 2x1 Scenario

CO2  341,162.0 370,435.0 1,424,657.0 2,849,314.0 1,570,399.4 3,140,798.8CH4  21.77 25.70 95.77 191.54 105.57 211.14N2O  8.710 9.460 36.378 72.756 40.10 80.198CO2e 344,319 373,907 1,437,944 2,875,888 1,585,046 3,170,092

1

2 Annual emissions are calculated based on the maximum hourly emissions and hours of operation with and without duct burner, as follows:Annual Emissions (tpy) =

Emissions data for combustion turbines provided by Mr. Larry Carlson (Tenaska) via email to Ms. Latha Kambham (Trinity Consultants) on February 5, 2013. Emission data are based on MHI 501 GAC combustion turbine.

Annual Emissions (tpy) =[Hourly Emission Rate w/o Duct Burner (lb/hr) x Hours of Operation w/o Duct Burner (hrs/yr) + Hourly Emission Rate w/ Duct Burner (lb/hr) x Hours of Operation w/ Duct Burner (hrs/yr)] x (1 ton /2,000 lb) x (1 metric ton/1.1023 short ton)

21.77 lb 3,560 hr 25.70 lb 5,200 hr 1 short ton metric tonhr yr hr yr 2,000 lb 1.1023 short ton

metric ton to short ton 1.1023 short ton/metric tonPer 40 CFR 98 ‐ Mandatory Greenhouse Gas Reporting, Subpart A, Table A‐1.  Total CO2e emissions are calculated based on the following Global Warming Potentials.

CO2 1CH4 21N O 310

 = 95.77 tpy *) *Annual Emissions of CH4 (tpy) = ( +

N2O 3103 Annual Emissions (short tpy) = Annual Emission (metric tpy) * 1.1023 (short ton/metric ton)To be consistent with the reporting format in GHG Mandatory Reporting Rule, the emissions rounded as follows: CO2 ‐ 1 decimal place, CH4 ‐ 2 decimal places, N2O ‐ 3 decimal places, and CO2e ‐ rounded to nearest digit.

Tenaska Brownsville Partners, LLCBrownsville Generating Station Page 1 of 1

Trinity Consultants124401.0126

Page 72: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

ProposedStartup/ShutdownEventsandDuration1

HotStart WarmStart ColdStart ColdColdStart

MaxAnnualStartsPerUnit 2 350 2 2StartupDuration(hrs) 0.9 2.4 4.0 4.0ShutdownDuration(hrs) 0.4 0.4 0.4 0.4

SU/SDDuration(hrs/yr) 2.6 986 8.8 8.8 1,006 2,0121 InformationprovidedbyMr.LarryCarlson(Tenaska)viaemailtoMs.LathaKambham(TrinityConsultants)onJanuary31,2013.AnauxiliaryboilerwillbeusedtoreducethedurationofSUSDdurations.

Acoldcoldstartisdefinedasastartupwheretheunithasnotoperatedduringthepreceding96hours;Acoldstartisdefinedasastartupwheretheunithasnotoperatedduringthepreceding72hours;Ahotstartisdefinedasastartupwhentheunithasoperatedwithintheprevious8hours;andAwarmstartisastartupthatisnothotorcold.

ProposedMethaneEmissionsDuringStartupandShutdownperTurbine1

HotStart WarmStart ColdStart ColdColdStart

CH4Emissions:

Startup(lbs/start) 1,500 7,600 20,500 20,500Shutdown(lbs/shutdown) 1,300 1,300 1,300 1,300Event(lbs/SUSDevent) 2,800 8,900 21,800 21,800Annual(tpy) 2.8 1,558 21.8 21.8AnnualCO2e(tpy) 33,692 67,385

1 InformationprovidedbyMr.LarryCarlson(Tenaska)viaemailtoMs.LathaKambham(TrinityConsultants)onJanuary31,2013.CH4emissionsareassumedtoequaltounburnedhydrocarbonemissions.

2 GlobalWarmingPotentialofCH4= 21 per40CFR98,SubpartA,TableA‐1

GHG EMISSION CALCULATIONS FOR COMBUSTION TURBINES - MSS OPERATIONS

SUSDEmissionsPerTurbine1x1Scenario 2x1Scenario

1,604 3,209

356 712

ParameterSUSDEventDetailsPerTurbine

1x1Scenario 2x1Scenario

TenaskaBrownsvillePartners,LLCBrownsvilleGeneratingStation Page1of1

TrinityConsultants124401.0126

Page 73: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

FINs:3,4,5&6EPNs:3,4,5&6

CombustionSourcesofGHGEmissions

Parameter Units

EPN ‐ 4 5 6 7RatedCapacity(HHV)1 MMBtu/hr 3.82 19.03 10 90

HoursofOperationperYear2 hrs/yr 100 100 8,760 4,380

NaturalGasPotentialThroughput3 scf/yr ‐‐ ‐‐ 85,277,148 383,747,167

DieselPotentialThroughput4 gal/yr 2,789.80 13,890.51 ‐‐ ‐‐

NaturalGasHighHeatValue(HHV)5 MMBtu/scf ‐‐ ‐‐ 1.027E‐03 1.027E‐03

DieselFuelHighHeatValue(HHV)6 MMBtu/gal 0.137 0.137 ‐‐ ‐‐

1RatedCapacityforancillaryequipmentprovidedbyMr.LarryCarlson(Tenaska)toMs.LathaKambham(TrinityConsultants)onOctober22,2012andonFebruary4,2013.2AnnualhoursofoperationforancillaryequipmentprovidedbyMr.LarryCarlson(Tenaska)toMs.LathaKambham(TrinityConsultants)onOctober22,2012.3Naturalgasthroughputisbasedonheatcapacityoftheunit,hoursofoperationandthefuel'shighheatingvalue.4 DieselPotentialThroughput(gal/yr)=RatedCapacity(MMBtu/hr)*HoursofOperationPerYear(hrs/yr)/DieselFuelHHV(MMBtu/gal)

3.82MMBtu 100hrs 1galhr yr 0.137MMBtu

GHGEmissionFactorsforDieselEngine GHGEmissionFactorsforNaturalGas

Pollutant EmissionFactorEmissionFactor

Units PollutantEmissionFactor

EmissionFactorUnits

CO21 73.960 kgCO2/MMBtu CO2

1 53.020 kgCO2/MMBtu

CH42 0.003 kgCH4/MMBtu CH4

2 0.001 kgCH4/MMBtu

N2O2 0.0006 kgN2O/MMBtu N2O

2 0.0001 kgN2O/MMBtu

FirePumpEngine

EmergencyGenerator

FuelGasHeater

AuxiliaryBoiler

6HighHeatingValueforDieselFuelOilNo.2isobtainedfrom40CFRPart98,SubpartC,TableC‐1.

1Emissionfactorsfrom40CFRPart98,SubpartC,TableC‐1forDistillateFuelOilNo.2.

1Emissionfactorsfrom40CFRPart98,SubpartC,TableC‐1forNaturalGas.

=2789.80gal/yr

2EmissionfactorsPer40CFRPart98,SubpartC,TableC‐2forpetroleumfuel.

2EmissionfactorsPer40CFRPart98,SubpartC,TableC‐2forNaturalGas.

GHG EMISSION CALCULATIONS FOR OTHER COMBUSTION SOURCES

DieselPotentialThroughputforFirePumpEngine(gal/yr)=5HighHeatingValueforNaturalGasrepresentsthesitespecificHHV.

TenaskaBrownsvillePartners,LLCBrownsvilleGeneratingStation Page1of2

TrinityConsultants124401.0126

Page 74: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

FINs:3,4,5&6EPNs:3,4,5&6

GHG EMISSION CALCULATIONS FOR OTHER COMBUSTION SOURCES

GHGPotentialEmissionCalculations

EPN Description FuelType TierUsed CO2 CH4 N2O CO2e2 CO2 CH4 N2O CO2e

2 CO2 CH4 N2O CO2e2

4 FirePumpEngine No.2FuelOil TierI 623.24 0.03 0.01 626.97 28.27 1.15E‐03 2.29E‐04 28 31.2 1.27E‐03 2.52E‐04 315 EmergencyGenerator No.2FuelOil TierI 3,102.97 0.13 0.03 3,115.00 140.75 5.71E‐03 1.14E‐03 141 155.1 6.29E‐03 1.26E‐03 1566 FuelGasHeater NaturalGas TierI 1,168.88 0.02 2.20E‐03 1,169.98 4,644.55 0.09 8.76E‐03 4,649 5,119.7 0.10 0.010 5,1257 AuxiliaryBoiler NaturalGas TierI 10,519.91 0.20 0.02 10,530.31 20,900.48 0.39 0.04 20,921 23,038.6 0.43 0.044 23,061

Total 15,415.00 0.38 0.06 15,442 25,714.05 0.49 0.05 25,740 28,344.6 0.54 0.056 28,3731HourlyEmissionRatesarecalculatedbasedonAnnualEmissionRates.ExampleCalculation:

28.27metrictons 1.1023shortton 2,000lb yryr metricton 1shortton 100hr

tonstolb 2000 lb/ton

metrictontoshortton 1.1023 shortton/metricton2Per40CFR98‐MandatoryGreenhouseGasReporting,SubpartA,TableA‐1.TotalCO2eemissionsarecalculatedbasedonthefollowingGlobalWarmingPotentials.

CO2 1CH4 21N2O 310

3CO2emissionsfromNo.2FuelOilandNaturalGascombustioncalculatedperEquationC‐1andTierImethodologyprovidedin40CFRPart98,SubpartC.

Where:CO2=AnnualCO2massemissionsforthespecificfueltype(metrictons).Fuel=Massorvolumeoffuelcombustedperyear.HHV=Defaulthighheatvalueofthefuel.EF=Fuel‐specificdefaultCO2emissionfactor.

1×10‐3=Conversionfactorfromkilogramstometrictons.4CH4andN2OemissionsNo.2FuelOilandNaturalGascombustioncalculatedperEquationC‐8providedin40CFRPart98,SubpartC.

Where:CH4orN2O=AnnualCH4orN2Oemissionsfromthecombustionofnaturalgas(metricton).Fuel=Massorvolumeofthefuelcombusted.HHV=Defaulthighheatvalueofthefuel.EF=Fuel‐specificdefaultemissionfactorforCH4orN2O,fromTableC–2ofthissubpart(kgCH4 orN2OpermmBtu).

1×10‐3=Conversionfactorfromkilogramstometrictons.5AnnualEmissions(shorttpy)=AnnualEmission(metrictpy)*1.1023(shortton/metricton)TobeconsistentwiththereportingformatinGHGMandatoryReportingRule,theemissionsroundedasfollows:CO2‐1decimalplace,CH4‐2decimalplaces,N2O‐3decimalplaces,andCO2e‐roundedtonearestdigit.

AnnualEmissions3.4(metrictons/yr)HourlyEmissions1(lb/hr) AnnualEmissions5(shorttons/yr)

HourlyEmissionsofCO2forFirePumpEngine(lb/hr)=

=623.24lb/hr

TenaskaBrownsvillePartners,LLCBrownsvilleGeneratingStation Page2of2

TrinityConsultants124401.0126

Page 75: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

FIN:FUG_GHGEPN:FUG_GHG

SF6EmissionRates

EPN Description ModelName1

TotalNumberofCircuitBreakersforBrownsvilleStation

AmountofSF6inFull

Charge1 SF6LeakRate2

AnnualSF6EmissionRate3

AnnualCO2e

EmissionRate4

(kV) (lb) (%/yr) (shorttons/yr) (shorttons/yr)

Transmission/SwitchyardBreakers 345kVABB362PMorsimilar

6 300 0.50 4.50E‐03 107.55

GeneratorBreakers AlstomFKG1NG1orsimilar

2 66 0.50 3.30E‐04 7.89

BottleStorage LargeBottle 1 115 0.50 2.88E‐04 6.87

Total 5.12E‐03 1221InformationprovidedbyMr.LarryCarlson(Tenaska)toMs.LathaKambham(TrinityConsultants)onOctober22,2012.

3AnnualEmissionRate(tpy)=NumberofCircuitBreakers*AmountofSF6inFullCharge(lb)*SF6LeakRate(%/yr)*1/2000(ton/lb)4GlobalWarmingPotential(GWP)ofSF6= 23,900TobeconsistentwiththereportingformatinGHGMandatoryReportingRule,theCO2eemissionsareroundedtonearestdigit.

2FromEPA'stechnicalpapertitled,"SF6LeakRatesfromHighVoltageCircuitBreakers‐U.S.EPAInvestigatesPotentialGreenhouseGasEmissionSource‐byJ.Blackman,ProgramManager,U.S.EPAandM.Averyt,ICFConsulting,andZ.Taylor,ICFConsulting".Usedtheworst‐caseestimateof0.5%peryear.

FUG_GHG

SF6 EMISSION CALCULATIONS FOR CIRCUIT BREAKERS

TenaskaBrownsvillePartners,LLCBrownsvilleGeneratingStation Page1of1

TrinityConsultants124401.0126

Page 76: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

FIN:FUG_GHGEPN:FUG_GHG

FugitiveGHGEmissionsRatesinNaturalGasServices

EmissionFactors2 ControlEfficiency3 CH4Emissions4,5,6 AnnualCO2e

Emissions7

(lb/hr‐component) (%) (tons/yr) (shorttons/yr)

Valves 624 0.00992 97% 0.79 16.57PressureReliefValves 12 0.0194 97% 0.03 0.62

Flanges 1752 0.000860 97% 0.19 4.03Pumps 4 0.00529 93% 5.66E‐03 0.12

TotalEmissions 1.02 21

4Themethanecontentinthegasisconservativelyassumedtobe 97 %.5Theannualhoursofoperationare 8,760 hrs/yr.6AnnualEmissionRate(tpy)=ComponentCount*EmissionFactor(lb/hr‐component)*MethaneContent(%)*AnnualHoursofOperation(hrs/yr)*1/2000(ton/lb)

CH4AnnualEmissionsfromValves(tpy)= 624components 0.00992lb 97% 8,760hrs 1ton = 0.79tpy

hr‐component 100 yr 2,000lb7GlobalWarmingPotentialofCH4= 21 per40CFR98,SubpartA,TableA‐1

3TheBrownsvilleGeneratingStationwillimplementAudio/Visual/Olfactory(AVO)programtominimizeemissions.ControlefficienciesareobtainedfromOctober2000DraftTCEQTechnicalGuidancePackage.

FUGITIVE GHG EMISSION CALCULATIONS FOR NATURAL GAS SERVICES

FUG_GHG

1ComponentcountsprovidedfromMr.LarryCarlson(Tenaska)toMs.LathaKambham(TrinityConsultants)onOctober22,2012.A20%safetyfactorisalsoincludedinthefugitivecomponentcounts.2EmissionfactorsobtainedfromTable4forOilandGasProductionOperationsfromAddendumtoRG‐360A,EmissionFactorsforEquipmentLeakFugitiveComponents, TCEQ,January2008,Gasfactors.

ComponentCount1ComponentsEPN

TenaskaBrownsvillePartners,LLCBrownsvilleGeneratingStation Page1of1

TrinityConsultants124401.0126

Page 77: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 52

APPENDIX B

Alternative Options Analysis for Duct Burners

Page 78: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

Tenaska Brownsville Partners, LLC | Tenaska Brownsville Generating Station1 of 1

Capital Cost Summary

Larger CTs NOT APPLICABLE (2x1 MHI 501 J Plant

size would exceed 800 MW maximum)

Aeroderivative Simple Cycle CTs

(1xLM6000 PF DLE, 35 MW)

Reciprocating Internal Combustion

Engines 4 x 10 MW Engines, 37.6 MW

Net)

Duct Burners (36 MW)

Unfired Plant Output, kW 764,000 764,000 764,000

Incremental Plant Output, kW 36,985 37,635 36,000

Maximum Plant Output, kW 800,985 801,635 800,000

TOTAL INSTALLED CAPITAL COST (TIC) TIC = $55,516,695 $46,212,418 $4,032,000

Annual Cost Summary

DIRECT ANNUAL COSTSOperating Hours per day: 20 20 20Days per year: 260 260 260

Operating & MaintenanceFixed $1,306,622 $1,163,052 $434,160Variable $1,367,839 $2,047,790 $241,488

Energy Costs Heat Rate, Btu/kwh HHV 9,838 8,739 9,500

Fuel Costs $8,686,737 $8,551,261 $8,645,000

TOTAL DIRECT ANNUAL COSTS (DAC) DAC = $11,371,036 $11,770,842 $9,330,148

INDIRECT OPERATING COSTS

General & Administrative Charges (0.554% of TCI) 0.0055 $307,562 $256,017 $22,337

Insurance (0.483% of TCI) 0.0048 $268,146 $223,206 $19,475

Property Taxes (1.5% of TCI) 0.0150 $833,861 $694,111 $60,561

Capital Recovery (CRF x TCI)CRF = 0.1258 $6,985,111 $5,814,446 $507,306

TOTAL INDIRECT ANNUAL COSTS (IAC) IAC = $8,394,679 $6,987,780 $609,679

TOTAL ANNUALIZED COST (TAC = DAC + IAC) TAC= $19,765,716 $18,758,622 $9,939,827

Cost Effectiveness Summary

Annual Control Cost: $19,765,716 $18,758,622 $9,939,827

Incremental Power Output (KW-hr) 192,322,715 195,703,418 187,200,000Average Cost ($/KW-hr) $0.103 $0.096 $0.053

Capital Costs for Incremental Nominal 36 MW Plant Capacity Alternatives

Annual Costs for Incremental Nominal 36 MW Plant Capacity Alternatives

Page 79: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TenaskaBrownsvillePartners,LLC | TenaskaBrownsvilleGeneratingStation TrinityConsultants 53

APPENDIX C

CCS COST ANALYSIS

Page 80: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TableC‐1.CostEstimationforTransferofCO2viaPipelinetoExistingCO2Well

CO2PipelineandEmissionsDataParameter Value UnitsMinimumLengthofPipeline 106 milesAverageDiameterofPipeline 8 inchesCO2emissionsfromcombustionturbines(bothCCCTs) 3,140,799 Shorttons/yrCO2CaptureEfficiency 90%CapturedCO2 2,826,719 Shorttons/yr

CO2TransferCostEstimation1

CostType Units Cost($)

Materials

$Diameter(inches),Length(miles) $10,576,690.16

Labor

$Diameter(inches),Length(miles) $41,242,164.78

Miscellaneous

$Diameter(inches),Length(miles) $12,639,149.60

RightofWay

$Diameter(inches),Length(miles) $4,424,225.80

CO2SurgeTank $ $1,150,636.00PipelineControlSystem $ $110,632.00

FixedO&M $/mile/yr $914,992.00TotalPipelineCost $71,058,490.34

AmortizedCostCalculation

20 years7%0.09

$70,143,498 $(Pipeline+OtherCapital)$6,621,050 $/yr$7,536,042 $/yr

2,826,719 Shorttons/yr

3 $/ton‐yr

2Pipelinelifeisassumedbasedonengineeringjudgment.3Interestrateconservativelysetat7.00%,basedonEPA'ssevenpercentsocialinterestratefromtheOAQPSCCMSixthEdition.4CapitalRecoveryFraction=InterestRate(%)x(1+InterestRate(%))^PipelineLife)/((1+InterestRate(%))^PipelineLife‐1)5ThiscostestimationdoesnotincludecapitalandO&Mcostsassociatedwiththecompressionequipmentorprocessingequipment.

Annuitizedcontrolcostperton5

1Costestimationguidelinesobtainedfrom"QualityGuidelinesforEnergySystemStudiesEstimatingCarbonDioxideTransportandStorageCosts",DOE/NETL‐2010/1447,datedMarch2010.

Interestrate3

CapitalRecoveryFactor(CRF)4

TotalPipelineInstallationCost(TCI)AmortizedInstallationCost(TCI*CRF)AmortizedInstallation+O&MCost

CO2Transferred

EquipmentLife2

CostEquationPipelineCosts

$64,632+$1.85xLx(330.5xD2+686.7xD+26,960)

$341,627+$1.85xLx(343.2xD2+2,074xD+170,013)

$150,166+$1.58xLx(8,417xD+7,234)

$48,037+$1.20xLx(577xD+29,788)OtherCapital

$1,150,636$110,632

Operation&Maintenance(O&M)$8,632

TenaskaBrownsvillePartners,LLCBrownsvilleGeneratingStation Page1of1

TrinityConsultants124401.0126

Page 81: PREVENTION OF SIGNIFICANT DETERIORATION...Jul 20, 2012  · Sources on this list are also required to include fugitive emissions in determining whether the source is a “major stationary

TableC‐2.CarbonCaptureandStorage(CCS)‐TotalCosts

(Shorttonscontrolled/yr)

CO2CaptureandCompressionSystem‐NGCC3 $108.57 2,826,719 $306,890,946

CO2TransportFacilities4 $2.67 2,826,719 $7,536,042

CO2Storagesystem5 $0.38 2,826,719 $1,076,810

TotalCostForCapture,Compression,Transport,andStorage6 $111.61 N/A $525,444,218

1CostFactorsareconvertedfromdollarspermetrictontodollarspershorttonusingaconversionfactorof1metricton=1.1023shorttons.

3Thecostfactorforpost‐combustioncaptureofCO2fromaNaturalGasCombinedCycle(NGCC)systemisselectedbecauseitisthemostsimilarprocesswithavailablecostinformationtothatoftheproposedproject.

6TotalCostforimplementationofaCCSsystemequalsthesumoftheindividualCapture,Compression,Transport,andStoragecosts.

TableC‐3.ComparisonofCCSCostswithProjectCapitalCost

ProjectCapitalCost:AmortizedCostCalculation

20 years7%

0.09$500,000,000 $(Equipmentandcontrolcosts)$53,000,000 ForEquipmentlife$47,196,463 $/yr$5,002,825 $/yr

$52,199,288 $/yr(CapitalCost)$525,444,218 $/yrforCCS

10 timesthecapitalcost1Equipmentlifeisassumedbasedonengineeringjudgment.2Interestrateconservativelysetat7.00%,basedonEPA'ssevenpercentsocialinterestratefromtheOAQPSCCMSixthEdition.3CapitalRecoveryFraction=InterestRate(%)x(1+InterestRate(%))^PipelineLife)/((1+InterestRate(%))^PipelineLife‐1)5ThiscostestimationdoesnotincludecapitalandO&Mcostsassociatedwiththecompressionequipmentorprocessingequipment.

O&MCost(O&M)

4TheoriginalcostfactorforCO2transportobtainedfromtheReportoftheInteragencyTaskForceonCarbonCaptureandStorage was$1.00/tonneandisbasedonapipelinelengthof62miles.Assuch,thisfactorhasbeenlinearlyadjustedtoaccountforthehypotheticalpipelinelength(106miles)associatedwiththeproposedproject.

5Storagecostincludesconsiderationforinitialsitescreeningandevaluation,operationofinjectionequipment,andpost‐injectionsitemonitoring.ItshouldbenotedthatintheReportoftheInteragencyTaskForceonCarbonCaptureandStorage ,storagecostsrangefrom$0.4to$20/tonnearecited.

TotalCapitalCostfortheproposedBrownsvilleGeneratingStation(TCI)

CarbonCaptureandStorage(CCS)ComponentSystem

Cost($pertonofCO2

Controlled)1,2

AnnualSystemCO2Throughput

TotalAnnualCost

2CostsarefromReportoftheInteragencyTaskForceonCarbonCapture(August,2010).Arangeofcostswasprovidedfortransportandstoragefacilities;forconservatism,thelowendsoftheserangeswereusedinthisanalysisastheycontributelittletothetotalcost.

EquipmentLife1

Interestrate2

CapitalRecoveryFactor(CRF)3

AmortizedInstallationCost(TCI*CRF)

AmortizedInstallation+O&MCostfortheProjectAmortizedInstallation+O&MCostforCCSRatioofCCSCosttoProjectCapitalCostonAnnualBasis

AmortizedO&MCost(O&M*CRF)

TenaskaBrownsvillePartners,LLCBrownsvilleGeneratingStation Page1of1

TrinityConsultants124401.0126